首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
A common approach for the performance assessment of radionuclide migration from a nuclear waste repository is by means of Monte-Carlo techniques. Multiple realizations of the parameters controlling radionuclide transport are generated and each one of these realizations is used in a numerical model to provide a transport prediction. The statistical analysis of all transport predictions is then used in performance assessment. In order to reduce the uncertainty on the predictions is necessary to incorporate as much information as possible in the generation of the parameter fields. In this regard, this paper focuses in the impact that conditioning the transmissivity fields to geophysical data and/or piezometric head data has on convective transport predictions in a two-dimensional heterogeneous formation. The Walker Lake data based is used to produce a heterogeneous log-transmissivity field with distinct non-Gaussian characteristics and a secondary variable that represents some geophysical attribute. In addition, the piezometric head field resulting from the steady-state solution of the groundwater flow equation is computed. These three reference fields are sampled to mimic a sampling campaign. Then, a series of Monte-Carlo exercises using different combinations of sampled data shows the relative worth of secondary data with respect to piezometric head data for transport predictions. The analysis shows that secondary data allows to reproduce the main spatial patterns of the reference transmissivity field and improves the mass transport predictions with respect to the case in which only transmissivity data is used. However, a few piezometric head measurements could be equally effective for the characterization of transport predictions.  相似文献   

2.
A common approach for the performance assessment of radionuclide migration from a nuclear waste repository is by means of Monte-Carlo techniques. Multiple realizations of the parameters controlling radionuclide transport are generated and each one of these realizations is used in a numerical model to provide a transport prediction. The statistical analysis of all transport predictions is then used in performance assessment. In order to reduce the uncertainty on the predictions is necessary to incorporate as much information as possible in the generation of the parameter fields. In this regard, this paper focuses in the impact that conditioning the transmissivity fields to geophysical data and/or piezometric head data has on convective transport predictions in a two-dimensional heterogeneous formation. The Walker Lake data based is used to produce a heterogeneous log-transmissivity field with distinct non-Gaussian characteristics and a secondary variable that represents some geophysical attribute. In addition, the piezometric head field resulting from the steady-state solution of the groundwater flow equation is computed. These three reference fields are sampled to mimic a sampling campaign. Then, a series of Monte-Carlo exercises using different combinations of sampled data shows the relative worth of secondary data with respect to piezometric head data for transport predictions. The analysis shows that secondary data allows to reproduce the main spatial patterns of the reference transmissivity field and improves the mass transport predictions with respect to the case in which only transmissivity data is used. However, a few piezometric head measurements could be equally effective for the characterization of transport predictions.  相似文献   

3.
Stauffer F 《Ground water》2005,43(6):843-849
A method is proposed to estimate the uncertainty of the location of pathlines in two-dimensional, steady-state confined or unconfined flow in aquifers due to the uncertainty of the spatially variable unconditional hydraulic conductivity or transmissivity field. The method is based on concepts of the semianalytical first-order theory given in Stauffer et al. (2002, 2004), which allows estimates of the lateral second moment (variance) of the location of a moving particle. However, this method is reformulated in order to account for nonuniform recharge and nonuniform aquifer thickness. One prominent application is the uncertainty estimation of the catchment of a pumping well by considering the boundary pathlines starting at a stagnation point. In this method, the advective transport of particles is considered, based on the velocity field. In the case of a well catchment, backtracking is applied by using the reversed velocity field. Spatial variability of hydraulic conductivity or transmissivity is considered by taking into account an isotropic exponential covariance function of log-transformed values with parameters describing the variance and correlation length. The method allows postprocessing of results from ground water models with respect to uncertainty estimation. The code PPPath, which was developed for this purpose, provides a postprocessing of pathline computations under PMWIN, which is based on MODFLOW. In order to test the methodology, it was applied to results from Monte Carlo simulations for catchments of pumping wells. The results correspond well. Practical applications illustrate the use of the method in aquifers.  相似文献   

4.
 We illustrate a method of global sensitivity analysis and we test it on a preliminary case study in the field of environmental assessment to quantify uncertainty importance in poorly-known model parameters and spatially referenced input data. The focus of the paper is to show how the methodology provides guidance to improve the quality of environmental assessment practices and decision support systems employed in environmental policy. Global sensitivity analysis, coupled with uncertainty analysis, is a tool to assess the robustness of decisions, to understand whether the current state of knowledge on input data and parametric uncertainties is sufficient to enable a decision to be taken. The methodology is applied to a preliminary case study, which is based on a numerical model that employs GIS-based soil data and expert consultation to evaluate an index that joins environmental and economic aspects of land depletion. The index is used as a yardstick by decision-makers involved in the planning of highways to identify the route that minimises the overall impact.  相似文献   

5.
The Bayesian inverse approach proposed by Woodbury and Ulrych (2000) is extended to estimate the transmissivity fields of highly heterogeneous aquifers for steady state ground water flow. Boundary conditions are Dirichlet and Neumann type, and sink and source terms are included. A first-order approximation of Taylor's series for the exponential terms introduced by sinks and sources or the Neumann condition in the governing equation is adopted. Such a treatment leads to a linear finite element formulation between hydraulic head and the logarithm of the transmissivity-denoted as ln(T)-perturbations. An updating procedure similar to that of Woodbury and Ulrych (2000) can be performed. This new algorithm is examined against a generic example. It is found that the linearized solution approximates the true solution with an R2 coefficient = 0.96 for an ln(T) variance of 9 for the test case. The addition of hydraulic head data is shown to improve the ln(T) estimates, in comparison to simply interpolating the sparse ln(T) data alone. The new Bayesian code is also employed to calibrate a high-resolution finite difference MODFLOW model of the Edwards Aquifer in southwest Texas. The posterior ln(T) field from this application yields better head fit when compared to the prior ln(T) field determined from upscaling and cokriging. We believe that traditional MODFLOW grids could be imported into the new Bayes code fairly seamlessly and thereby enhance existing calibration of many aquifers.  相似文献   

6.
Groundwater-flow models depend on hydraulic head and flux observations for evaluation and calibration. A different type of observation—change in storage measured using repeat microgravity—can also be used for parameter estimation by simulating the expected change in gravity from a groundwater model and including the observation misfit in the objective function. The method is demonstrated using new software linked to MODFLOW input and output files and field data from the vicinity of the All American Canal in southeast California, USA. Over a 10-year period following lining of the previously highly permeable canal with concrete, gravity decreased by over 100 μGal (equivalent to about 2.5 m of free-standing water) at some locations as seepage decreased and the remnant groundwater mound dissipated into the aquifer or was removed by groundwater pumping. Simulated gravity from a MODFLOW model closely matched observations, and repeat microgravity data proved useful for constraining both hydraulic conductivity and specific yield estimates. Specific yield estimated using the infinite-horizontal slab approximation agreed well with model-derived values, and the departure from the linear, flat-water-table approximation was small, less than 2%, despite relatively large and dynamic water-table slope. First-order second-moment parameter uncertainty analysis shows reduction in uncertainty for all hydraulic conductivity and specific yield parameter estimates with the addition of repeat microgravity data, as compared to drawdown data alone.  相似文献   

7.
Ragab Ragab  John Bromley 《水文研究》2010,24(19):2663-2680
A newly Integrated Hydrological Modelling System (IHMS) has been developed to study the impact of changes in climate, land use and water management on groundwater and seawater intrusion (SWI) into coastal areas. The system represents the combination of three models, which can, if required, be run separately. It has been designed to assess the combined impact of climate, land use and groundwater abstraction changes on river, drainage and groundwater flows, groundwater levels and, where appropriate, SWI. The approach is interdisciplinary and reflects an integrated water management approach. The system comprises three packages: the Distributed Catchment Scale Model (DiCaSM), MODFLOW (96 and 2000) and SWI models. In addition to estimating all water balance components, DiCaSM, produces the recharge data that are used as input to the groundwater flow model of the US Geological Survey, MODFLOW. The latter subsequently generates the head distribution and groundwater flows that are used as input to the SWI model, SWI. Thus, any changes in land use, rainfall, water management, abstraction, etc. at the surface are first handled by DiCaSM, then by MODFLOW and finally by the SWI. The three models operate at different spatial and temporal scales and a facility (interface utilities between models) to aggregate/disaggregate input/output data to meet a desired spatial and temporal scale was developed allowing smooth and easy communication between the three models. As MODFLOW and SWI are published and in the public domain, this article focuses on DiCaSM, the newly developed unsaturated zone DiCaSM and equally important the interfacing utilities between the three models. DiCaSM simulates a number of hydrological processes: rainfall interception, evapotranspiration, surface runoff, infiltration, soil water movement in the root zone, plant water uptake, crop growth, stream flow and groundwater recharge. Input requirements include distributed data sets of rainfall, land use, soil types and digital terrain; climate data input can be either distributed or non‐distributed. The model produces distributed and time series output of all water balance components including potential evapotranspiration, actual evapotranspiration, rainfall interception, infiltration, plant water uptake, transpiration, soil water content, soil moisture (SM) deficit, groundwater recharge rate, stream flow and surface runoff. This article focuses on details of the hydrological processes and the various equations used in DiCaSM, as well as the nature of the interface to the MODFLOW and SWI models. Furthermore, the results of preliminary tests of DiCaSM are reported; these include tests related to the ability of the model to predict the SM content of surface and subsurface soil layers, as well as groundwater levels. The latter demonstrates how the groundwater recharge calculated from DiCaSM can be used as input into the groundwater model MODFLOW using aggregation and disaggregation algorithms (built into the interface utility). SWI has also been run successfully with hypothetical examples and was able to reproduce the results of some of the original examples of Bakker and Schaars ( 2005 ). In the subsequent articles, the results of applications to different catchments will be reported. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Romero DM  Silver SE 《Ground water》2006,44(6):797-802
The ground water flow model MODFLOW inherently implements a nongeneralized integrated finite-difference (IFD) numerical scheme. The IFD numerical scheme allows for construction of finite-difference model grids with curvilinear (piecewise linear) rows. The resulting grid comprises model cells in the shape of trapezoids and is distorted in comparison to a traditional MODFLOW finite-difference grid. A version of MODFLOW-88 (herein referred to as MODFLOW IFD) with the code adapted to make the one-dimensional DELR and DELC arrays two dimensional, so that equivalent conductance between distorted grid cells can be calculated, is described. MODFLOW IFD is used to inspect the sensitivity of the numerical head and velocity solutions to the level of distortion in trapezoidal grid cells within a converging radial flow domain. A test problem designed for the analysis implements a grid oriented such that flow is parallel to columns with converging widths. The sensitivity analysis demonstrates MODFLOW IFD's capacity to numerically derive a head solution and resulting intercell volumetric flow when the internal calculation of equivalent conductance accounts for the distortion of the grid cells. The sensitivity of the velocity solution to grid cell distortion indicates criteria for distorted grid design. In the radial flow test problem described, the numerical head solution is not sensitive to grid cell distortion. The accuracy of the velocity solution is sensitive to cell distortion with error <1% if the angle between the nonparallel sides of trapezoidal cells is <12.5 degrees. The error of the velocity solution is related to the degree to which the spatial discretization of a curve is approximated with piecewise linear segments. Curvilinear finite-difference grid construction adds versatility to spatial discretization of the flow domain. MODFLOW-88's inherent IFD numerical scheme and the test problem results imply that more recent versions of MODFLOW 2000, with minor modifications, have the potential to make use of a curvilinear grid.  相似文献   

9.
We present a methodology for storing the bulkier portions of a set of MODFLOW input and output files in a compressed binary format using the HDF5 library. This approach results in compression ratios of up to 99% with no significant time penalty. The highly compressed format is particularly beneficial when dealing with large regional models or Monte Carlo simulations. The strategy is focused on the list‐ and array‐based portions of the input files including the cell property and recharge arrays, and is compatible with models containing parameters, including pilot points. The utilities are based on a modified version of the MODFLOW code and are, therefore, compatible with any standard MODFLOW simulation. We present used cases and instructions on how to use the utilities.  相似文献   

10.
Simulating ground water-lake interactions: approaches and insights   总被引:4,自引:0,他引:4  
Approaches for modeling lake-ground water interactions have evolved significantly from early simulations that used fixed lake stages specified as constant head to sophisticated LAK packages for MODFLOW. Although model input can be complex, the LAK package capabilities and output are superior to methods that rely on a fixed lake stage and compare well to other simple methods where lake stage can be calculated. Regardless of the approach, guidelines presented here for model grid size, location of three-dimensional flow, and extent of vertical capture can facilitate the construction of appropriately detailed models that simulate important lake-ground water interactions without adding unnecessary complexity. In addition to MODFLOW approaches, lake simulation has been formulated in terms of analytic elements. The analytic element lake package had acceptable agreement with a published LAKI problem, even though there were differences in the total lake conductance and number of layers used in the two models. The grid size used in the original LAKI problem, however, violated a grid size guideline presented in this paper. Grid sensitivity analyses demonstrated that an appreciable discrepancy in the distribution of stream and lake flux was related to the large grid size used in the original LAKI problem. This artifact is expected regardless of MODFLOW LAK package used. When the grid size was reduced, a finite-difference formulation approached the analytic element results. These insights and guidelines can help ensure that the proper lake simulation tool is being selected and applied.  相似文献   

11.
Highly detailed physically based groundwater models are often applied to make predictions of system states under unknown forcing. The required analysis of uncertainty is often unfeasible due to the high computational demand. We combine two possible solution strategies: (1) the use of faster surrogate models; and (2) a robust data worth analysis combining quick first-order second-moment uncertainty quantification with null-space Monte Carlo techniques to account for parametric uncertainty. A structurally and parametrically simplified model and a proper orthogonal decomposition (POD) surrogate are investigated. Data worth estimations by both surrogates are compared against estimates by a complex MODFLOW benchmark model of an aquifer in New Zealand. Data worth is defined as the change in post-calibration predictive uncertainty of groundwater head, river-groundwater exchange flux, and drain flux data, compared to the calibrated model. It incorporates existing observations, potential new measurements of system states (“additional” data) as well as knowledge of model parameters (“parametric” data). The data worth analysis is extended to account for non-uniqueness of model parameters by null-space Monte Carlo sampling. Data worth estimates of the surrogates and the benchmark suggest good agreement for both surrogates in estimating worth of existing data. The structural simplification surrogate only partially reproduces the worth of “additional” data and is unable to estimate “parametric” data, while the POD model is in agreement with the complex benchmark for both “additional” and “parametric” data. The variance of the POD data worth estimates suggests the need to account for parameter non-uniqueness, like presented here, for robust results.  相似文献   

12.
Land use evaluation involves careful consideration of several environmental factors and their relative importance quantified by factor weights. Local multi-criteria evaluation provides a mechanism for computing factor (criteria) weights within local neighborhoods that capture spatial heterogeneity and contribute to more accurate evaluation results. The accuracy of results, however, is tempered by the potential uncertainty of criteria weights. The paper presents a spatially explicit approach to uncertainty and sensitivity analysis of local criteria weights and modeling scale on the variability of model output. The efficacy of the approach is presented on the example of Environmental Benefit Index (EBI) model used by the U.S. Department of Agriculture Conservation Reserve Program (CRP) to select environmentally sensitive agricultural areas for conservation. The uncertainty analysis resulted in identifying robust areas for CRP selection characterized by high suitability and low uncertainty. The sensitivity analysis focused on the next-best group of candidates characterized by high suitability and high uncertainty. The results show that there is a relationship between spatial heterogeneity, data representation scale, and the level of uncertainty in the results of EBI model. The sensitivity of model output can be attributed to both the uncertainty of criteria weights and the modeling scale. A potential practical value of this approach is the improved analytical support for land suitability evaluation requiring a consideration of sub-optimal land units (high suitability/high uncertainty). Also, this approach can guide modelling effort by allowing the analyst to visualize spatial distribution and patterns of model output uncertainty and focus data collection on influential model input factors.  相似文献   

13.
Weiss M  Gvirtzman H 《Ground water》2007,45(6):761-773
The fraction of rain that is annually recharged to ground water is a function of the transient quantities of precipitation (wet vs. dry years) as well as other meteorological and geologic factors, and thus it is very difficult to estimate. In this study, we have used long records (20 to 30 years) of precipitation and spring discharge to reconstruct the transient character of yearly recharge. These data sets were used to calibrate numerical ground water flow models on the less than 3 km(2) scale for four separate perched karstic aquifers in the Judean and Samarian Mountains of Israel. The stratification and karstic character of the local carbonate rock aquifers cause ground water to flow through discrete dissolution channels and to discharge at isolated springs. An innovative, dual-porosity approach was used where a finite-difference solution simulates flow in the rock matrix, while the karstic channels are simulated using computationally simple drains. Perched conditions are also simulated innovatively using MODFLOW by treating the bottom unsaturated layer as if it is saturated, but by assuming zero pressure head throughout the "unsaturated" layer. Best fitting between measured and computed spring hydrograph data has allowed us to develop a set of empirical functions relating measured precipitation to recharge to the aquifer. The generic methodology presented gives insight into the suspected changes in aquifer recharge rates between particularly wet or dry years.  相似文献   

14.
Two stochastic models are developed to describe the BOD output (i.e. effluent) variation of facultative aerated lagoons in series. One of the models uses the uncertainty analysis (UA) technique and the other is based on the moment equation solution methodology of stochastic differential equations (SDE's). The former considers a second-order approximation of the expectation (SOAE) and a first-order approximation of the variance (FOAV). The SDE model considers that output variability is accounted for by random variations in the rate coefficient. Comparisons are provided. Calibration and verification of the two models are aciieved by using field observations from two different lagoon systems in series. The predictive performances of the two models are compared with each other and with another SDE model, presented in a previous paper, that considers input randomness. The three methods show similar predictive performances and provide good predictions of the mean and standard deviation of the lagoon effluent BOD concentrations and thus are considered as appropriate methodologies.  相似文献   

15.
For good groundwater flow and solute transport numerical modeling, it is important to characterize the formation properties. In this paper, we analyze the performance and important implementation details of a new approach for stochastic inverse modeling called inverse sequential simulation (iSS). This approach is capable of characterizing conductivity fields with heterogeneity patterns difficult to capture by standard multiGaussian-based inverse approaches. The method is based on the multivariate sequential simulation principle, but the covariances and cross-covariances used to compute the local conditional probability distributions are computed by simple co-kriging which are derived from an ensemble of conductivity and piezometric head fields, in a similar manner as the experimental covariances are computed in an ensemble Kalman filtering. A sensitivity analysis is performed on a synthetic aquifer regarding the number of members of the ensemble of realizations, the number of conditioning data, the number of piezometers at which piezometric heads are observed, and the number of nodes retained within the search neighborhood at the moment of computing the local conditional probabilities. The results show the importance of having a sufficiently large number of all of the mentioned parameters for the algorithm to characterize properly hydraulic conductivity fields with clear non-multiGaussian features.  相似文献   

16.
This study introduces Bayesian model averaging (BMA) to deal with model structure uncertainty in groundwater management decisions. A robust optimized policy should take into account model parameter uncertainty as well as uncertainty in imprecise model structure. Due to a limited amount of groundwater head data and hydraulic conductivity data, multiple simulation models are developed based on different head boundary condition values and semivariogram models of hydraulic conductivity. Instead of selecting the best simulation model, a variance-window-based BMA method is introduced to the management model to utilize all simulation models to predict chloride concentration. Given different semivariogram models, the spatially correlated hydraulic conductivity distributions are estimated by the generalized parameterization (GP) method that combines the Voronoi zones and the ordinary kriging (OK) estimates. The model weights of BMA are estimated by the Bayesian information criterion (BIC) and the variance window in the maximum likelihood estimation. The simulation models are then weighted to predict chloride concentrations within the constraints of the management model. The methodology is implemented to manage saltwater intrusion in the “1,500-foot” sand aquifer in the Baton Rouge area, Louisiana. The management model aims to obtain optimal joint operations of the hydraulic barrier system and the saltwater extraction system to mitigate saltwater intrusion. A genetic algorithm (GA) is used to obtain the optimal injection and extraction policies. Using the BMA predictions, higher injection rates and pumping rates are needed to cover more constraint violations, which do not occur if a single best model is used.  相似文献   

17.
The “HYDRUS package for MODFLOW” is an existing MODFLOW package that allows MODFLOW to simultaneously evaluate transient water flow in both unsaturated and saturated zones. The package is based on incorporating parts of the HYDRUS-1D model (to simulate unsaturated water flow in the vadose zone) into MODFLOW (to simulate saturated groundwater flow). The coupled model is effective in addressing spatially variable saturated-unsaturated hydrological processes at the regional scale. However, one of the major limitations of this coupled model is that it does not have the capability to simulate solute transport along with water flow and therefore, the model cannot be employed for evaluating groundwater contamination. In this work, a modified unsaturated flow and transport package (modified HYDRUS package for MODFLOW and MT3DMS) has been developed and linked to the three-dimensional (3D) groundwater flow model MODFLOW and the 3D groundwater solute transport model MT3DMS. The new package can simulate, in addition to water flow in the vadose zone, also solute transport involving many biogeochemical processes and reactions, including first-order degradation, volatilization, linear or nonlinear sorption, one-site kinetic sorption, two-site sorption, and two-kinetic sites sorption. Due to complex interactions at the groundwater table, certain modifications of the pressure head (compared to the original coupling) and solute concentration profiles were incorporated into the modified HYDRUS package. The performance of the newly developed model is evaluated using HYDRUS (2D/3D), and the results indicate that the new model is effective in simulating the movement of water and contaminants in the saturated-unsaturated flow domains.  相似文献   

18.
Computerized sediment transport models are frequently employed to quantitatively simulate the movement of sediment materials in rivers. In spite of the deterministic nature of the models, the outputs are subject to uncertainty due to the inherent variability of many input parameters in time and in space, along with the lack of complete understanding of the involved processes. The commonly used first-order method for sensitivity and uncertainty analyses is to approximate a model by linear expansion at a selected point. Conclusions from the first-order method could be of limited use if the model responses drastically vary at different points in parameter space. To obtain the global sensitivity and uncertainty features of a sediment transport model over a larger input parameter space, the Latin hypercubic sampling technique along with regression procedures were employed. For the purpose of illustrating the methodologies, the computer model HEC2-SR was selected in this study. Through an example application, the results about the parameters sensitivity and uncertainty of water surface, bed elevation and sediment discharge were discussed.  相似文献   

19.
20.
The nonhorizontal‐model‐layer (NHML) grid system is more accurate than the horizontal‐model‐layer grid system to describe groundwater flow in an unconfined sloping aquifer on the basis of MODFLOW‐2000. However, the finite‐difference scheme of NHML was based on the Dupuit‐Forchheimer assumption that the streamlines were horizontal, which was acceptable for slope less than 0.10. In this study, we presented a new finite‐difference scheme of NHML based on the Boussinesq assumption and developed a new package SLOPE which was incorporated into MODFLOW‐2000 to become the MODFLOW‐SP model. The accuracy of MODFLOW‐SP was tested against solution of Mac Cormack (1969). The differences between the solutions of MODFLOW‐2000 and MODFLOW‐SP were nearly negligible when the slope was less than 0.27, and they were noticeable during the transient flow stage and vanished in steady state when the slope increased above 0.27. We established a model considering the vertical flow using COMSOL Multiphysics to test the robustness of constrains used in MODFLOW‐SP. The results showed that streamlines quickly became parallel with the aquifer base except in the narrow regions near the boundaries when the initial flow was not parallel to the aquifer base. MODFLOW‐SP can be used to predict the hydraulic head of an unconfined aquifer along the profile perpendicular to the aquifer base when the slope was smaller than 0.50. The errors associated with constrains used in MODFLOW‐SP were small but noticeable when the slope increased to 0.75, and became significant for the slope of 1.0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号