首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A three-dimensional shelf circulation model is used to examine the effect of seasonal changes in water-column stratification on the tidal circulation over the Scotian Shelf and Gulf of St. Lawrence. The model is driven by tidal forcing specified at the model’s lateral open boundaries in terms of tidal sea surface elevations and depth-averaged currents for five major tidal constituents (M2, N2, S2, K1, and O1). Three numerical experiments are conducted to determine the influence of baroclinic pressure gradients and changes in vertical mixing, both associated with stratification, on the seasonal variation of tidal circulation over the study region. The model is initialized with climatological hydrographic fields and integrated for 16 months in each experiment. Model results from the last 12 months are analyzed to determine the dominant semidiurnal and diurnal tidal components, M2 and K1. Model results suggest that the seasonal variation in the water-column stratification affects the M2 tidal circulation most strongly over the shelf break and over the deep waters off the Scotian Shelf (through the development of baroclinic pressure gradients) and along Northumberland Strait in the Gulf of St. Lawrence (through changes in vertical mixing and bottom stress). For the K1 constituent, the baroclinic pressure gradient and vertical mixing have opposing effects on the tidal circulation over several areas of the study region, while near the bottom, vertical mixing appears to play only a small role in the tidal circulation.  相似文献   

2.
Over the past 30 years, reclamation projects and related changes have impacted the hydrodynamics and sediment transport in the Bohai Sea. Three-dimensional tidal current models of the Bohai Sea and the Yellow Sea were constructed using the MIKE 3 model. We used a refined grid to simulate and analyze the effects of changes in coastline, depth, topography, reclamation, the Yellow River estuary, and coastal erosion on tidal systems, tide levels, tidal currents, residual currents, and tidal fluxes. The simulation results show that the relative change in the amplitude of the half-day tide is greater than that of the full-day tide. The changes in the tidal amplitudes of M2, S2, K1, and O1 caused by coastline changes accounted for 27.76–99.07% of the overall change in amplitude from 1987 to 2016, and water depth changes accounted for 0.93–72.24% of the overall change. The dominant factor driving coastline changes is reclamation, accounting for 99.55–99.91% of the amplitude changes in tidal waves, followed by coastal erosion, accounting for 0.05–0.40% of the tidal wave amplitude changes. The contribution of changes in the Yellow River estuary to tidal wave amplitude changes is small, accounting for 0.01–0.12% of the amplitude change factor. The change in the highest tide level (HTL) is mainly related to the amplitude change, and the correlation with the phase change is small. The dominant factor responsible for the change in the HTL is the tide amplitude change in M2, followed by S2, whereas the influence of the K1 and O1 tides on the change in the HTL is small. Reclamation resulted in a decrease in the vertical average maximum flow velocity (VVAM) in the Bohai Sea. Shallower water depths have led to an increase in the VVAM; deeper water depths have led to a decrease in the maximum flow velocity. The absolute value of the maximum flow velocity gradually decreases from the surface to the bottom, but the relative change value is basically constant. The changes in the tidal dynamics of the Bohai Sea are proportional to the degree of change in the coastline. The maximum and minimum changes in the tidal flux appear in Laizhou Bay (P-LZB) and Liaodong Bay (P-LDB), respectively. The changes in the tidal flux are related to the change in the area of the bay. Due to the reduced tidal flux, the water exchange capacity of the Bohai Sea has decreased, impacting the ecological environment of the Bohai Sea. Strictly controlling the scale of reclamation are important measures for reducing the decline in the water exchange capacity of the Bohai Sea and the deterioration of its ecological environment.  相似文献   

3.
Data assimilation technique (adjoint method) is applied to study the similarities and the differences between the Ekman (linear) and the Quadratic (nonlinear) bottom friction parameterizations for a two-dimensional tidal model. Two methods are used to treat the bottom friction coefficient (BFC). The first method assumes that the BFC is a constant in the entire computation domain, while the second applies the spatially varying BFCs. The adjoint expressions for the linear and the nonlinear parameterizations and the optimization formulae for the two BFC methods are derived based on the typical Largrangian multiplier method. By assimilating the model-generated ‘observations’, identical twin experiments are performed to test and validate the inversion ability of the presented methodology. Four experiments, which employ the linear parameterization, the nonlinear parameterizations, the constant BFC and the spatially varying BFC, are carried out to simulate the M2 tide in the Bohai Sea and the Yellow Sea by assimilating the TOPEX/Poseidon altimetry and tidal gauge data. After the assimilation, the misfit between model-produced and observed data is significantly decreased in the four experiments. The simulation results indicate that the nonlinear Quadratic parameterization is more accurate than the linear Ekman parameterization if the traditional constant BFC is used. However, when the spatially varying BFCs are used, the differences between the Ekman and the Quadratic approaches diminished, the reason of which is analyzed from the viewpoint of dissipation rate caused by bottom friction. Generally speaking, linear bottom friction parameterizations are often used in global tidal models. This study indicates that they are also applicable in regional ocean tidal models with the combination of spatially varying parameters and the adjoint method.  相似文献   

4.
The tides and tidal energetics in the Indonesian seas are simulated using a three-dimensional finite volume coastal ocean model. The high-resolution coastline-fitted model is configured to better resolve the hydrodynamic processes around the numerous barrier islands. A large model domain is adopted to minimize the uncertainty adjacent to open boundaries. The model results with elevation assimilation based on a simple nudge scheme faithfully reproduced the general features of the barotropic tides in the Indonesian Seas. The mean root-mean-square errors between the observed and simulated tidal constants are 2.3, 1.1, 2.4, and 1.5 cm for M2, S2, K1, and O1, respectively. Analysis of the model solutions indicates that the semidiurnal tides in the Indonesian Seas are primarily dominated by the Indian Ocean, whereas the diurnal tides in this region are mainly influenced by the Pacific Ocean, which is consistent with previous studies. Examinations of tidal energy transport reveal that the tidal energy for both of the simulated tidal constituents are transported from the Indian Ocean into the IS mainly through the Lombok Strait and the Timor Sea, whereas only M2 energy enters the Banda Sea and continues northward. The tidal energy dissipates the most in the passages on both sides of Timor Island, with the maximum M2 and K1 tidal energy transport reaching about 750 and 650 kW m–1, respectively. The total energy losses of the four dominant constituents in the IS are nearly 338 GW, with the M2 constituent dissipating 240.8 GW. It is also shown that the bottom dissipation rate for the M2 tide is about 1–2 order of magnitudes larger than that of the other three tidal components in the Indonesian seas.  相似文献   

5.
Currents in the northern Bay of La Paz were examined using an 8-month Acoustic Doppler Current Profiler (ADCP) record collected in the upper 185 m of the water column during 2007. Flow variability was dominated by tidal motions, which accounted for 43% (33% diurnal, 10% semidiurnal) of the total kinetic energy. The tidal motions had a pronounced vertical structure dominated within a shallow (∼30 m thick) surface layer by intense counterclockwise (CCW) rotary S1 diurnal radiational currents that were highly coherent with the counterclockwise seabreeze. Motions within the semidiurnal frequency band were primarily associated with significant counterclockwise S2 radiational tidal currents, which were also coherent with the seabreeze. Both S1 and S2 tidal ellipses in the upper layer were aligned perpendicular to the bay entrance with mean semi-major axes of 55 and 20 cm/s, respectively. Below the surface layer, tidal currents decayed rapidly to relatively weak, clockwise rotary barotropic motions. In contrast to those for radiational harmonics, tidal ellipses of the gravitational constituents (M2, K1 and O1) were oriented cross-bay. Energy within the diurnal frequency band in the surface layer was dominated by a coherent component (barotropic, phase-locked baroclinic and radiational), which accounted for roughly 65% (59% from S1 alone) of the total diurnal kinetic energy. Of the remaining diurnal band energy, 18% was associated with an incoherent baroclinic component and 17% with a background noise component. Below 30 m depth, the corresponding estimates are 40%, 32% and 28%, respectively. The persistent, surface-intensified CCW rotary currents observed at the mooring site are assumed to be forced by strong CCW seabreeze winds in the presence of a “slippery” low-density surface layer. This response may be further augmented by topographic narrowing at the bay entrance and by the close proximity of the diurnal and inertial frequency bands in the region.  相似文献   

6.
A limited domain, coastal ocean forecast system consisting of an unstructured grid model, a meteorological model, a regional ocean model, and a global tidal database is designed to be globally relocatable. For such a system to be viable, the predictability of coastal currents must be well understood with error sources clearly identified. To this end, the coastal forecast system is applied at the mouth of Chesapeake Bay in response to a Navy exercise. Two-day forecasts are produced for a 10-day period from 4 to 14 June 2010 and compared to real-time observations. Interplay between the temporal frequency of the regional model boundary forcing and the application of external tides to the coastal model impacts the tidal characteristics of the coastal current, even contributing a small phase error. Frequencies of at least 3 h are needed to resolve the tidal signal within the regional model; otherwise, externally applied tides from a database are needed to capture the tidal variability. Spatial resolution of the regional model (3 vs 1 km) does not impact skill of the current prediction. Tidal response of the system indicates excellent representation of the dominant M 2 tide for water level and currents. Diurnal tides, especially K 1, are amplified unrealistically with the application of coarse 27-km winds. Higher-resolution winds reduce current forecast error with the exception of wind originating from the SSW, SSE, and E. These winds run shore parallel and are subject to strong interaction with the shoreline that is poorly represented even by the 3-km wind fields. The vertical distribution of currents is also well predicted by the coastal model. Spatial and temporal resolution of the wind forcing including areas close to the shoreline is the most critical component for accurate current forecasts. Additionally, it is demonstrated that wind resolution plays a large role in establishing realistic thermal and density structures in upwelling prone regions.  相似文献   

7.
A detailed set of observations are presented of the tidal forcing and basin response of Loch Etive, a jet-type fjordic system on the west coast of Scotland. The characteristics of the tidal jet observed during a spring tide are discussed in detail, and with reference to laboratory studies of Baines and Hoinka (1985). Although the system is categorized as a jet basin during spring tides (when the mode-1 densimetric Froude number exceeds 1) and a wave basin during neap tides (when the Froude number remains below 1), a mode-1 baroclinic wave response is observed throughout the spring/neap cycle. Of the total incident tidal energy, 16% is lost from the barotropic tide. The ratio between loss to bottom friction, barotropic form drag and baroclinic wave drag is estimated to be 1:4:1 (1:4:3.3) at springs (neaps). Despite this, during a spring tide, a 20-m amplitude baroclinic mode-1 wave is observed to propagate along the full length of the basin at a speed of 0.2 m s–1, somewhat slower than the predicted linear mode-1 phase speed. A hydrographic section supports the implication of the dissipation of the baroclinic wave towards the loch head. The stratification of the upper layers is observed to decrease rapidly landward of the 40-m isobath, a possible signature of enhanced diapycnal mixing in the shallower reaches towards the loch head.Responsible Editor: Jens Kappenberg  相似文献   

8.
Using data on wind stress, significant height of combined wind waves and swell, potential temperature, salinity and seawater velocity, as well as objectively-analyzed in situ temperature and salinity, we established a global ocean dataset of calculated wind- and tide-induced vertical turbulent mixing coefficients. We then examined energy conservation of ocean vertical mixing from the point of view of ocean wind energy inputs, gravitational potential energy change due to mixing (with and without artificially limiting themixing coefficient), and K-theory vertical turbulent parameterization schemes regardless of energy inputs. Our research showed that calculating the mixing coefficient with average data and artificial limiting the mixing coefficient can cause a remarkable lack of energy conservation, with energy losses of up to 90% and changes in the energy oscillation period. The data also show that wind can introduce a huge amount of energy into the upper layers of the Southern Ocean, and that tidesdo so in regions around underwater mountains. We argue that it is necessary to take wind and tidal energy inputs into account forlong-term ocean climate numerical simulations. We believe that using this ocean vertical turbulent mixing coefficient climatic dataset is a fast and efficient method to maintain the ocean energy balance in ocean modeling research.  相似文献   

9.
Potential upper-ocean pathways for the supply of biota from the Gulf of Maine to Georges Bank are investigated by numerically tracking particles in realistic 3-d seasonal-mean and tidal flow fields. The flow fields, obtained from a prognostic model forced by observed M2 tides and seasonal-mean wind stress and density fields, include the major known observational features of the circulation regime in winter, spring and summer — a wind-driven surface layer (in winter and early spring) overlying seasonally-evolving baroclinic and tidally-rectified topographic gyres. The surface layer in winter and early spring, with generally southward drift for typical northwesterly wind stress, can act as a conveyor belt for the transport of biota to Georges Bank, provided that the biota can spend a substantial fraction of time in the surface Ekman layer. The numerical experiments indicate that the upper-ocean drift pathways for biota in the southern Gulf of Maine are strongly sensitive to biological and/or physical processes affecting vertical position in relation to the surface Ekman layer and horizontal position in relation to topographic gyres. The seasonality and location of the identified pathways are generally consistent with observed distributional patterns of Calanus finmarchicus based on the 11-year MARMAP surveys.  相似文献   

10.
A knowledge of the vertical component of the oceanic tidal load to a precision of at least one microgal is essential for the geophysical exploitation of the high-precision absolute and differential gravity measurements which are being made at ground level and in deep boreholes. On the other hand the ocean load and attraction signal contained in Earth tide gravity measurements can be extracted with a precision which is sufficient to characterize the behaviour of the oceanic tides in different basins and this provides a check of the validity of the presently proposed cotidal maps. The tidal gravity profiles made since 1971 from Europe to Polynesia, through East Africa, Asia and Australia, with correctly intercalibrated gravimeters, comprise information from 91 tidal gravity stations which is used in this paper with this goal in mind.A discussion of all possible sources of error is presented which shows that at the level of 0.5 μgal the observed effects cannot be ascribed to computational or instrumental errors. Cotidal maps which generate computed loads in agreement with the Earth tide gravity measurements over a sufficiently broad area can be used with confidence as a working standard to apply tidal corrections to high-precision measurements made by using new techniques in geodesy, geophysics and geodynamics, satellite altimetry, very long baseline interferometry, Moon and satellite laser ranging and absolute gravity. The recent cotidal maps calculated by Schwiderski for satellite altimetry reductions agree very well with land-based gravimeter observations of the diurnal components of the tides (O1, K1 and P1 waves) but his semi-diurnal component maps (M2, S2 and N2 waves) strangely appear less satisfactory in some large areas. The maps of Hendershott and Parke give good results in several large areas but not everywhere. More detailed investigations are needed not only for several coastal stations but mainly in the Himalayas.  相似文献   

11.
The long-term variability of the non-tidal circulation in Southampton Water, a partially mixed estuary, was investigated using 71-day acoustic Doppler current profiler (ADCP) time series. The data show evidence that the spring–neap tidal variability of the turbulent mixing modulates the strength of the non-tidal residual circulation, with subtidal neap tide surface flows reaching 0.12 m s–1 compared to <0.05 m s–1 at spring tides. The amplitude of the neap-tide events in this non-tidal circulation is shown to be related to a critical value of the tidal currents, illustrating the strong dependence on tidal mixing. The results suggest that the dominant mechanism for generating these neap-tide circulation events is the baroclinic forcing of the horizontal density gradient, rather than barotropic forcing associated with ebb-induced periodic stratification. While tidal turbulence is thought to be the dominant control on this gravitational circulation, there is evidence of the additional effect of wind-driven mixing, including the effects of wind fetch and possibly wave development with along-estuary winds being more efficient at mixing the estuary than across-estuary winds. Rapid changes in atmospheric pressure also coincided with fluctuations in the gravitational circulation. The observed subtidal flows are shown to be capable of rapidly flushing buoyant material out of the estuary and into the coastal sea at neap tides.Responsible Editor: Iris Grabemann  相似文献   

12.
The results of modeling for M2M2 surface and internal tides in the White Sea are discussed. These results are obtained for the case when shore-fast and drifting ice covers are present concurrently. It is assumed that the interface between ice covers is of non-tidal origin (i.e., it is pre-assigned) and that ice rheology is viscous-elastic, representative of the low temperatures typical of winter conditions. Emphasis is placed on tidal energetics and, in particular, on the averaged (over a tidal cycle) values of the density and the dissipation rate of barotropic/baroclinic tidal energy. It is shown that in the White Sea, unlike in other marginal seas, the averaged (over a tidal cycle) and depth-integrated density of baroclinic tidal energy for the combined ice cover is much less than the same defined density of barotropic tidal energy. Similarly, the averaged and integrated (over the volume of the White Sea) rate of baroclinic tidal energy dissipation is much less than the same defined rate of barotropic tidal energy dissipation. The latter, in turn, is greater than for the shore-fast ice cover, but is smaller than for the drifting ice cover.  相似文献   

13.
Deep circulation driven by strong vertical mixing in the Timor Basin   总被引:1,自引:1,他引:0  
The importance of deep mixing in driving the deep part of the overturning circulation has been a long debated question at the global scale. Our observations provide an illustration of this process at the Timor Basin scale of ~1000 km. Long-term averaged moored velocity data at the Timor western sill suggest that a deep circulation is present in the Timor Basin. An inflow transport of ~0.15 Sv is observed between 1600 m and the bottom at 1890 m. Since the basin is closed on its eastern side below 1250 m depth, a return flow must be generated above 1600 m with a ~0.15 Sv outflow. The vertical turbulent diffusivity is inferred from a heat and transport balance at the basin scale and from Thorpe scale analysis. Basin averaged vertical diffusivity is as large as 1 × 10?3 m2 s?1. Observations are compared with regional low-resolution numerical simulations, and the deep observed circulation is only recovered when a strong vertical diffusivity resulting from the parameterization of internal tidal mixing is considered. Furthermore, the deep vertical mixing appears to be strongly dependent on the choice of the internal tide mixing parameterization and also on the prescribed value of the mixing efficiency.  相似文献   

14.
A three-dimensional model covering the northwest European Shelf and part of the adjacent Atlantic Ocean is used to examine the influence of water depth change upon the distribution of maximum tidal bed stress. The direction of bed stress is an indicator of sediment movement as bed load and various regions of convergence and divergence in good agreement with observations are identified. Calculations are performed with water depths reduced by 35 m, corresponding to 10 000 years before present (B.P.). Initially, the model is forced by only the M2 tide, although subsequently five constituents, namely M2, S2, N2, K1 and O1, are used for tidal forcing. Although the distribution of extreme bed stresses computed with only M2 tidal forcing is comparable to that computed with five tides, the additional tidal constituents modify the magnitude of the bed stress. In particular the diurnal tides show regions of local enhanced current amplitude in the shelf-edge region with corresponding changes in bed stress. When water depths are reduced such that the North Sea and English Channel are separated, then there is a significant change in the tidal distribution in the shallow Southern Bight which influences bed-stress distributions and hence bed-load sediment transport in the area. Besides changes in shallow regions, the distribution of tides at the shelf edge is affected. A discussion of the limitations of the present coarse-grid model in shelf-edge regions and how it can be used to provide boundary conditions for limited-area three-dimensional models that can include stratification is presented. Also the importance of stratification for sediment movement at the shelf edge is briefly discussed.Responsible Editor: Phil Dyke  相似文献   

15.
A three-dimensional hydrodynamic model is used to investigate intra-tidal and spring–neap variations of turbulent mixing, stratification and residual circulation in the Chesapeake Bay estuary. Vertical profiles of salinity, velocity and eddy diffusivity show a marked asymmetry between the flood and ebb tides. Tidal mixing in the bottom boundary layer is stronger and penetrates higher on flood than on ebb. This flood–ebb asymmetry results in a north–south asymmetry in turbulent mixing because tidal currents vary out of phase between the lower and upper regions of Chesapeake Bay. The asymmetric tidal mixing causes significant variation of salinity distribution over the flood–ebb tidal cycle but insignificant changes in the residual circulation. Due to the modulation of tidal currents over the spring–neap cycle, turbulent mixing and vertical stratification show large fortnightly and monthly fluctuations. The stratification is not a linear function of the tidal-current amplitude. Strong stratification is only established during those neap tides when low turbulence intensity persists for several days. Residual circulation also shows large variations over the spring–neap cycle. The tidally averaged residual currents are about 50% stronger during the neap tides than during the spring tides.  相似文献   

16.
Semidiurnal tidal currents on the outer shelf of the Mackenzie Shelf in the Beaufort Sea were found to be strongly influenced by the locally generated baroclinic tide. Two primary factors are involved in this process: (1) the sharp shelf break along the northeastern Mackenzie Shelf, promoting the generation of vigorous internal tidal waves; and (2) the proximity to critical latitudes for M2 and N2 motions locking these waves and preventing them from leaving the source region. As a result, internal tides are resonantly trapped between the shelf and critical latitudes. The physical properties and temporal variations of tidal motions were examined using current meter measurements obtained from 1987–1988 at four sites (SS1, SS2, SS3, and SS4) offshore of the shelf break at depths of ∼200 m. Each mooring had Aanderaa RCM4s positioned at ∼35 m below the surface and ∼50 m above the bottom. Complex demodulation was used to compute the envelopes (amplitude modulation) of these components. A striking difference in the variability of clockwise (CW) and counterclockwise (CCW) tidal currents was found. The CW tides are highly variable, have greater amplitude, exhibit a burst-like character associated with wind events and contain about 80% of the total energy of the semidiurnal tidal currents. In contrast, the CCW components have a more regular temporal regime with distinct monthly, fortnightly and 10-day modulation at astronomical periodicities associated with frequency differences M2–N2 (0.03629 cpd), S2–M2 (0.06773 cpd), and S2–N2 (0.10402 cpd). Significant horizontal correlation of the CW current envelopes was found only between stations near the northeast Mackenzie Shelf, indicating this to be the main area of baroclinic internal wave generation.  相似文献   

17.
The water level of five river stages and seven groundwater wells in the Taipei Basin were analysed by spectral analysis in the frequency domain. The diurnal, semi‐diurnal and quarter‐diurnal tidal components of the Tanshui River appear to relate closely to astronomical tides as K1, M2 and M4, respectively. It is also found that the diurnal component reveals a reversed phase angle in the middle section of the Tanshui River; the phase of the quarter‐diurnal component is also found to be reversed at stations upstream in the Tanshui River and Hsintien Stream. It is believed that these phenomena could be caused by local variation in the river channel topography. The autospectrum and cross‐spectrum between groundwater elevation and nearby river stage were observed to correlate highly with the frequency of the astronomical tides K1, M2 and M4. From the study of the phase shift and time lag of water level fluctuations at river stages and groundwater wells, it was found that the tidal effects of diurnal, semi‐diurnal, and quarter‐diurnal components were significantly different. The relationships between phase and the fluctuated range of atmospheric pressure and water level imply that change in atmospheric pressure does not affect water level fluctuation in the river stage and groundwater well. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
The tidal circulation patterns in the Terminos Lagoon were studied based on the analysis of 1 year of measurements and numerical simulations using a baroclinic 3D hydrodynamic model, the MARS3D. A gauging network was installed consisting of six self-recording pressure–temperature sensors, a tide gauge station and two current profilers, with pressure and temperature sensors moored in the main lagoon inlets. Model simulations were validated against current and sea level observations and were used to analyse the circulation patterns caused by the tidal forcing. The numerical model was forced with eight harmonic components, four diurnal (K 1, O 1, P 1, Q 1) and four semi-diurnal (M 2, S 2, N 2, K 2), extracted from the TPX0.7 database. The tidal patterns in the study area vary from mixed, mainly diurnal in the two main inlets of the lagoon, to diurnal in its interior. The tidal residual circulation inside the lagoon is dominated by a cyclonic gyre. The results indicate a net flux from the southwest Ciudad del Carmen inlet (CdC) towards the northeast Puerto Real inlet (PtR) along the southern side of the lagoon and the opposite in the northern side. The results indicate two areas of strong currents in the vicinity of the inlets and weak currents inside the lagoon. The area of strong currents in the vicinity of the CdC inlet is larger than that observed in the PtR inlet. Nevertheless, the current analysis indicates that the highest current speeds, which can reach a magnitude of 1.9 m s?1, occurred in PtR. A further analysis of the tide distortion in the inlets revealed that both passages are ebb dominated.  相似文献   

19.
Initially the development of shallow sea three-dimensional barotropic tidal models is briefly reviewed with a view to determining what were the key measurements that allowed progress in this field and rigorous model validation. Subsequently this is extended to a brief review of baroclinic tidal models to try to determine a “way forward” for baroclinic model development. The difficulty of high spatial variability, and wind influence are identified as possibly important issues that must be considered in validating baroclinic tidal models. These are examined using a three-dimensional unstructured grid model of the M2 internal tide on the shelf edge region off the west coast of Scotland. The model is used to investigate the spatial variability of the M2 internal tide, and associated turbulence energy and mixing in the region. Initial calculations are performed with tidal forcing only, with subsequent calculations briefly examining how the tidal distribution is modified by down-welling and up-welling favourable winds. Calculations with tidal forcing only, show that there is significant spatial variability in the internal tide and associated mixing in the region. In addition, these are influenced by wind effects which may have to be taken into account in any model validation exercise. The paper ends by discussing the comprehensive nature of data sets that need to be collected to validate internal tidal models to the same level currently attained with three dimensional barotropic tidal models.  相似文献   

20.
A non-hydrostatic model in cross-sectional form with an idealized sill is used to examine the influence of sill depth (h s) and aspect ratio upon internal motion. The model is forced with a barotropic tide and internal waves and mixing occurs at the sill. Calculations using a wide sill and quantifying the response using power spectra show that for a given tidal forcing namely Froude number F r as the sill depth (h s) increases the lee wave response and vertical mixing decrease. This is because of a reduction in across sill velocity U s due to increased depth. Calculations show that the sill Froude number F s based on sill depth and across sill velocity is one parameter that controls the response at the sill. At low F s (namely F s ≪ 1) in the wide sill case, there is little lee wave production, and the response is in terms of internal tides. At high F s, calculations with a narrow sill show that for a given F s value, the lee wave response and internal mixing increase with increasing aspect ratio. Calculations using a narrow sill with constant U s show that for small values of h s, a near surface mixed layer can occur on the downstream side of the sill. For large values of h s, a thick well-mixed bottom boundary layer occurs due to turbulence produced by the lee waves at the seabed. For intermediate values of h s, “internal mixing” dominates the solution and controls across thermocline mixing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号