首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We present new observations at three frequencies (326, 615 and 1281 MHz) of the radio lobe spiral galaxy, NGC 3079, using the Giant Metrewave Radio Telescope. These observations are consistent with previous data obtained at other telescopes and reveal the structure of the nuclear radio lobes in exquisite detail. In addition, new features are observed, some with H  i counterparts, showing broad-scale radio continuum emission and extensions. The galaxy is surrounded by a radio halo that is at least 4.8 kpc in height. Two giant radio extensions/loops are seen on either side of the galaxy out to ∼11 kpc from the major axis, only slightly offset from the direction of the smaller nuclear radio lobes. If these are associated with the nuclear outflow, then the galaxy has experienced episodic nuclear activity. Emission along the southern major axis suggests motion through a local intergalactic medium (not yet detected), and it may be that NGC 3079 is itself creating this local intergalactic gas via outflows. We also present maps of the minimum energy parameters for this galaxy, including cosmic ray energy density, electron diffusion length, magnetic field strength, particle lifetime and power.  相似文献   

3.
Magnetic fields are observed everywhere in the universe. In this review, we concentrate on the observational aspects of the magnetic fields of Galactic and extragalactic objects. Readers can follow the milestones in the observations of cosmic magnetic fields obtained from the most important tracers of magnetic fields, namely, the star-light polarization, the Zeeman effect, the rotation measures (RMs, hereafter) of extragalactic radio sources, the pulsar RMs, radio polarization observations, as well as the newly implemented sub-mm and mm polarization capabilities. The magnetic field of the Galaxy was first discovered in 1949 by optical polarization observations. The local magnetic fields within one or two kpc have been well delineated by starlight polarization data. The polarization observations of diffuse Galactic radio background emission in 1962 confirmed unequivocally the existence of a Galactic magnetic field. The bulk of the present information about the magnetic fields in the Galaxy comes from anal  相似文献   

4.
The origin of cosmic rays is one of the long-standing mysteries in physics and astrophysics. Simple arguments suggest that a scenario of supernova remnants (SNRs) in the Milky Way as the dominant sources for the cosmic ray population below the knee could work: a generic calculation indicates that these objects can provide the energy budget necessary to explain the observed flux of cosmic rays. However, this argument is based on the assumption that all sources behave in the same way, i.e. they all have the same energy budget, spectral behavior and maximum energy. In this paper, we investigate if a realistic population of SNRs is capable of producing the cosmic ray flux as it is observed below the knee. We use 21 SNRs that are well-studied from radio wavelengths up to gamma-ray energies and derive cosmic ray spectra under the assumption of hadronic emission. The cosmic ray spectra show a large variety in their energy budget, spectral behavior and maximum energy. These sources are assumed to be representative for the total class of SNRs, where we assume that about 100–200 cosmic ray emitting SNRs should be present today. Finally, we use these source spectra to simulate the cosmic ray transport from individual SNRs in the Galaxy with the GALPROP code for cosmic ray propagation. We find that the cosmic ray budget can be matched well for these sources. We conclude that gamma-ray emitting SNRs can be a representative sample of cosmic ray emitting sources. In the future, experiments like CTA and HAWC will help to distinguish hadronic from leptonic sources and to further constrain the maximum energy of the sources and contribute to producing a fully representative sample in order to further investigate the possibility of SNRs being the dominant sources of cosmic rays up to the knee.  相似文献   

5.
Cosmic rays produced in cluster accretion and merger shocks provide pressure to the intracluster medium (ICM) and affect the mass estimates of galaxy clusters. Although direct evidence for cosmic ray ions in the ICM is still lacking, they produce γ-ray emission through the decay of neutral pions produced in their collisions with ICM nucleons. We investigate the capability of the Gamma-ray Large Area Space Telescope ( GLAST ) and imaging atmospheric Čerenkov telescopes (IACTs) for constraining the cosmic ray pressure contribution to the ICM. We show that GLAST can be used to place stringent upper limits, a few per cent for individual nearby rich clusters, on the ratio of pressures of the cosmic rays and thermal gas. We further show that it is possible to place tight (≲10 per cent) constraints for distant  ( z ≲ 0.25)  clusters in the case of hard spectrum, by stacking signals from samples of known clusters. The GLAST limits could be made more precise with the constraint on the cosmic ray spectrum potentially provided by IACTs. Future γ-ray observations of clusters can constrain the evolution of cosmic ray energy density, which would have important implications for cosmological tests with upcoming X-ray and Sunyaev–Zel'dovich effect cluster surveys.  相似文献   

6.
In the course of the formation of cosmological structures, large shock waves are generated in the intracluster medium (ICM). In analogy to processes in supernova remnants, these shock waves may generate a significant population of relativistic electrons which, in turn, produce observable synchrotron emission. The extended radio relics found at the periphery of several clusters and possibly also a fraction of radio halo emission may have this origin. Here, we derive an analytic expression for (i) the total radio power in the downstream region of a cosmological shock wave, and (ii) the width of the radio-emitting region. These expressions predict a spectral slope close to −1 for strong shocks. Moderate shocks, such as those produced in mergers between clusters of galaxies, lead to a somewhat steeper spectrum. Moreover, we predict an upper limit for the radio power of cosmological shocks. Comparing our results to the radio relics in Abell 115, 2256 and 3667, we conclude that the magnetic field in these relics is typically at a level of 0.1 μG. Magnetic fields in the ICM are presumably generated by the shocks themselves; this allows us to calculate the radio emission as a function of the cluster temperature. The resulting emissions agree very well with the radio power–temperature relation found for cluster haloes. Finally, we show that cosmic accretion shocks generate less radio emission than merger shock waves. The latter may, however, be detected with upcoming radio telescopes.  相似文献   

7.
We describe a novel technique for probing the statistical properties of cosmic magnetic fields based on radio polarimetry data. Second-order magnetic field statistics like the power spectrum cannot always distinguish between magnetic fields with essentially different spatial structure. Synchrotron polarimetry naturally allows certain fourth-order magnetic field statistics to be inferred from observational data, which lifts this degeneracy and can thereby help us gain a better picture of the structure of the cosmic fields and test theoretical scenarios describing magnetic turbulence. In this work we show that a fourth-order correlator of specific physical interest, the tension force spectrum, can be recovered from the polarized synchrotron emission data. We develop an estimator for this quantity based on polarized emission observations in the Faraday rotation free frequency regime. We consider two cases: a statistically isotropic field distribution, and a statistically isotropic field superimposed on a weak mean field. In both cases the tension force power spectrum is measurable; in the latter case, the magnetic power spectrum may also be obtainable. The method is exact in the idealized case of a homogeneous relativistic electron distribution that has a power-law energy spectrum with a spectral index of   p = 3  , and assumes statistical isotropy of the turbulent field. We carry out numerical tests of our method using synthetic polarized emission data generated from numerically simulated magnetic fields. We show that the method is valid, that it is not prohibitively sensitive to the value of the electron spectral index p , and that the observed tension force spectrum allows one to distinguish between e.g. a randomly tangled magnetic field (a default assumption in many studies) and a field organized in folded flux sheets or filaments.  相似文献   

8.
Recent observations show that the cooling flows in the central regions of galaxy clusters are highly suppressed. Observed active galactic nuclei (AGN)-induced cavities/bubbles are a leading candidate for suppressing cooling, usually via some form of mechanical heating. At the same time, observed X-ray cavities and synchrotron emission point towards a significant non-thermal particle population. Previous studies have focused on the dynamical effects of cosmic ray pressure support, but none has built successful models in which cosmic ray heating is significant. Here, we investigate a new model of AGN heating, in which the intracluster medium is efficiently heated by cosmic rays, which are injected into the intra-cluster medium (ICM) through diffusion or the shredding of the bubbles by Rayleigh–Taylor or Kelvin–Helmholtz instabilities. We include thermal conduction as well. Using numerical simulations, we show that the cooling catastrophe is efficiently suppressed. The cluster quickly relaxes to a quasi-equilibrium state with a highly reduced accretion rate and temperature and density profiles which match observations. Unlike the conduction-only case, no fine-tuning of the Spitzer conduction suppression factor f is needed. The cosmic ray pressure, P c/ P g ≲ 0.1 and ∇ P c≲ 0.1ρ g , is well within observational bounds. Cosmic ray heating is a very attractive alternative to mechanical heating, and may become particularly compelling if Gamma-ray Large Array Space Telescope ( GLAST ) detects the γ-ray signature of cosmic rays in clusters.  相似文献   

9.
A simple model of cosmic ray propagation is proposed from which the major experimental results can be derived: The model reproduces the observed nuclear abundances and accounts for the observed changes of nuclear composition with energy, the high degree of isotropy of cosmic ray flux at all energies, and the high degree of its constancy throughout the history of the Solar System. It is consistent with the observed size distribution of extensive airshowers, the intensity and energy distribution of the electron component, and the diffuse emission of γ-rays and radio waves. The model is characterized by the two basic assumptions: (1) that cosmic rays have been injected at an unchanging rate by sources located in the galactic spiral arms and (2) that a large-scale magnetic field retains all particles in our galaxy, where they interact with interstellar gas, so that all complex nuclei are finally fragmented and their energy dissipated in meson production and electro-magnetic interactions.  相似文献   

10.
Lofar     
H01 A first glance at LOFAR: Experience with the Initial Test Station H02 The Square Kilometer Array (SKA) – Status and Prospects H03 LOFAR calibration: confrontation with real WSRT data H04 Simulations of magnetic fields in the cosmos H05 RM structure in the polarized synchrotron emission from our Galaxy and the Perseus cluster of Galaxies H06 Mapping the Reionization Era through the 21 cm Emission Line H07 Spiral galaxies seen with LOFAR H08 Software Infrastructure for Distributed Data Processing H09 The Low Frequency Array (LOFAR) – Status and Prospects H10 Coincident cosmic ray measurements with LOPES and KASCADE‐Grande H11 Radio relics in a cosmological cluster merger simulation H12 Detection of radio pulses from cosmic ray air showers with LOPES H13 Geosynchrotron radio emission from extensive air showers H14 Imaging capabilities of future radio telescopes H15 Digital signal processing system of Multi‐Beam Meter Wavelengths Array. H16 The Multi‐Beam Meter Wavelengths Array H17 Monitoring of the Solar Activity by LOFAR H18 Calibration of LOPES30 H19 An Outreach Project for LOFAR and Cosmic Ray Detection H20 Galactic tomography based on observations with LOFAR and Effelsberg H21 150 MHz observations with the Westerbork and GMRT radio telescopes of Abell 2256 and the Bootes field: Ultra‐steep spectrum radio sources as probes of cluster and galaxy evolution H22 Experience of simultaneous observations with two independent multi‐beams of the Large Phased Array H23 GRID Computing at Forschungszentrum Karlsruhe suitable for LOFAR  相似文献   

11.
New radio and X-ray data are reported for the rich cluster Abell 2319. This object is known from optical data to consist of two separate clusters, which are displaced by about 10′ in the NW direction, and could be in a pre-merger state.

In the radio domain, the cluster is characterized by the presence of a central diffuse halo source, more extended and powerful than the prototype halo in the Coma cluster. The radio halo shows an irregular structure, elongated in the NE-SW direction, and also extended towards the NW. We also report data on the extended radio galaxies located within the halo, or in its proximity.

The cluster X-ray brightness distribution shows an elongated structure towards the NW, in the radial region between 6′–12′, i.e. in the direction of the subcluster. This feature is exactly coincident with the NW extension of the radio halo. In addition, more substructural features are identified which could be due to an ongoing merger of the cluster with yet another mass component.

The radio halo morphology is correlated with the X-ray structure and the existence of merger processes in the cluster. The cluster merger can provide energy to maintain the radio halo, while the origin of the relativistic particles seems more problematic.  相似文献   


12.
Chandra ACIS observations of PKS 0521−365 find that the X-ray emission of this BL Lac object consists of emission from an unresolved core, a diffuse halo and a 2-arcsec jet feature coincident with the inner radio/optical jet. A comparison with a new ATCA 8.6-GHz map also finds X-ray emission from the bright hotspot south-east of the nucleus. The jet spectrum, from radio to X-ray, is probably synchrotron emission from an electron population with a broken power-law energy distribution, and resembles the spectra seen from the jets of low-power (FR I) radio galaxies. The hotspot X-ray flux is consistent with the expectations of synchrotron self-Compton emission from a plasma close to equipartition, as seen in studies of high-power (FR II) radio galaxies. While the angular structure of the halo is similar to that found by an analysis of the ROSAT High Resolution Imager image, its brightness is seen to be lower with Chandra , and the halo is best interpreted as thermal emission from an atmosphere of similar luminosity to the haloes around FR I radio galaxies. The X-ray properties of PKS 0521−365 are consistent with it being a foreshortened, beamed, radio galaxy.  相似文献   

13.
Several BL Lac objects are confirmed sources of variable and strongly Doppler-boosted TeV emission produced in the nuclear portions of their relativistic jets. It is more than probable that also many of the Fanaroff–Riley type I (FR I) radio galaxies, believed to be the parent population of BL Lacs, are TeV sources, for which Doppler-hidden nuclear γ-ray radiation may be only too weak to be directly observed. Here we show, however, that about 1 per cent of the total time-averaged TeV radiation produced by the active nuclei of low-power FR I radio sources is inevitably absorbed and re-processed by photon–photon annihilation on the starlight photon field, and the following emission of the created and quickly isotropized electron–positron pairs. In the case of the radio galaxy Centaurus A, we found that the discussed mechanism can give a distinctive observable feature in the form of an isotropic γ-ray halo. It results from the electron–positron pairs injected to the interstellar medium of the inner parts of the elliptical host by the absorption process, and upscattering starlight radiation via the inverse-Compton process mainly to the GeV–TeV photon energy range. Such a galactic γ-ray halo is expected to possess a characteristic spectrum peaking at ∼0.1 TeV photon energies, and the photon flux strong enough to be detected by modern Cherenkov Telescopes and, in the future, by GLAST. These findings should apply as well to the other nearby FR I sources.  相似文献   

14.
The radio spectral index map of the Coma halo shows a progressive steepening of the spectral index with increasing radius. Such a steepening cannot be simply justified by models involving continuous injection of fresh particles in the Coma halo or by models involving diffusion of fresh electrons from the central regions.
We propose a two-phase model in which the relativistic electrons injected in the Coma cluster by some processes (starbursts, AGNs, shocks, turbulence) during a first phase in the past are systematically reaccelerated during a second phase for a relatively long time (∼1 Gyr) up to the present time. We show that for reacceleration time-scales of ∼0.1 Gyr this hypothesis can well account for the radio properties of Coma C. For the same range of parameters which explain Coma C we have calculated the expected fluxes from the inverse Compton scattering of the Cosmic Microwave Background (CMB) photons, finding that the hard X-ray tail discovered by BeppoSAX may be accounted for by the stronger reacceleration allowed by the model.
The possibility of extending the main model assumptions and findings to the case of the other radio haloes is also discussed, the basic predictions being consistent with the observations.  相似文献   

15.
The structure of the cosmic ray electron halo of a starburst galaxy depends strongly on the nature of galactic wind and the configuration of the magnetic field. We have investigated these dependencies by solving numerically the propagation of electrons originating in starburst galaxies, most likely in supernova remnants. The calculations are made for several models for the galactic winds and for the configuration of the magnetic fields for comparison with observations. Our simulation of a quasi-radio halo reproduces both the extended structure of ∼9 kpc and the subtle hollow structure near the polar region of the radio halo that are observed in the starburst galaxy NGC 253. These findings suggest the existence of strong galactic wind in NGC 253.   相似文献   

16.
The ROSAT All-Sky Survey revealed soft X-ray emission on kiloparsec scales towards the Galactic center. Separately, it has also been observed that the cosmic ray intensity (measured via γ-ray emission) rises only very slowly towards the center of the Galaxy, counter to expectations based on the greater number of cosmic ray sources there. A thermal and cosmic-ray driven wind could potentially explain both of these observations. We find that a cosmic-ray and thermally driven wind fits the X-ray observations well; in fact, a wind fits significantly better than an earlier-proposed static-polytrope gas model.  相似文献   

17.
We present new radio continuum data at four frequencies for the supermassive, peculiar galaxy NGC 1961. These observations allow us to separate the thermal and non-thermal radio emission and to determine the non-thermal spectral index distribution. This spectral index distribution in the galactic disc is unusual: at the maxima of the radio emission the synchrotron spectrum is very steep, indicating aged cosmic ray electrons. Away from the maxima the spectrum is much flatter. The steep spectrum of the synchrotron emission at the maxima indicates that a strong decline of the star formation rate has taken place at these sites. The extended radio emission is a sign of recent cosmic ray acceleration, probably by recent star formation. We suggest that a violent event in the past, most likely a merger or a collision with an intergalactic gas cloud, has caused the various unusual features of the galaxy.  相似文献   

18.
We report the first detection of an inverse Compton X-ray emission, spatially correlated with a very steep spectrum radio source (VSSRS), 0038-096, without any detected optical counterpart, in cluster Abell 85. The ROSAT PSPC data and its multiscale wavelet analysis reveal a large-scale (linear diameter of the order of 500 h −150 kpc), diffuse X-ray component, in addition to the thermal bremsstrahlung, overlapping an equally large-scale VSSRS. The primeval 3 K background photons, scattering off the relativistic electrons, can produce the X-rays at the detected level. The inverse Compton flux is estimated to be (6.5 ± 0.5) × 10−13 erg s−1 cm−2 in the 0.5–2.4 keV X-ray band. A new 327-MHz radio map is presented for the cluster field. The synchrotron emission flux is estimated to be (6.6 ± 0.90) × 10−14 erg s−1 cm−2 in the 10–100 MHz radio band. The positive detection of both radio and X-ray emission from a common ensemble of relativistic electrons leads to an estimate of (0.95 ± 0.10) × 10−6 G for the cluster-scale magnetic field strength. The estimated field is free of the 'equipartition' conjecture, the distance, and the emission volume. Further, the radiative fluxes and the estimated magnetic field imply the presence of 'relic' (radiative lifetime ≳ 109 yr) relativistic electrons with Lorentz factors γ ≈ 700–1700; this would be a significant source of radio emission in the hitherto unexplored frequency range ν ≈ 2–10 MHz.  相似文献   

19.
Measurement sensitivity in the energetic γ-ray region has improved considerably and is about to increase further in the near future, motivating a detailed calculation of high-energy (HE; ≥100 MeV) and very high-energy (VHE; ≥100 GeV) γ-ray emission from the nearby starburst galaxy NGC 253. Adopting the convection–diffusion model for energetic electron and proton propagation, and accounting for all the relevant hadronic and leptonic processes, we determine the steady-state energy distributions of these particles by a detailed numerical treatment. The electron distribution is directly normalized by the measured synchrotron radio emission from the central starburst region; a commonly expected theoretical relation is then used to normalize the proton spectrum in this region. Doing so fully specifies the electron spectrum throughout the galactic disc and, with an assumed spatial profile of the magnetic field, the predicted radio emission from the full disc matches well the observed spectrum, confirming the validity of our treatment. The resulting radiative yields of both particles are calculated; the integrated HE and VHE fluxes from the entire disc are predicted to be   f (≥100 MeV) ≃ (1.8+1.5−0.8) × 10−8 cm−2 s−1  and   f (≥100 GeV) ≃ (3.6+3.4−1.7) × 10−12 cm−2 s−1  , with a central magnetic field value   B 0≃ 190 ± 10 μ  G. We discuss the feasibility of measuring emission at these levels with the space-borne Fermi and ground-based Cherenkov telescopes.  相似文献   

20.
After the positive detection by BeppoSAX of hard X-ray radiation up to approximately 80 keV in the Coma Cluster spectrum, we present evidence for nonthermal emission from A2256 in excess of thermal emission at a 4.6 sigma confidence level. In addition to this power-law component, a second nonthermal component already detected by ASCA could be present in the X-ray spectrum of the cluster, which is not surprising given the complex radio morphology of the cluster central region. The spectral index of the hard tail detected by the Phoswich Detection System on board BeppoSAX is marginally consistent with that expected for the inverse Compton model. A value of approximately 0.05 μG is derived for the intracluster magnetic field of the extended radio emission in the northern regions of the cluster, while a higher value of approximately 0.5 μG could be present in the central radio halo, which is likely related to the hard tail detected by ASCA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号