首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

In order to obtain a better insight into the excitation conditions of magnetic fields in flat objects, such as galaxies, we have calculated critical dynamo numbers of different magnetic field modes for spherical dynamos with a flat α-effect distribution. A simple but realistic approximation formula for the rotation curve is employed. In most cases investigated a stationary quadrupole-type solution is preferred. This is a consequence of the flat distribution of the α-effect. Non-axisymmetric fields are in all cases harder to excite than axisymmetric ones. This seems to be the case particularly for flat objects in combination with a realistic rotation curve for galaxies. The question of whether non-axisymmetric (bisymmetric) fields, which are observed in some galaxies, can be explained as dynamos generated by an axisymmetric αω-effect is therefore still open.  相似文献   

2.
ABSTRACT

It is shown that flows in precessing cubes develop at certain parameters large axisymmetric components in the velocity field which are large enough to either generate magnetic fields by themselves, or to contribute to the dynamo effect if inertial modes are already excited and acting as a dynamo. This effect disappears at small Ekman numbers. The critical magnetic Reynolds number also increases at low Ekman numbers because of turbulence and small-scale structures.  相似文献   

3.
Abstract

We present trial calculations for a simple nonlinear ‘‘thick disk'’ galaxy dynamo. The nonlinearity is a simple α-quenching. Our strictly axisymmetric solution demonstrates the possibility of a nonlinear interaction between modes of opposite parity. We suggest that a three dimensional model might exhibit a similar persistent interaction between axisymmetric and non-axisymmetric modes.  相似文献   

4.
Abstract

We investigated global axisymmetric (m = 0) and non-axisymmetric (m = 1) modes of magnetic fields generated by the galactic dynamo including the α2-dynamo. The α2-dynamo is responsible for the field generation in the central region of galaxies where the shear of galactic rotation is weak (e.g. M51). The highest growth rate of m = 1 modes is always smaller than that of m = 0 modes; thus m = 1 modes of the standard galactic dynamo cannot explain the dominance of the bisymmetric fields in spiral galaxies. Radial extent of each m = 1 mode is too narrow to reproduce the observed bisymmetric structure extending over a disk.  相似文献   

5.
Abstract

The kinematic dynamo problem is considered for certain steady velocity fields with symmetries that are plausible in a rapidly rotating convective system. By generalizing results proved for the mean field dynamo model by Proctor (1977a), it is shown that for a related “comparison problem” with modified boundary conditions, the eigenvalues are degenerate if there is no axisymmetric mean circulation, with modes of dipole and quadrupole parity excited with equal ease. The comparison problem can be shown to be closely similar to the dynamo problem when there is a region unfavourable to dynamo action surrounding the dynamo region. The near-symmetries found by Roberts (1972) for the mean field model are invoked to suggest that a close correspondence is likely even when this region is absent. It is therefore conjectured that such mean motions may be important in explaining the observed preference for solutions of dipole parity by planetary dynamos.  相似文献   

6.
Abstract

We reconsider thin-disc global asymptotics for kinematic, axisymmetric mean-field dynamos with vacuum boundary conditions. Non-local terms arising from a small but finite radial field component at the disc surface are consistently taken into account for quadrupole modes. As in earlier approaches, the solution splits into a local part describing the field distribution along the vertical direction and a radial part describing the radial (global) variation of the eigenfunction. However, the radial part of the eigenfunction is now governed by an integro-differential equation whose kernel has a weak (logarithmic) singularity. The integral term arises from non-local interactions of magnetic fields at different radii through vacuum outside the disc. The non-local interaction can have a stronger effect on the solution than the local radial diffusion in a thin disc, however the effect of the integral term is still qualitatively similar to magnetic diffusion.  相似文献   

7.
Abstract

A spherical α2-dynamo is presented as an expansion in the free decay modes of the magnetic field. In the limit of vanishing viscosity the momentum equation yields various asymptotic expansions for the flow, depending on the precise form of the dissipation and boundary conditions applied. A new form for the dissipation is introduced that greatly simplifies this asymptotic expansion. When these expansions are substituted back into the induction equation, a set of modal amplitude equations is derived, and solved for various distributions of the α-effect. For all choices of α the solutions approach the Taylor state, but the manner in which this occurs can vary, as previously found by Soward and Jones (1983). Furthermore, as hypothesized by Malkus and Proctor (1975), but not previously demonstrated, the post-Taylor equilibration is indeed independent of the viscosity in the asymptotic limit, and depending on the choice of a may be either steady-state or oscillatory.  相似文献   

8.
Abstract

Perturbation theory methods are developed for the kinematic geodynamo equations. The vector Green's function is constructed for the unperturbed equation, which includes the axisymmetric differential rotation. While investigating the perturbation series, we consider a special case in which the decay rates of the axisymmetric toroidal and poloidal dipoles are degenerate. For a number of models within the framework of the theory developed, estimates are given for generation conditions and for observed characteristics of the geomagnetic field.  相似文献   

9.
Abstract

A system is considered in which electrically conducting fluid is contained between two rigid horizontal planes and bounded laterally by a circular cylinder. The fluid is permeated by a strong azimuthal magnetic field. The strength of the field increases linearly with distance from the vertical axis of the cylinder, about which the entire system rotates rapidly. An unstable temperature gradient is maintained by heating the fluid from below and cooling from above. When viscosity and inertia are neglected, an arbitrary geostrophic velocity, which is aligned with the applied azimuthal magnetic field and independent of the axial coordinate, can be superimposed on the basic axisymmetric state. In this inviscid limit, the geostrophic velocity which occurs at the onset of convection is such that the net torque on geostrophic cylinders vanishes (Taylor's condition). The mathematical problem which describes the ensuing marginal convection is nonlinear, and was discussed previously for the planar case by Soward (1986). Here new features are isolated which result from the cylindrical geometry. New asymptotic solutions are derived valid when Taylor's condition is relaxed to include viscous effects.  相似文献   

10.

A linear analysis of thermally driven magnetoconvection is carried out with emphasis on its application to convection in the Earth's core. We consider a rotating and self-gravitating fluid sphere (or spherical shell) permeated by a uniform magnetic field parallel to the spin axis. In rapidly rotating cases, we find that five different convective modes appear as the uniform field is increased; namely, geostrophic, polar convective, magneto-geostrophic, fast magnetostrophic and slow magnetostrophic modes. The polar convective (P) and magneto-geostrophic (E) modes seem to be of geophysical interest. The P mode is characterized by such an axisymmetric meridional circulation that the fluid penetrates the equatorial plane, suggesting that generation of quadrapole from dipole fields could be explained by a linear process. The E mode is characterized by a few axially aligned columnar rolls which are almost two-dimensional due to a modified Proudman-Taylor theorem.  相似文献   

11.
Abstract

An attempt has been made to include the axially asymmetric velocities into the calculation of Braginsky's Z-model of the nearly symmetric hydromagnetic dynamo. In this axisymmetric non-linear model dominated by Lorentz and Coriolis forces and maintained by a specified convection, the α-effect is prescribed. An example is shown of the axially asymmetric Archimedean buoyancy, which can imply an arbitrary alpha effect in the model with viscous core-mantle coupling. The formalisms of Tough and Roberts (1968) is also discussed and a modified α-effect in the Z-model is suggested.  相似文献   

12.
Abstract

The mean field induction equation of Steenbeck, Krause and Rädler (1966) is solved for anisotropic α ik -tensors of varying anisotropy. The attention is restricted to α2-dynamos in spheres with steady axisymmetric magnetic fields. The ratio of the electrical conductivity outside and inside the sphere is varied, but in all cases it is found that a steady dynamo does not exist when the anisotropy of the α ik -tensor exceeds a critical value. Such a critical value does not exist in the exceptional case of the Fermi boundary condition. The results emphasize the important effect of boundaries on the existence of solutions of the dynamo problem.  相似文献   

13.
Abstract

Evidence from radio polarization measurements is reviewed that indicates that most galactic magnetic field structures fall into one of two categories: axisymmetric spiral and bisymmetric spiral. The resultant challenges to dynamo theorists is stated. Estimates of the magnetic field strengths based on equipartition of field and cosmic ray energies are given, but deviations from equipartition are inferred. Possible goals for future research are suggested.  相似文献   

14.
Abstract

We discuss recent developments in the theory of large-scale magnetic structures in spiral galaxies. In addition to a review of galactic dynamo models developed for axisymmetric disks of variable thickness, we consider the possibility of dominance of non-axisymmetric magnetic modes in disks with weak deviations from axial symmetry. Difficulties of straightforward numerical simulation of galactic dynamos are discussed and asymptotic solutions of the dynamo equations relevant for galactic conditions are considered. Theoretical results are compared with observational data.  相似文献   

15.
Summary The present paper deals with a hydromagnetic dynamo model of the generation mechanism of the Earth's magnetic field. An attempt has been made at selecting a flow-velocity field in the Earth's core which would satisfy the condition 0 for regenerating the field according to [2], and which would yield a velocity field pattern on the core surface as given in the papers by Kahle et al. [9]. These conditions are satisfied by the velocityv=V 1+U 2 cV 2 c and, geometrically, this velocity field is represented in space by a spiral convective motion. On the core surface two downflows and two upflows with the corresponding rotating cells may then be found. Only the axisymmetric harmonic component regeneration of the magnetic field has been considered. Adequate regeneration equations have been obtained by means of Braginski's method of quantity estimates in order of magnitude.  相似文献   

16.
Abstract

An analysis of small-scale magnetic fields shows that the Ponomarenko dynamo is a fast dynamo; the maximum growth rate remains of order unity in the limit of large magnetic Reynolds number. Magnetic fields are regenerated by a “stretch-diffuse” mechanism. General smooth axisymmetric velocity fields are also analysed; these give slow dynamo action by the same mechanism.  相似文献   

17.
Abstract

A stratified parallel flow in a potential force field is investigated. The density, the velocity, and the potential field of the flow are allowed to vary in two directions. Three sufficient conditions are derived for guaranteed stability of the flow. Two are the classical stability conditions in their respective directions. The third, measured by a newly defined Richardson number, is a result of the shear interaction and the pressure balance condition for stability. Like the classical Richardson number which is always positive preceding stability, this new number acts as a constraint on the other two stability conditions. In addition to the above stability criteria, a semi-ellipse theorem is derived for the present flow.  相似文献   

18.
Abstract

The equilibrium properties of the magnetic field of an axisymmetric star are studied. A family of analytical solutions to the magnetohydrostatic equations is found, which are used to model the slow evolution of the field through a series of equilibria.

Firstly, a model is set up for a force-free dipole-like field, which has a toroidal field component; it is found that, as such a field is twisted up, a critical point is reached, at which the field topology changes. If the twist is increased beyond this point, there is no physically reasonable equilibrium. Next, an untwisted magnetostatic dipole-like field is studied, with an increasing pressure differential between pole and equator. A critical point again occurs when the pressure differential becomes too large. Finally a force-free quadrupole-like field is modelled, which is being twisted up, for example by differential rotation; this has similar properties to the dipole-like field. In each case, it is suggested that, when the critical point is reached, the field will no longer evolve smoothly, but will change catastrophically to a new stable, releasing energy. Such an event could represent the onset of a stellar flare or some other dynamic stellar process.  相似文献   

19.
Abstract

Methods of estimating the strength and direction of galactic magnetic fields from radio polarization measurements are reviewed. Particular attention is paid to the analysis of the Faraday rotation in order to derive the large scale magnetic field structure. Ways in which an axisymmetric spiral field structure can be observationally distinguished from a bisymmetric spiral structure are described, as are the ways in which field symmetric with respect to the galactic plane can be distinguished from those that are antisymmetric.  相似文献   

20.
Abstract

In order to gain a better understanding of the processes that may give rise to non-axisymmetric magnetic fields in galaxies, we have calculated field decay rates for models with a realistic galactic rotation curve and including the effects of a locally enhanced turbulent magnetic diffusivity within the disc. In all cases we have studied, the differential rotation increases the decay rate of non-axisymmetric modes, whereas axisymmetric ones are unaffected. A stronger magnetic diffusivity inside the disc does not lead to a significant preference for non-axisymmetric modes. Although Elsasser's antidynamo theorem has not yet been proved for the present case of a non-spherical distribution of the magnetic diffusivity, we do not find any evidence for the theorem not to be valid in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号