首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long-term trends are observed in the spatial variability of atmospheric circulation in the 18th–23rd solar cycles in the middle troposphere at the middle and high latitudes of the Northern Hemisphere. The intensification of solar activity in the cycle chronologically coincides with the formation of the extensive anomalies of geopotential at the level of 500 hPa over the northern parts of the Atlantic and Pacific oceans. Upper-level troughs gradually move from middle to high latitudes and, having reached the Arctic Ocean, start moving back to the south. The certain synchronization in the manifestation of natural processes on the Sun and Earth enables considering the features of the spatial distribution of natural anomalies for several solar cycles as a kind of the “marker” of natural long-term fluctuations.  相似文献   

2.
Results from an ice-ocean coupled model are used to investigate the impact of long-term variability in sea ice transport at the Fram Strait on the intensity of the Atlantic deep circulation. An increase (or decrease) in sea ice transport through the Fram Strait leads to a stronger (or weaker) deep circulation in the Atlantic. Change in the sea ice transport is accompanied by a salinity anomaly in the surface layer of the Arctic Ocean. Such an anomaly could inversely affect the Atlantic circulation once it reaches deep water formation regions. If the Canadian Archipelago is closed, the anomaly is subsequently transported through the Fram Strait, and counters the initial changes in the Atlantic deep circulation. On the other hand, if the Canadian Archipelago is open, some of the anomaly is transported to the Canadian Archipelago, and the initial change in the Atlantic deep circulation persists. In the Arctic Ocean basin, the time scale and path of the salinity anomalys propagation depends on the large-scale flow at the surface of the Arctic Ocean. Our results suggest that the salinity anomaly transport and its propagation pathway out of the Arctic Ocean are important determinants of the role of sea ice transport variability through the Fram Strait in controlling the intensity of the Atlantic deep circulation.  相似文献   

3.
The autumn and early winter atmospheric response to the record-low Arctic sea ice extent at the end of summer 2007 is examined in ensemble hindcasts with prescribed sea ice extent, made with the European Centre for Medium-Range Weather Forecasts state-of-the-art coupled ocean–atmosphere seasonal forecast model. Robust, warm anomalies over the Pacific and Siberian sectors of the Arctic, as high as 10°C at the surface, are found in October and November. A regime change occurs by December, characterized by weaker temperatures anomalies extending through the troposphere. Geopotential anomalies extend from the surface up to the stratosphere, associated to deeper Aleutian and Icelandic Lows. While the upper-level jet is weakened and shifted southward over the continents, it is intensified over both oceanic sectors, especially over the Pacific Ocean. On the American and Eurasian continents, intensified surface Highs are associated with anomalous advection of cold (warm) polar air on their eastern (western) sides, bringing cooler temperatures along the Pacific coast of Asia and Northeastern North America. Transient eddy activity is reduced over Eurasia, intensified over the entrance and exit regions of the Pacific and Atlantic storm tracks, in broad qualitative agreement with the upper-level wind anomalies. Potential predictability calculations indicate a strong influence of sea ice upon surface temperatures over the Arctic in autumn, but also along the Pacific coast of Asia in December. When the observed sea ice extent from 2007 is prescribed throughout the autumn, a higher correlation of surface temperatures with meteorological re-analyses is found at high latitudes from October until mid-November. This further emphasises the relevance of sea ice for seasonal forecasting in the Arctic region, in the autumn.  相似文献   

4.
The interannual atmosphere-ocean-sea ice interaction (AOSI) in high northern latitudes is studied with a global atmosphere-ocean-sea ice coupled model system, in which the model components of atmosphere and land surface are from China National Climate Center and that of ocean and sea ice are from LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences. A daily flux anomaly correction scheme is employed to couple the atmosphere model and the ocean model with the effect of inhomogenity of sea ice in high latitudes is considered. The coupled model system has been run for 50 yr and the results of the last 30 years are analyzed. After the sea level pressure (SLP), surface air temperature (SAT), sea surface temperature (SST), sea ice concentration (SIC), and sea surface sensible heat flux (SHF) are filtered with a digital filter firstly, their normalized anomalies are used to perform the decomposition of combined complex empirical orthogonal function (CCEOF) and then they are reconstructed with the leading mode. The atmosphere-ocean-sea ice interactions in high northern latitudes during a periodical cycle (approximately 4 yr) are analyzed. It is shown that: (1) When the North Atlantic Oscillation (NAO) is in its positive phase, the southerly anomaly appears in the Greenland Sea, SAT increases, the sea loses less SHF, SST increases and SIC decreases accordingly; when the NAO is in its negative phase, the northerly anomaly appears in the Greenland Sea, SAT decreases, the sea loses more SHF, SST decreases and SIC increases accordingly. There are similar features in the Barents Sea, but the phase of evolution in the Barents Sea is different from that in the Greenland Sea. (2) For an average of multi-years, there is a cold center in the inner part of the Arctic Ocean near the North Pole. When there is an anomaly of low pressure, which is closer to the Pacific Ocean, in the inner part of the Arctic Ocean, anomalies of warm advection appear in the region near the Pacif  相似文献   

5.
Climatic variability has profound effects on the distribution, abundance and catch of oceanic fish species around the world. The major modes of this climate variability include the El Niño-Southern Oscillation (ENSO) events, the Pacific Decadal Oscillation (PDO) also referred to as the Interdecadal Pacific Oscillation (IPO), the Indian Ocean Dipole (IOD), the Southern Annular Mode (SAM) and the North Atlantic Oscillation (NAO). Other modes of climate variability include the North Pacific Gyre Oscillation (NPGO), the Atlantic Multidecadal Oscillation (AMO) and the Arctic Oscillation (AO). ENSO events are the principle source of interannual global climate variability, centred in the ocean–atmosphere circulations of the tropical Pacific Ocean and operating on seasonal to interannual time scales. ENSO and the strength of its climate teleconnections are modulated on decadal timescales by the IPO. The time scale of the IOD is seasonal to interannual. The SAM in the mid to high latitudes of the Southern Hemisphere operates in the range of 50–60 days. A prominent teleconnection pattern throughout the year in the Northern Hemisphere is the North Atlantic Oscillation (NAO) which modulates the strength of the westerlies across the North Atlantic in winter, has an impact on the catches of marine fisheries. ENSO events affect the distribution of tuna species in the equatorial Pacific, especially skipjack tuna as well as the abundance and distribution of fish along the western coasts of the Americas. The IOD modulates the distribution of tuna populations and catches in the Indian Ocean, whilst the NAO affects cod stocks heavily exploited in the Atlantic Ocean. The SAM, and its effects on sea surface temperatures influence krill biomass and fisheries catches in the Southern Ocean. The response of oceanic fish stocks to these sources of climatic variability can be used as a guide to the likely effects of climate change on these valuable resources.  相似文献   

6.
马旋  陈晓松  谢飞  夏炎 《气象科学》2024,44(2):349-361
利用ERA5和GPCP再分析资料及NOAA提供的气候指数,基于本征微观态和传统气象学方法,探讨了全球1950—2022年地表气压变化特征及其与全球降水和环流变化之间的关系。结果表明:全球地表气压的第一大本征微观态主要以南极一致性变化为主,与南极涛动显著相关;第二大本征微观态以北极一致性变化为主,与北极涛动和北大西洋涛动显著相关;第三大本征微观态在热带太平洋呈现纬向偶极子结构,与厄尔尼诺—南方涛动(EI Niño-Southern Oscillation,ENSO)联系紧密。不同本征微观态对全球降水的影响存在显著的区域性差异。第一大本征微观态处于正位相时,南极绕极环流增强,南半球高纬度地区降水增多,中纬度地区降水减少。第二大本征微观态处于正位相时对应北极降水增多,北大西洋及其周边地区降水减少。第三大本征微观态影响范围较广,主要表现为西太平洋降水减少和中东太平洋降水增多。  相似文献   

7.
冬季中高纬500hPa高度和海表温度异常特征及其相关分析   总被引:6,自引:4,他引:6  
用旋转主分量(RPC)方法,分析1948年到1988年40个冬季的中高纬500hPa高度场以及全球海表温度异常(SSTA)场的最主要的时空分布特征。然后通过交叉相关来讨论海气的同期相关特征。结果显示,冬季中高纬500hPa高度场最明显的异常型分别是太平洋北美型(PNA),西太平洋型(WP),西大西洋型(WA)以及东大西洋欧亚型(EAEU)。冬季SSTA最明显的区域是赤道东太平洋(EEP)和赤道大西洋(EAL)。其次是中纬度东北太平洋(NEP)及两大洋西部(NWP和NWA)。中高纬度海气之间有很好的相关。与中高纬度500hPa高度场PNA型明显相关的是中高纬度东北太平洋(NEP)和赤道东太平洋(EEP)的SSTA。前者的强相关中心在中高纬;后者的强相关中心在中低纬。而与WA型明显相关的是中高纬度北大西洋的SSTA。中高纬度海气之间最强的相关在海气异常对应的空间位置上。而且这种区域性或邻域性的海气相关呈正相关,暖SSTA对应于正高度异常,冷SSTA对应于负高度异常  相似文献   

8.
Poleward atmospheric moisture transport(AMT) into the Arctic Ocean can change atmospheric moisture or water vapor content and cause cloud formation and redistribution, which may change downward longwave radiation and, in turn, surface energy budgets, air temperatures, and sea-ice production and melt. In this study, we found a consistently enhanced poleward AMT across 60?N since 1959 based on the NCAR–NCEP reanalysis. Regional analysis demonstrates that the poleward AMT predominantly occurs over the North Atlantic and North Pacific regions, contributing about 57% and 32%, respectively, to the total transport. To improve our understanding of the driving force for this enhanced poleward AMT, we explored the role that extratropical cyclone activity may play. Climatologically, about 207 extratropical cyclones move across 60?N into the Arctic Ocean each year, among which about 66(32% of the total) and 47(23%) originate from the North Atlantic and North Pacific Ocean, respectively. When analyzing the linear trends of the time series constructed by using a 20-year running window, we found a positive correlation of 0.70 between poleward yearly AMT and the integrated cyclone activity index(measurement of cyclone intensity, number, and duration). This shows the consistent multidecadal changes between these two parameters and may suggest cyclone activity plays a driving role in the enhanced poleward AMT. Furthermore, a composite analysis indicates that intensification and poleward extension of the Icelandic low and accompanying strengthened cyclone activity play an important role in enhancing poleward AMT over the North Atlantic region.  相似文献   

9.
利用1979—2008年日分辨率的向外长波辐射资料以及NCEP再分析资料,去除ENSO影响后,分析了1—3月北极涛动对热带太平洋和热带大西洋对流活动及降水的可能影响。结果表明北极涛动偏强(弱)时,热带太平洋和大西洋对流活动显著偏强(弱)。北半球热带大洋冬季平均向外长波辐射与北极涛动指数的相关系数存在两个显著负相关区:一个位于中太平洋区,大致包括13°—20°N、160°E—170°W;另外一个位于热带大西洋,显著区覆盖的范围大体包括5°—20°N、15°—70°W。这些区域的降水量也表现出显著的正相关。向外长波辐射、强对流面积指数、强对流强度指数、平均降水量等指标与北极涛动指数的相关均以冬季同期最高,随时间滞后相关迅速减弱。与此对应的对流层低层大气环流也有显著变化,850hPa风场的变化表现为热带太平洋有异常的气旋性环流,气旋中心区与显著强对流和降水异常区一致。而热带大西洋有显著的经向环流辐合和风切变,与异常对流和降水区吻合。海洋模式的模拟结果表明,与北极涛动有关联的海温分布,很大程度上与大气强迫有关,说明热带1—3月降水和对流活动与海温的关联较弱。北极涛动与热带太平洋、大西洋对流和降水活动之间主要是通过大气环流的变动产生联系的。  相似文献   

10.
基于一个全球气-海-冰耦合模式数值模拟结果,对北半球高纬度地区年际尺度的气-海-冰相互作用进行了分析。在所使用的全球气-海-冰耦合模式中,大气环流模式和陆面过程模式来自国家气候中心,海洋环流模式和海冰模式来自中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室。采用一种逐日通量距平耦合方案实现次网格尺度海冰非均匀条件下大气环流模式和海洋环流模式在高纬地区的耦合。只对50 a模拟结果中的后30 a结果进行了分析。在分析中,首先对滤波后的北半球高纬度地区海平面气压、表面大气温度、海表面温度、海冰密集度及海表面感热通量的标准化距平做联合复经验正交函数分解,取第一模进行重建,然后讨论了在一个循环周期(约4 a)中北半球高纬度地区气-海-冰的作用关系。结果表明:(1)当北大西洋涛动处于正位相时,格陵兰海出现南风异常,使表面大气温度升高,海洋失去感热通量减少,海洋表面温度升高,海冰密集度减小;当北大西洋涛动处于负位相时,格陵兰海出现北风异常,使表面大气温度降低,海洋失去感热通量增多,海洋表面温度降低,海冰密集度增加。巴伦支海变化特点与格陵兰海相似,但在时间上并不完全一致。(2)多年平均而言,北冰洋内部靠近极点区域为冷中心。当北冰洋内部为低压异常时,因异常中心偏向太平洋一侧,使北冰洋内部靠近太平洋部分为暖平流异常,靠近大西洋一侧为冷平流异常。伴随着暖、冷平流异常,这两侧分别出现暖异常和冷异常,海表面给大气的感热通量分别偏少和偏多,上述海区海表面温度分别偏高和偏低,海冰密集度分别偏小和偏大。当北冰洋内部为高压异常时特点正好与上述相反。由上述分析结果可知,在海洋、大气年际循环中,大尺度大气环流变率起主导作用,海洋表面温度和海冰密集度变化主要是对大气环流变化的响应。  相似文献   

11.
Increased evidence has shown the important role of Atlantic sea surface temperature (SST) in modulating the El Niño–Southern Oscillation (ENSO). Persistent anomalies of summer Madden–Julian Oscillation (MJO) act to link the Atlantic SST anomalies (SSTAs) to ENSO. The Atlantic SSTAs are strongly correlated with the persistent anomalies of summer MJO, and possibly affect MJO in two major ways. One is that an anomalous cyclonic (anticyclonic) circulation appears over the tropical Atlantic Ocean associated with positive (negative) SSTA in spring, and it intensifies (weakens) the Walker circulation. Equatorial updraft anomaly then appears over the Indian Ocean and the eastern Pacific Ocean, intensifying MJO activity over these regions. The other involves a high pressure (low pressure) anomaly associated with the North Atlantic SSTA tripole pattern that is transmitted to the mid- and low-latitudes by a circumglobal teleconnection pattern, leading to strong (weak) convective activity of MJO over the Indian Ocean. The above results offer new viewpoints about the process from springtime Atlantic SSTA signals to summertime atmospheric oscillation, and then to the MJO of tropical atmosphere affecting wintertime Pacific ENSO events, which connects different oceans.  相似文献   

12.
2017年春季(3—5月)大气环流特征为:北半球极涡呈单极型分布,主体位于北冰洋上空,中高纬西风带呈5波型分布。3月,地面冷高压偏强,冷空气活动频繁。4月,环流由纬向型向经向型逐渐调整,冷空气势力减弱。5月,东北气旋明显加强,冷暖势力相当,入海气旋增多。春季,我国近海海域主要有16次8级以上大风过程,其中冷空气大风过程有7次,冷空气和温带气旋共同影响的大风过程有1次,入海温带气旋过程有4次,东北冷涡影响大风过程有3次,强对流导致雷暴大风过程1次;且有8次明显的浪高在2 m以上的大浪过程。春季共有6次比较明显的海雾过程,分别为3月1次、4月2次、5月3次。西北太平洋和南海共生成1个台风“梅花”和1个热带低压,其他各大洋共有热带气旋15个,分别为大西洋1个、东太平洋1个、南太平洋5个、南印度洋6个、北印度洋2个。  相似文献   

13.
In 2010, the Northern Hemisphere, in particular Russia and Japan, experienced an abnormally hot summer characterized by record-breaking warm temperatures and associated with a strongly positive Arctic Oscillation (AO), that is, low pressure in the Arctic and high pressure in the midlatitudes. In contrast, the AO index the previous winter and spring (2009/2010) was record-breaking negative. The AO polarity reversal that began in summer 2010 can explain the abnormally hot summer. The winter sea surface temperatures (SST) in the North Atlantic Ocean showed a tripolar anomaly pattern—warm SST anomalies over the tropics and high latitudes and cold SST anomalies over the midlatitudes—under the influence of the negative AO. The warm SST anomalies continued into summer 2010 because of the large oceanic heat capacity. A model simulation strongly suggested that the AO-related summertime North Atlantic oceanic warm temperature anomalies remotely caused blocking highs to form over Europe, which amplified the positive summertime AO. Thus, a possible cause of the AO polarity reversal might be the “memory” of the negative winter AO in the North Atlantic Ocean, suggesting an interseasonal linkage of the AO in which the oceanic memory of a wintertime negative AO induces a positive AO in the following summer. Understanding of this interseasonal linkage may aid in the long-term prediction of such abnormal summer events.  相似文献   

14.
The Arctic Amplification Debate   总被引:16,自引:0,他引:16  
Rises in surface air temperature (SAT) in response to increasing concentrations of greenhouse gases (GHGs) are expected to be amplified in northern high latitudes, with warming most pronounced over the Arctic Ocean owing to the loss of sea ice. Observations document recent warming, but an enhanced Arctic Ocean signal is not readily evident. This disparity, combined with varying model projections of SAT change, and large variability in observed SAT over the 20th century, may lead one to question the concept of Arctic amplification. Disparity is greatly reduced, however, if one compares observed trajectories to near-future simulations (2010–2029), rather than to the doubled-CO2 or late 21st century conditions that are typically cited. These near-future simulations document a preconditioning phase of Arctic amplification, characterized by the initial retreat and thinning of sea ice, with imprints of low-frequency variability. Observations show these same basic features, but with SATs over the Arctic Ocean still largely constrained by the insulating effects of the ice cover and thermal inertia of the upper ocean. Given the general consistency with model projections, we are likely near the threshold when absorption of solar radiation during summer limits ice growth the following autumn and winter, initiating a feedback leading to a substantial increase in Arctic Ocean SATs.  相似文献   

15.
Model studies point to enhanced warming and to increased freshwater fluxes to high northern latitudes in response to global warming. In order to address possible feedbacks in the ice-ocean system in response to such changes, the combined effect of increased freshwater input to the Arctic Ocean and Arctic warming--the latter manifested as a gradual melting of the Arctic sea ice--is examined using a 3-D isopycnic coordinate ocean general circulation model. A suite of three idealized experiments is carried out: one control integration, one integration with a doubling of the modern Arctic river runoff, and a third more extreme case, where the river runoff is five times the modern value. In the two freshwater cases, the sea ice thickness is reduced by 1.5-2 m in the central Arctic Ocean over a 50-year period. The modelled ocean response is qualitatively the same for both perturbation experiments: freshwater propagates into the Atlantic Ocean and the Nordic Seas, leading to an initial weakening of the North Atlantic Drift.Furthermore, changes in the geostrophic currents in the central Arctic and melting of the Arctic sea ice lead to an intensified Beaufort Gyre, which in turn increases the southward volume transport through the Canadian Archipelago. To compensate for this southward transport of mass, more warm and saline Atlantic water is carried northward with the North Atlantic Drift. It is found that the increased transport of salt into the northern North Atlantic and the Nordic Seas tends to counteract the impact of the increased freshwater originating from the Arctic, leading to a stabilization of the North Atlantic Drift.  相似文献   

16.
We present an analysis of climate change over southern South America as simulated by a regional climate model. The regional model MM5 was nested within time-slice global atmospheric model experiments conducted by the HadAM3H model. The simulations cover a 10-year period representing present-day climate (1981–1990) and two future scenarios for the SRESA2 and B2 emission scenarios for the period 2081–2090. There are a few quantitative differences between the two regional scenarios. The simulated changes are larger for the A2 than the B2 scenario, although with few qualitative differences. For the two regional scenarios, the warming in southern Brazil, Paraguay, Bolivia and northeastern Argentina is particularly large in spring. Over the western coast of South America both scenarios project a general decrease in precipitation. Both the A2 and B2 simulations show a general increase in precipitation in northern and central Argentina especially in summer and fall and a general decrease in precipitation in winter and spring. In fall the simulations agree on a general decrease in precipitation in southern Brazil. This reflects changes in the atmospheric circulation during winter and spring. Changes in mean sea level pressure show a cell of increasing pressure centered somewhere in the southern Atlantic Ocean and southern Pacific Ocean, mainly during summer and fall in the Atlantic and in spring in the Pacific. In relation to the pressure distribution in the control run, this indicates a southward extension of the summer mean Atlantic and Pacific subtropical highs.  相似文献   

17.
Record Low Sea-Ice Concentration in the Central Arctic during Summer 2010   总被引:3,自引:0,他引:3  
The Arctic sea-ice extent has shown a declining trend over the past 30 years. Ice coverage reached historic minima in 2007 and again in 2012. This trend has recently been assessed to be unique over at least the last 1450 years. In the summer of 2010, a very low sea-ice concentration(SIC) appeared at high Arctic latitudes—even lower than that of surrounding pack ice at lower latitudes. This striking low ice concentration—referred to here as a record low ice concentration in the central Arctic(CARLIC)—is unique in our analysis period of 2003–15, and has not been previously reported in the literature. The CARLIC was not the result of ice melt, because sea ice was still quite thick based on in-situ ice thickness measurements.Instead, divergent ice drift appears to have been responsible for the CARLIC. A high correlation between SIC and wind stress curl suggests that the sea ice drift during the summer of 2010 responded strongly to the regional wind forcing. The drift trajectories of ice buoys exhibited a transpolar drift in the Atlantic sector and an eastward drift in the Pacific sector,which appeared to benefit the CARLIC in 2010. Under these conditions, more solar energy can penetrate into the open water,increasing melt through increased heat flux to the ocean. We speculate that this divergence of sea ice could occur more often in the coming decades, and impact on hemispheric SIC and feed back to the climate.  相似文献   

18.
Summary The maximum entropy production (MEP) principle used in Part J has been extended to separate the two-dimensional required energy transports determined from Nimbus 7 satellite net radiation measurements into atmospheric and oceanic components. In terms of the meridional component of the ocean transport vectors, results show northward ocean transports throughout the entire Atlantic ocean from southern hemisphere high latitudes to northern hemisphere polar regions, southward transports throughout the entire Indian Ocean, and poleward transports separated at approximately 10°S in the Pacific Ocean. The ocean transport patterns are consistent with well-known features concerning heat transport within the three ocean basins. However, uncertainty remains in the magnitudes of the transports. Because of the large remaining discrepancies between published estimates based on direct measurements and indirect estimates derived from energy budget methods, assessing the accuracy of the magnitudes is difficult, although there is evidence that the limited model resolution leads to synergistic biases in the North Atlantic and North Pacific. In terms of the crossmeridional energy transport component, results suggest that most of the net energy transfer in the tropics takes place within the ocean. In the southern hemisphere high latitudes, the Pacific and Indian Oceans export heat cross-meridionally to the Atlantic Ocean through the passages below Cape Horn and the Cape of Good Hope, although the magnitudes of these inter-ocean heat exchanges are small. Another important aspect of the southern hemisphere results is that poleward transports are dominated by the atmospheric component with strong zonal asymmetry. By contrast, in the northern hemisphere, atmospheric transports over the ocean are generally weaker than the corresponding southern hemisphere terms, indicating that the northern hemisphere oceans are relatively more effective in transferring heat poleward. Finally, poleward atmospheric transports over the continental areas exceed those over the ocean at equivalent latitudes as a result of the generally greater energy deficits over the land areas.With 7 Figures  相似文献   

19.
 The winter climatology of Northern Hemisphere cyclone activity was derived from 6-hourly NCEP/NCAR reanalysis data for the period from 1958 to 1999, using software which provides improved accuracy in cyclone identification in comparison to numerical tracking schemes. Cyclone characteristics over the Kuroshio and Gulfstream are very different to those over continental North America and the Arctic. Analysis of Northern Hemisphere cyclones shows secular and decadal-scale changes in cyclone frequency, intensity, lifetime and deepening rates. The western Pacific and Atlantic are characterized by an increase in cyclone intensity and deepening during the 42-year period, although the eastern Pacific and continental North America demonstrate opposite tendencies in most cyclone characteristics. There is an increase of the number of cyclones in the Arctic and in the western Pacific and a downward tendency over the Gulf Stream and subpolar Pacific. Decadal scale variability in cyclone activity over the Atlantic and Pacific exhibits south-north dipole-like patterns. Atlantic and Pacific cyclone activity associated with the NAO and PNA is analyzed. Atlantic cyclone frequency demonstrates a high correlation with NAO and reflects the NAO shift in the mid 1970s, associated with considerable changes in European storm tracks. The PNA is largely linked to the eastern Pacific cyclone frequencies, and controls cyclone activity over the Gulf region and the North American coast during the last two decades. Assessment of the accuracy of the results and comparison with those derived using numerical algorithms, shows that biases inherent in numerical procedures are not negligible. Received: 7 July 2000 / Accepted: 30 November 2000  相似文献   

20.
The upper limit of climate predictability in mid and high northern latitudes on seasonal to interannual time scales is investigated by performing two perfect ensemble experiments with the global coupled atmosphere–ocean–sea ice model ECHAM5/MPI-OM. The ensembles consist of six members and are initialized in January and July from different years of the model’s 300-year control integration. The potential prognostic predictability is analyzed for a set of oceanic and atmospheric climate parameters. The predictability of the atmospheric circulation is small except for southeastern Europe, parts of North America and the North Pacific, where significant predictability occurs with a lead time of up to half a year. The predictability of 2 m air temperature shows a large land–sea contrast with highest predictabilities over the sub polar North Atlantic and North Pacific. A combination of relatively high persistence and advection of sea surface temperature anomalies into these areas leads to large predictability. Air temperature over Europe, parts of North America and Asia shows significant predictability of up to half a year in advance. Over the ice-covered Arctic, air temperature is not predictable at time scales exceeding 2 months. Sea ice thickness is highly predictable in the central Arctic mainly due to persistence and in the Labrador Sea due to dynamics. Surface salinity is highly predictable in the Arctic Ocean, northern North Atlantic and North Pacific for several years in advance. We compare the results to the predictability due to persistence and show the importance of dynamical processes for the predictability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号