首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the identification, from a photometric, astrometric and spectroscopic study, of a massive white dwarf member of the nearby, approximately solar metallicity, Coma Berenices open star cluster (Melotte 111). We find the optical to near-infrared energy distribution of WD 1216+260 to be entirely consistent with that of an isolated DA and determine the effective temperature and surface gravity of this object to be   T eff= 15 739+197−196 K  and  log  g = 8.46+0.03−0.02  . We set tight limits on the mass of a putative cool companion,   M ≳ 0.036 M  (spatially unresolved) and   M ≳ 0.034 M  (spatially resolved and   a ≲ 2500 au  ). Based on the predictions of CO core, thick H layer evolutionary models we determine the mass and cooling time of WD 1216+260 to be   M WD= 0.90 ± 0.04 M  and  τcool= 363+46−41 Myr  , respectively. For an adopted cluster age of  τ= 500 ± 100 Myr  we infer the mass of its progenitor star to be   M init= 4.77+5.37−0.97 M  . We briefly discuss this result in the context of the form of the stellar initial mass–final mass relation.  相似文献   

2.
We discuss the formation of pulsars with massive companions in eccentric orbits. We demonstrate that the probability for a non-recycled radio pulsar to have a white dwarf as a companion is comparable to that of having an old neutron star as a companion. Special emphasis is given to PSR B1820−11 and PSR B2303+46. Based on population synthesis calculations we argue that PSR B1820−11 and PSR B2303+46 could very well be accompanied by white dwarfs with mass ≳1.1 M. For PSR B1820−11, however, we cannot exclude the possibility that its companion is a main-sequence star with a mass between ∼0.7 M and ∼5 M.  相似文献   

3.
The aim of this work is to investigate the effect of element diffusion on the evolution of helium white dwarfs. To this end, we couple the multicomponent flow equations that describe gravitational settling, chemical and thermal diffusion to an evolutionary code. We compute the evolution of a set of helium white dwarf models with masses ranging from 0.169 to 0.406 M. In particular, several low-mass white dwarfs have been found in binary systems as companion to millisecond pulsars. In these systems, pulsar emission is activated by mass transfer episodes so that, if we place the zero-age point at the end of such mass transfer, then the pulsar and the white dwarf ages should be equal. Interestingly enough, available models of helium white dwarfs neglect element diffusion. Using such models, good agreement has been found between the ages of the components of the PSR J1012+5307 system. However, recent observations of the PSR B1855+09 system cast doubts on the correctness of such models, which predict a white dwarf age twice as long as the spin-down age of the pulsar. In this work, we find that element diffusion induces thermonuclear hydrogen shell flashes for models in the mass interval 0.18≲ M /M ≲ 0.41 . We show, in particular, that the occurrence of these diffusion-induced flashes eventually leads to white dwarf models with hydrogen envelope masses too small to support any further nuclear burning, thus implying much shorter cooling ages than in the case when diffusion is neglected. In particular, excellent agreement is found between the ages of PSR B1855+09 system components, solving the age discrepancy from first principles.  相似文献   

4.
We report the spectroscopic confirmation of four further white dwarf members of Praesepe. This brings the total number of confirmed white dwarf members to 11, making this the second largest collection of these objects in an open cluster identified to date. This number is consistent with the high-mass end of the initial mass function of Praesepe being Salpeter in form. Furthermore, it suggests that the bulk of Praesepe white dwarfs did not gain a substantial recoil kick velocity from possible asymmetries in their loss of mass during the asymptotic giant branch phase of evolution. By comparing our estimates of the effective temperatures and the surface gravities of WD0833+194, WD0840+190, WD0840+205 and WD0843+184 to modern theoretical evolutionary tracks, we have derived their masses to be in the range  0.72–0.76 M  and their cooling ages ∼300 Myr. For an assumed cluster age of 625 ± 50 Myr, the inferred progenitor masses are between 3.3 and  3.5 M  . Examining these new data in the context of the initial mass–final mass relation, we find that it can be adequately represented by a linear function  ( a 0= 0.289 ± 0.051,  a 1= 0.133 ± 0.015)  over the initial mass range 2.7–6  M  . Assuming an extrapolation of this relation to larger initial masses is valid and adopting a maximum white dwarf mass of  1.3 M  , our results support a minimum mass for core-collapse supernovae progenitors in the range  ∼6.8–8.6 M  .  相似文献   

5.
We present phase resolved optical photometry and spectroscopy of the accreting millisecond pulsar HETE J1900.1−2455. Our R -band light curves exhibit a sinusoidal modulation, at close to the orbital period, which we initially attributed to X-ray heating of the irradiated face of the secondary star. However, further analysis reveals that the source of the modulation is more likely due to superhumps caused by a precessing accretion disc. Doppler tomography of a broad Hα emission line reveals an emission ring, consistent with that expected from an accretion disc. Using the velocity of the emission ring as an estimate for the projected outer disc velocity, we constrain the maximum projected velocity of the secondary to be 200 km s−1, placing a lower limit of  0.05 M  on the secondary mass. For a  1.4 M  primary, this implies that the orbital inclination is low, ≲20°. Utilizing the observed relationship between the secondary mass and the orbital period in short-period cataclysmic variables, we estimate the secondary mass to be ∼0.085  M  , which implies an upper limit of  ∼2.4 M  for the primary mass.  相似文献   

6.
We use deep Hubble Space Telescope photometry of the rich, young (∼20- to 45-Myr old) star cluster NGC 1818 in the Large Magellanic Cloud to derive its stellar mass function (MF) down to  ∼0.15 M  . This represents the deepest robust MF thus far obtained for a stellar system in an extragalactic, low-metallicity  ([Fe/H]≃−0.4 dex)  environment. Combining our results with the published MF for masses above  1.0 M  , we obtain a complete present-day MF. This is a good representation of the cluster's initial MF (IMF), particularly at low masses, because our observations are centred on the cluster's uncrowded half-mass radius. Therefore, stellar and dynamical evolution of the cluster will not have affected the low-mass stars significantly. The NGC 1818 IMF is well described by both a lognormal and a broken power-law distribution with slopes of  Γ= 0.46 ± 0.10  and  Γ≃−1.35  (Salpeter-like) for masses in the range from 0.15 to  0.8 M  and greater than  0.8 M  , respectively. Within the uncertainties, the NGC 1818 IMF is fully consistent with both the Kroupa solar neighbourhood and the Chabrier lognormal mass distributions.  相似文献   

7.
We report on the results of an I -band time-series photometric survey of NGC 2547 using the MPG/ESO 2.2-m telescope with Wide Field Imager, achieving better than 1 per cent photometric precision per data point over  14 ≲ I ≲ 18  . Candidate cluster members were selected from a V versus V − I colour–magnitude diagram over  12.5 < V < 24  (covering masses from  0.9 M  down to below the brown dwarf limit), finding 800 candidates, of which we expect ∼330 to be real cluster members, taking into account contamination from the field (which is most severe at the extremes of our mass range). Searching for periodic variations in these gave 176 detections over the mass range  0.1 ≲ M /M≲ 0.9  . The rotation period distributions were found to show a clear mass-dependent morphology, qualitatively intermediate between the distributions obtained from similar surveys in NGC 2362 and 2516, as would be expected from the age of this cluster. Models of the rotational evolution were investigated, finding that the evolution from NGC 2362 to 2547 was qualitatively reproduced (given the uncertainty in the age of NGC 2547) by solid body and core-envelope decoupled models from our earlier NGC 2516 study without need for significant modification.  相似文献   

8.
There is an apparent dichotomy between the metal-poor  ([Fe/H]≤−2)  yet carbon-normal giants and their carbon-rich counterparts. The former undergo significant depletion of carbon on the red giant branch after they have undergone first dredge-up, whereas the latter do not appear to experience significant depletion. We investigate this in the context that the extra mixing occurs via the thermohaline instability that arises due to the burning of  3He  . We present the evolution of [C/Fe], [N/Fe] and  12C/13C  for three models: a carbon-normal metal-poor star, and two stars that have accreted material from a  1.5 M  AGB companion, one having received  0.01 M  of material and the other having received  0.1 M  . We find the behaviour of the carbon-normal metal-poor stars is well reproduced by this mechanism. In addition, our models also show that the efficiency of carbon-depletion is significantly reduced in carbon-rich stars. This extra-mixing mechanism is able to reproduce the observed properties of both carbon-normal and carbon-rich stars.  相似文献   

9.
We use the very large Millennium Simulation of the concordance Λ cold dark matter cosmogony to calibrate the bias and error distribution of Timing Argument estimators of the masses of the Local Group and of the Milky Way. From a large number of isolated spiral–spiral pairs similar to the Milky Way/Andromeda system, we find the interquartile range of the ratio of timing mass to true mass to be a factor of 1.8, while the 5 and 95 per cent points of the distribution of this ratio are separated by a factor of 5.7. Here, we define true mass as the sum of the 'virial' masses, M 200, of the two dominant galaxies. For present best values of the distance and approach velocity of Andromeda, this leads to a median likelihood estimate of the true mass of the Local Group of  5.27 × 1012 M  or  log  M LG/M= 12.72  , with an interquartile range of [12.58, 12.83] and a 5–95 per cent range of [12.26, 13.01]. Thus, a 95 per cent lower confidence limit on the true mass of the Local Group is  1.81 × 1012 M  . A timing estimate of the Milky Way's mass based on the large recession velocity observed for the distant satellite Leo I works equally well, although with larger systematic uncertainties. It gives an estimated virial mass for the Milky Way of  2.43 × 1012 M  with a 95 per cent lower confidence limit of  0.80 × 1012 M  .  相似文献   

10.
We explore the implications of a possible cosmic-ray (CR) background generated during the first supernova explosions that end the brief lives of massive Population III stars. We show that such a CR background could have significantly influenced the cooling and collapse of primordial gas clouds in minihaloes around redshifts of   z ∼ 15–20  , provided the CR flux was sufficient to yield an ionization rate greater than about 10−19 s−1 near the centre of the minihalo. The presence of CRs with energies  ≲107  eV would indirectly enhance the molecular cooling in these regions, and we estimate that the resulting lower temperatures in these minihaloes would yield a characteristic stellar mass as low as  ∼10 M  . CRs have a less-pronounced effect on the cooling and collapse of primordial gas clouds inside more massive dark matter haloes with virial masses  ≳108 M  at the later stages of cosmological structure formation around   z ∼ 10–15  . In these clouds, even without CR flux the molecular abundance is already sufficient to allow cooling to the floor set by the temperature of the cosmic microwave background.  相似文献   

11.
Recent evidence of a young progenitor population for many Type Ia supernovae (SNe Ia) raises the possibility that evolved intermediate-mass progenitor stars may be detected in pre-explosion images. NGC 1316, a radio galaxy in the Fornax cluster, is a prolific producer of SNe Ia, with four detected since 1980. We analyse Hubble Space Telescope ( HST ) pre-explosion images of the sites of two of the SNe Ia that exploded in this galaxy, SN2006dd (a normal Type Ia) and SN2006mr (likely a subluminous, 1991bg-like, SN Ia). Astrometric positions are obtained from optical and near-infrared ground-based images of the events. We find no candidate point sources at either location, and set upper limits on the flux in B, V and I from any such progenitors. We also estimate the amount of extinction that could be present, based on analysis of the surface-brightness inhomogeneities in the HST images themselves. At the distance of NGC 1316, the limits correspond to absolute magnitudes of  ∼−5.5, −5.4  and −6.0 mag in   M B , M V   and   M I   , respectively. Comparison to stellar evolution models argues against the presence at the supernova sites, 3 yr prior to the explosion, of normal stars with initial masses  ≳6 M  at the tip of their asymptotic-giant branch (AGB) evolution, young post-AGB stars that had initial masses  ≳4 M  and post-red giant stars of initial masses  ≳9 M  .  相似文献   

12.
We report the results of a spectroscopic and polarimetric study of the massive, hydrogen-rich WN6h stars R144 (HD 38282 = BAT99-118 = Brey 89) and R145 (HDE 269928 = BAT99-119 = Brey 90) in the Large Magellanic Cloud. Both stars have been suspected to be binaries by previous studies (R144: Schnurr et al.; R145: Moffat). We have combined radial-velocity (RV) data from these two studies with previously unpublished polarimetric data. For R145, we were able to establish, for the first time, an orbital period of 158.8 d, along with the full set of orbital parameters, including the inclination angle i , which was found to be   i = 38°± 9°  . By applying a modified version of the shift-and-add method developed by Demers et al., we were able to isolate the spectral signature of the very faint line companion star. With the RV amplitudes of both components in R145, we were thus able to estimate their absolute masses. We find minimum masses   M WRsin3 i = 116 ± 33 M  and   M Osin3 i = 48 ± 20 M  for the WR and the O component, respectively. Thus, if the low-inclination angle were correct, resulting absolute masses of the components would be at least 300 and  125 M  , respectively. However, such high masses are not supported by brightness considerations when R145 is compared to systems with known very high masses such as NGC 3603-A1 or WR20a. An inclination angle close to  90°  would remedy the situation, but is excluded by the currently available data. More and better data are thus required to firmly establish the nature of this puzzling, yet potentially very massive and important system. As to R144, however, the combined data sets are not sufficient to find any periodicity.  相似文献   

13.
Active galactic nuclei can produce extremely powerful jets. While tightly collimated, the scale of these jets and the stellar density at galactic centres implies that there will be many jet/star interactions, which can mass load the jet through stellar winds. Previous work employed modest wind mass outflow rates, but this does not apply when mass loading is provided by a small number of high mass-loss stars. We construct a framework for jet mass loading by stellar winds for a broader spectrum of wind mass-loss rates than has previously been considered. Given the observed stellar mass distributions in galactic centres, we find that even highly efficient (0.1 Eddington luminosity) jets from supermassive black holes of masses M BH≲ 104 M are rapidly mass loaded and quenched by stellar winds. For  104 M < M BH < 108 M  , the quenching length of highly efficient jets is independent of the jet's mechanical luminosity. Stellar wind mass loading is unable to quench efficient jets from more massive engines, but can account for the observed truncation of the inefficient M87 jet, and implies a baryon-dominated composition on scales ≳2 kpc therein even if the jet is initially pair plasma dominated.  相似文献   

14.
We use numerical simulations of the fragmentation of a  1000 M  molecular cloud and the formation of a stellar cluster to study how the initial conditions for star formation affect the resulting initial mass function (IMF). In particular, we are interested in the relation between the thermal Jeans mass in a cloud and the knee of the IMF, i.e. the mass separating the region with a flat IMF slope from that typified by a steeper, Salpeter-like, slope. In three isothermal simulations with   M Jeans= 1, 2  and  5 M  , the number of stars formed, at comparable dynamical times, scales roughly with the number of initial Jeans masses in the cloud. The mean stellar mass also increases (though less than linearly) with the initial Jeans mass in the cloud. It is found that the IMF in each case displays a prominent knee, located roughly at the mass scale of the initial Jeans mass. Thus clouds with higher initial Jeans masses produce IMFs which are shallow to higher masses. This implies that a universal IMF requires a physical mechanism that sets the Jeans mass to be near  1 M  . Simulations including a barotropic equation of state as suggested by Larson, with cooling at low densities followed by gentle heating at higher densities, are able to produce realistic IMFs with the knee located at  ≈1 M  , even with an initial   M Jeans= 5 M  . We therefore suggest that the observed universality of the IMF in the local Universe does not require any fine tuning of the initial conditions in star forming clouds but is instead imprinted by details of the cooling physics of the collapsing gas.  相似文献   

15.
We find that at redshifts   z ≳ 10, HD  line cooling allows strongly shocked primordial gas to cool to the temperature of the cosmic microwave background (CMB). This temperature is the minimum value attainable via radiative cooling. Provided that the abundance of HD, normalized to the total number density, exceeds a critical level of  ∼10−8  , the CMB temperature floor is reached in a time which is short in comparison to the Hubble time. We estimate the characteristic masses of stars formed out of shocked primordial gas in the wake of the first supernovae, and resulting from the virialization of dark matter haloes during hierarchical structure formation to be  ∼10 M  . In addition, we show that cooling by HD enables the primordial gas in relic H  ii regions to cool to temperatures considerably lower than those reached via H2 cooling alone. We confirm that HD cooling is unimportant in cases where the primordial gas does not go through an ionized phase, as in the formation process of the very first stars in   z ≳ 20  minihaloes of mass  ∼106 M  .  相似文献   

16.
The first spectroscopic census of active galactic nuclei (AGNs) associated with late-type galaxies in the Virgo cluster was carried out by observing 213 out of a complete set of 237 galaxies more massive than   M dyn > 108.5 M  . Among them, 77 are classified as AGNs [including 21 transition objects, 47 low-ionization nuclear emission regions (LINERs) and nine Seyferts] and comprise 32 per cent of the late-type galaxies in Virgo. Due to spectroscopic incompleteness, at most 21 AGNs are missed in the survey, so that the fraction would increase up to 41 per cent. Using corollary near-infrared observations that enable us to estimate galaxy dynamical masses, it is found that AGNs are hosted exclusively in massive galaxies, i.e.   M dyn≳ 1010 M  . Their frequency increases steeply with the dynamical mass from zero at   M dyn≈ 109.5 M  to virtually 1 at   M dyn > 1011.5 M  . These frequencies are consistent with those of low-luminosity AGNs found in the general field by the Sloan Digital Sky Survey. Massive galaxies that harbour AGNs commonly show conspicuous r -band star-like nuclear enhancements. Conversely, they often, but not necessarily, contain massive bulges. A few well-known AGNs (e.g. M61, M100, NGC 4535) are found in massive Sc galaxies with little or no bulge. The AGN fraction seems to be only marginally sensitive to galaxy environment. We infer the black hole masses using the known scaling relations of quiescent black holes. No black holes lighter than  ∼106 M  are found active in our sample.  相似文献   

17.
We are undertaking a high-frequency survey of the Galactic plane for radio pulsars, using the 13-element multibeam receiver on the 64-m Parkes radio telescope. We describe briefly the survey system and some of the initial results. PSR J1811−1736, one of the first pulsars discovered with this system, has a rotation period of 104 ms. Subsequent timing observations using the 76-m radio telescope at Jodrell Bank show that it is in an 18.8-d, highly eccentric binary orbit. We have measured the rate of advance of periastron which indicates a total system mass of 2.6±0.9 M, and the minimum companion mass is about 0.7 M. This, the high orbital eccentricity and the recycled nature of the pulsar suggest that this system is composed of two neutron stars, only the fourth or fifth such system known in the disc of the Galaxy.  相似文献   

18.
The subdwarf B (sdB) star KPD 0422 + 5421 was discovered to be a single-lined spectroscopic binary with a period of P  = 0.090 1795 ± (3 × 10−7) d (2 h 10 min). The U B light curves display an ellipsoidal modulation with amplitudes of ≈ 0.02 mag. The sdB star contributes nearly all of the observed flux. This and the absence of any reflection effect suggest that the unseen companion star is small (i.e. R comp ≈ 0.01 R) and therefore degenerate. We modelled the U B light curves and derived i  = 78.05° ± 0.50° and a mass ratio of q  =  M comp/ M sdB = 0.87 ± 0.15. The sdB star fills 69 per cent of its Roche lobe. These quantities may be combined with the mass function of the companion [ f ( M ) = 0.126 ± 0.028 M] to derive M sdB = 0.72 ± 0.26 M and M comp = 0.62 ±  0.18 M. We used model spectra to derive the effective temperature, surface gravity and helium abundance of the sdB star. We found T eff = 25 000 ± 1500 K, log g  = 5.4 ± 0.1 and [He/H] = −1.0. With a period of 2 h 10 min, KPD 0422 + 5421 has one of the shortest known orbital periods of a detached binary. This system is also one of only a few known binaries that contain a subdwarf B star and a white dwarf. Thus KPD 0422 + 5421 represents a relatively unobserved, and short-lived, stage of binary star evolution.  相似文献   

19.
We compute the continuous part of the ideal-magnetohydrodynamic (ideal-MHD) frequency spectrum of a polar mountain produced by magnetic burial on an accreting neutron star. Applying the formalism developed by Hellsten & Spies, extended to include gravity, we solve the singular eigenvalue problem subject to line-tying boundary conditions. This spectrum divides into an Alfvén part and a cusp part. The eigenfunctions are chirped and anharmonic with an exponential envelope, and the eigenfrequencies cover the whole spectrum above a minimum ωlow. For equilibria with accreted mass  1.2 × 10−6≲ M a/M≲ 1.7 × 10−4  and surface magnetic fields  1011≲ B */G ≲ 1013, ωlow  is approximately independent of   B *  , and increases with M a. The results are consistent with the Alfvén spectrum excited in numerical simulations with the zeus-mp solver. The spectrum is modified substantially by the Coriolis force in neutron stars spinning faster than ∼100 Hz. The implications for gravitational-wave searches for low-mass X-ray binaries are considered briefly.  相似文献   

20.
The analysis of hard X-ray INTEGRAL observations (2003–2008) of superaccreting Galactic microquasar SS433 at precessional phases of the source with the maximum disc opening angle is carried out. It is found that the shape and width of the primary X-ray eclipse are strongly variable, suggesting additional absorption in dense stellar wind and gas outflows from the optical A7I component and the wind–wind collision region. The independence of the observed hard X-ray spectrum on the accretion disc precessional phase suggests that hard X-ray emission (20–100 keV) is formed in an extended, hot, quasi-isothermal corona, probably heated by interaction of relativistic jet with inhomogeneous wind outflow from the precessing supercritical accretion disc. A joint modelling of X-ray eclipsing and precessional hard X-ray variability of SS433 revealed by INTEGRAL by a geometrical model suggests the binary mass ratio   q = mx / m v ≃  0.25–0.5. The absolute minimum of joint orbital and precessional  χ2  residuals is reached at   q ≃ 0.3  . The found binary mass ratio range allows us to explain the substantial precessional variability of the minimum brightness at the middle of the primary optical eclipse. For the mass function of the optical star   f v = 0.268 M  as derived from Hillwig & Gies data, the obtained value of   q ≃ 0.3  yields the masses of the components   mx ≃ 5.3 M, m v ≃ 17.7 M  , confirming the black hole nature of the compact object in SS433.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号