首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The classical Ekman theory tells us that the ocean surface current turns to the right(left) side of wind direction with 45° in the north(south) hemisphere,but the observation and research results show that the surface current deflexion angle is smaller than 45° in the Arctic and high latitude areas while larger than 45° in the low latitude areas.In order to explain these phenomena,a series of idealized numerical experiments are designed to investigate the influence of vertical viscosity coefficients with different vertical distribution characteristics on the classical and steady Ekman spiral structure.Results show that when the vertical viscosity coefficient decreases with water depth,the surface current deflexion angle is larger than 45°,whereas the angle is smaller than 45° when the vertical viscosity coefficient increases with water depth.So the different observed surface current deflexion angles in low latitude sea areas and the Arctic regions should be attributed to the different vertical distribution characteristics of vertical viscosity coefficients in the upper ocean.The flatness of the Ekman spiral is not equal to one and does not show regular behaviors for the numerical experiments with different distribution of vertical viscosity.However,the magnitudes and directions of volume transport of Ekman spirals are almost the same as the results of classical Ekman theory,i.e.,vertical viscosity coefficient distributions have no effect on the magnitudes and directions of volume transport.  相似文献   

2.
Abstract

Theory and experiments are presented for critically controlled flow of a layer of inviscid rotating fluid. Flow is controlled by a level passage. For a wide upstream channel of fixed depth (i.e. constant potential vorticity) the volume flux on the right-hand wall is unaffected by passage flow. This suggests that specifying Bernoulli potential on the right-hand passage wall produces a physically well-posed condition. The specification results in one less dimensionless number than was required by previous formulations to specify flow in the controlled passage. The upstream flow needs the same number as before, so that a range of upstream conditions produce exactly the same passage flow. A laboratory study is conducted using a thin layer of water under air. This is pumped in steadily at various locations in a deep rotating upstream basin, with fluid leaving through a level passage. All currents in the upstream basin cross to the left-hand wall as the current approaches the passage over a sloping bottom. The current crosses back to the right-hand wall within the passage. Velocity profiles of currents agree reasonably well with constant potential vorticity theory. To the right of the detached upstream current is a closed gyre that connects the upstream flows (that have different patterns depending on source location) with the unique passage flows. The results suggest that gyres upstream of critically controlling passages in the ocean might serve as adjustment regions between the relatively unconstrained upstream flows and the tightly controlled passage flows.  相似文献   

3.
为了研究P波斜入射对沉管隧道地震响应的影响,以港珠澳大桥沉管隧道为工程背景,考虑上覆海水与海床、沉管隧道之间耦合作用,采用粘弹性边界和等效力的地震荷载输入方式,利用ADINA软件建立三维有限元模型进行地震响应分析。分析入射角为0°、20°、40°、50°、60°时P波对沉管隧道环向应力峰值(正应力峰值、剪应力峰值)和位移峰值的影响,结果表明:入射角为40°时,沉管隧道应力峰值最大;入射角为0°—40°时,隧道的应力峰值逐渐增大,入射角为40°—60°时,隧道的应力峰值逐渐减小;隧道截面4个转角处及隔墙与顶板、底板的连接处为隧道剪应力峰值最大处;隧道截面左侧剪应力峰值远大于右侧;隧道顶板正应力峰值最大,顶板的正应力峰值大约为底板的2倍;隧道截面左侧位移峰值远大于隧道截面右侧。  相似文献   

4.
In homogeneous rotating fluid, when there is an oscillating forcing in the interior fluid with a period long enough for an Ekman layer to develop, there is an interaction between the oscillatory Ekman layer and the vertical wall, since the latter imposes an alternating adjustment flow confined near the wall. As a result, this coastal rectification process leads to a Lagrangian transport along the coast. The Ekman number, the Rossby number and the temporal Rossby number of the forcing flow are the governing parameters of that mechanism which can be described by a simplified analytical model taking into account both the vertical time-dependent structure of the current and the presence of the wall. The model shows that the residual (rectified) current flowing with the coast to its right results from the strong nonlinear interaction between along- and cross-shore tidal currents leading to asymmetrical momentum exchanges between the Ekman bottom layer and the coastal boundary layer. The model provides simple scaling laws for the maximum intensity and width of the residual current. The latter is significantly larger than the friction (Stokes) lateral boundary layer of the forcing flow. A comprehensive set of experiments is performed in the 13 m diameter rotating tank by oscillating an 8 m×2 m horizontal plate and vertical wall in a homogeneous fluid at rest in solid-body rotation and measuring the two horizontal components of the current at several locations and depths above the central part of the plate. The predicted and experimentally measured maximum intensity and width of the residual current are in very good agreement, within the range of validity of the model, i.e. when the Ekman number is sufficiently small. However experiments also show that the residual current still occurs when the Ekman layer thickness is of the same order as the fluid depth, but it is then confined to a narrower band along the vertical wall. The flow structure found experimentally is also correctly described by a numerical model developed by Zhang et al. (1994). Current measurements in the Eastern part of the English Channel near the French coast reveal a significant coastal residual current flowing Northward and the coastal rectification process described here may account for part of it.  相似文献   

5.
基于黏弹性人工边界的地震动斜入射方法模拟平面SV波不同角度入射情况,分别采用声固耦合法和附加质量法模拟闸室内水体,研究超高水头船闸闸室位移、应力和塑性损伤等地震反应,对比两种水体模拟方法计算结果的异同。结果表明:(1)整体上,两种方法计算得出的左、右闸墙地震反应结果随入射角度变化的规律基本一致;左闸墙受拉损伤的最大值均出现在入射角15°时,右闸墙受拉损伤的最大值均出现在入射角35°时;地震波入射角度对超高水头船闸动力响应影响较大,设计时应考虑地震波斜入射的影响。(2)当入射角较大时,采用声固耦合法计算的闸墙相对位移极值、主应力极值和受拉损伤结果偏保守的概率更大,对超高水头船闸结构设计来说更为安全。(3)建议两种计算方法相互参考和校核,推荐采用偏安全的结果进行超高水头船闸结构设计。  相似文献   

6.
With the existence of eight substantial islands in the Southern California Bight, the oceanic circulation is significantly affected by island wakes. In this paper a high-resolution numerical model (on a 1 km grid), forced by a high-resolution wind (2 km), is used to study the wakes. Island wakes arise due both to currents moving past islands and to wind wakes that force lee currents in response. A comparison between simulations with and without islands shows the surface enstrophy (i.e., area-integrated square of the vertical component of vorticity at the surface) decreases substantially when the islands in the oceanic model are removed, and the enstrophy decrease mainly takes place in the areas around the islands. Three cases of wake formation and evolution are analyzed for the Channel Islands, San Nicolas Island, and Santa Catalina Island. When flows squeeze through gaps between the Channel Islands, current shears arise, and the bottom drag makes a significant contribution to the vorticity generation. Downstream the vorticity rolls up into submesoscale eddies. When the California Current passes San Nicolas Island from the northwest, a relatively strong flow forms over the shelf break on the northeastern coast and gives rise to a locally large bottom stress that generates anticyclonic vorticity, while on the southwestern side, with an adverse flow pushing the main wake current away from the island, positive vorticity has been generated and a cyclonic eddy detaches into the wake. When the northward Southern California Countercurrent passes the irregular shape of Santa Catalina Island, cyclonic eddies form on the southeastern coast of the island, due primarily to lateral stress rather than bottom stress; they remain coherent as they detach and propagate downstream, and thus they are plausible candidates for the submesoscale “spirals on the sea” seen in many satellite images. Finally, the oceanic response to wind wakes is analyzed in a spin-up experiment with a time-invariant wind that exhibits strips of both positive and negative curl in the island lee. Corresponding vorticity strips in the ocean develop through the mechanism of Ekman pumping.  相似文献   

7.
The response of a barotropic coastal ocean on a step-shaped continental shelf to a traveling sinusoidal wind stress forcing is predicted theoretically using a frictional force proportional to the alongshore current velocity. This theory is compared to a small set of observations from the northeast coast of Australia where a sudden widening of the continental shelf provides a geographical origin. The comparison is accomplished by means of frequency response functions relating alongshore wind stress with alongshore velocity. Amplitudes of the response functions are predicted to increase with alongshore distance equatorward and also to decrease with frequency at any location. These predictions are verified by the measurements. Predicted phase lags are generally less than about 30°, with observations agreeing with theory to within about 20°C. In general, the measurements provide reasonable evidence to support the theory of wind-forced continental shelf waves from a geographical origin.  相似文献   

8.
Abstract

The stability of a single layer, geostrophic front of zero potential vorticity bounded by a vertical coast (wall) is investigated by means of a Rayleigh integral. It is proved that the flow of the density-driven current is stable at all wavenumbers provided the mean velocity of basic flow exceeds fL (where f is the Coriolis parameter and L is the distance between the wall and the free streamline). The frequency of the stable long waves is either zero or super-inertial.  相似文献   

9.
Two-dimensional (cross-shelf and depth) circulation by downwelling wind in the presence of a prograding front (with isopycnals that slope in the same direction as the topographic slope) over a continental shelf is studied using high-resolution numerical experiments. The physical process of interest is the cross-shelf circulation produced by northeasterly monsoon winds acting on the Kuroshio front over the East China Sea outer shelf and shelfbreak where upwelling is often observed. However, a general problem is posed and solved by idealized numerical and analytical models. It is shown that upwelling is produced shoreward of the front. The upwelling is maintained by (1) a surface bulge of negative vorticity at the head of the front; (2) bottom offshore convergence beneath the front; and (3) in the case of a surface front that is thin relative to water depth, also by upwelling due to the vorticity sheet under the front. The near-coast downwelling produces intense mixing due to both upright and slant-wise convection in regions of positive potential vorticity. The analytical model shows that the size and on-shore propagating speed of the bulge are determined by the wind and its shape is governed by a nonlinear advection–dispersion equation which yields unchanging wave-form solutions. Successive bulges can detach from the front under a steady wind. Vertical circulation cells develop under the propagating bulges despite a stable stratification. These cells can have important consequences to vertical exchanges of tracers and water masses.  相似文献   

10.
In southwest Western Australia, strong and persistent sea breezes are common between September and February. We hypothesized that on the inner continental shelf, in the absence of tidal forcing, the depth, magnitude, and lag times of the current speed and direction responses to sea breezes would vary though the water column as a function of the sea breeze intensity. To test this hypothesis, field data were used from four sites were that were in water depths of up to 13 m. Sites were located on the inner continental shelf and were on the open coast and in a semi-enclosed coastal embayment. The dominant spectral peak in currents at all sites indicated that the majority of the spectral energy contained in the currents was due to forcing by sea breezes. Currents were aligned with the local orientation of the shoreline. On a daily basis, the sea breezes resulted in increased current speeds and also changed the current directions through the water column. The correlation between wind–current speeds and directions with depth, and the lag time between the onset of the sea breeze and the response of currents, were dependent on the intensity of the sea breezes. A higher correlation between wind and current speeds occurred during strong sea breezes and was associated with shorter lag times for the response of the bottom currents. The lag times were validated with estimates of the vertical eddy viscosity. Solar heating caused the water column to stratify in summer and the sea breezes overcame this stratification. Sea breezes caused the mixed layer to deepen and the intensity of the stratification was correlated to the strength of the sea breezes. Weak sea breezes of <5 m s−1 were associated with the strongest thermal stratification of the water column, up to 1°C between the surface and bottom layers (6 and 10 m below the surface). In comparison, strong sea breezes of >14 m s−1 caused only slight thermal stratification up to 0.5°C. Apart from these effects on the vertical structure of water column, the sea breezes also influenced transport and mixing in the horizontal dimension. The sea breezes in southwest Western Australia rotated in an anticlockwise direction each day and this rotation was translated into the currents. This current rotation was more prominent in surface currents and in the coastal embayment compared to the open coast.  相似文献   

11.
The behavior of electric and magnetic field variations over the eastern coastal region of North America is studied using a scaled laboratory electromagnetic analogue model. The model source frequency used simulates a period of 1 h in the geophysical scale. The results indicate that deflection and conductive channelling of induced electric current is important for both the E-polarization (northeast-southwest direction of the electric field of the source) and the H-polarization (northwest-southeast) of the source field. In the model, conductive channelling occurs through the Strait of Belle Isle, Cabot Strait, and in the St. Lawrence River. Current deflection is particularly prevalent around the southeast coast of Newfoundland for both E- and H-polarization, and around the northeast coastline of Nova Scotia for E-polarization. The model results also show current deflection by cape and bay coastal features, as well as by ocean depth contours.A comparison of model measurements for the cases of a uniform source field and a line current source indicate that the nature of the source field has a measurable but surprisingly small effect on the vertical to horizontal magnetic field ratio for both E- and H-polarizations, and negligible effect on the magnetotelluric ratio for coastal regions.The model fields in coastal regions were found to be strongly influenced by induced currents, deflected and channelled by the coastline and ocean bathymetry, and were dependent on the nature and particularly the polarization of the source field. Thus, along the complex coastline of eastern North America, a wide range of electric and magnetic field values should be expected. In some regions the coast effect, measured by the vertical to horizontal magnetic field ratio at the coast, could be expected to be extremely small or absent, while in other regions the ratio could approach a value as large as unity for variations of 1 h period.  相似文献   

12.
The isolation of vibrations from the surroundings is one of the important problems in the design of machine foundations. The use of open trenches, infilled trenches, single and multiple pile rows have been widely studied. In this paper, the vibration screening efficiency of an inclined secant micro-pile wall positioned as an active vibration barrier is investigated. The study is performed using three-dimensional time domain finite element analyses. Various parameters such as barrier depth, inclination, barrier distance and load excitation frequency were studied. The results show that inclined secant micro-pile walls are a viable vibration isolation option for a multitude of vibration problems. It is shown that varying barrier inclination angle from 90° to 120° improved vibration isolation performance as high as 44% relative to the vertical barrier for the active isolation case. The effectiveness of the barrier increases as its depth increases and also as the excitation frequency increases. The orientation of the inclined barrier towards or against vibration source is shown to be a fundamental design consideration.  相似文献   

13.
A theory which describes the constant f-plane flow of a steady inviscid baroclinic boundary current over a continental margin with a bathymetry that varies slowly in the alongshore but rapidly in the offshore directions is developed in the parameter regime (LD/L)2 ≤ Ro 1, where LD is the internal deformation radius, L the horizontal length scale, and Ro the Rossby number. To lowest order in the Rossby number the flow is along isobaths with speed qo = Vu(h,z)|Vh|/α, where Vu(h,z) is the upstream speed, α the upstream bottom slope at depth h, and Vh the bottom slope downstream at depth h. The lowest order flow produces a variation in the vertical component of relative vorticity along the isobath as the magnitude and direction of Vh vary in the downstream direction. The variation of vorticity requires a vertical as well as a cross-isobath flow at first order in the Rossby number. The first order vertical velocity is computed from the vorticity equation in terms of upstream conditions and downstream variations of the bathymetry. The density, pressure, and cross-isobath flow at first order in the Rossby number are then calculated. It is shown that in the cyclonic region of current (d/dh(Vu/α) > 0), if the isobaths diverge in the downstream direction ((∂/∂s)|Vh| < 0), then upwelling and onshore flow occur. The theory is applied to the northeastern Florida shelf to explain bottom temperature observations.  相似文献   

14.
A three-dimensional model based on the Princeton Ocean Model (POM) has been implemented to study the circulation of the west coast of India. The model uses a curvilinear orthogonal horizontal grid with higher resolution near the coast (3–9 km) and a terrain following sigma coordinate in the vertical. The model is able to simulate Lakshadweep High and Lakshadweep Low (LL) during the winter and summer monsoons, respectively. During winter, the downwelling processes noticed along the coast help in the formation of temperature inversions. The inversions can be seen even up to the depths of ~50 m, which agrees with the available ARGO data in the region. Model simulations show that coastal upwelling off Kerala is at its peak in July. The intensity of upwelling reduces along the coast towards north. During the existence of LL, there is a cyclonic eddy in the sub-surface waters over the South-Eastern Arabian Sea, with vertical extent up to the depths of 100–150 m and it is strengthened due to the presence of northward counter current in the shelf region. The southerly coastal jet formed along the southern coast as a result of upwelling is noticed a westward shift along with LL. The location of the eddy off Kerala is tilted towards the open ocean with depth and our experiments suggest that this flow can be understood as a first baroclinic mode.  相似文献   

15.
A linear coastal-trapped-wave (CTW) model is used to examine the effects of large-scale winds, with time scale ranging from a few days to a few weeks, on the West India Coastal Current (WICC), particularly on the shelf off the central west coast of India. We show that unlike the seasonal cycle of WICC, which is primarily forced by the winds along the east coast of India, the high-frequency WICC is mostly driven by the west-coast winds. Nevertheless, the influence of winds as far as Sri Lanka and east coast of India cannot be neglected. Simple numerical experiments with the CTW model show that the strong current observed at Goa (15° N) compared to Bhatkal (13° N) and Jaigarh (17° N) is due to two factors: (1) the superposition of local and remote CTWs and (2) the widening of shelf width north of Goa, which decreases the amplitude of the currents poleward of Goa. If the local winds are weak, the amplitude of current decreases poleward due to friction, and the current at the south leads the north. We also note that the observed phase difference between sea level and alongshore current at Goa could be attributed to the propagation of remotely forced higher-order modes of CTWs.  相似文献   

16.
Magnetic anomalies over the continental shelf off the east coast of India (Orissa) suggest the presence of a highly magnetic rock type magnetized with an intensity of 900 nT in a direction, azimuth(A) = 150° and inclination(I) = +65°. This suggest the occurrence of igneous volcanic rocks which is confirmed from samples found below Tertiary sediments from a few boreholes in this region. The depth of this rock type as estimated from magnetic anomalies varies from approximately 1–2 km near the coast to 4–4.5 km towards the shelf margin. This direction of magnetization is the reverse of the reported direction of magnetization for the Rajmahal Traps of the Cretaceous period (100–110 m.y). A small strip of the body near the continental shelf margin appears, however, to possess normal magnetization suggesting the occurrence of normal and reversed polarities side by side, a characteristic typical for oceanic magnetic anomalies. The reversed polarity of the rocks on the continental shelf suggests that they correspond probably to the MO reversal (115 m.y.) on world magnetostratigraphic scale and provide a paleolatitude of 47°S for the land mass of India which agrees with the palaeoreconstruction of India and Antarctica. In this reconstruction, the Mahanadi Gondwana graben on the Indian subcontinent falls into line with the Lambert Rift in Antarctica, suggesting a probable common ancestry. The volcanic rocks on the continental shelf off the east coast of India might represent a missing link, that is, rocks formed between India and Antarctica at the time of the break-up of Gondwanaland. Satellite magnetic anomalies (MAGSAT) recorded over the Indian shield and interpreted in terms of variations in the Curie point geotherm provide a direction of magnetization which also places this continent close to Antarctica. As such MAGSAT anomalies recorded over eastern Antarctica are found compatible with those recorded over the Indian shield.  相似文献   

17.
Major river systems discharging into continental shelf waters frequently form buoyant coastal currents that propagate along the continental shelf in the direction of coastal trapped wave propagation (with the coast on the right/left, in the northern/southern hemisphere). The combined flow of the Uruguay and Paraná Rivers, which discharges freshwater into the Río de la Plata estuary (Lat. ∼36°S), often gives rise to a buoyant coastal current (the ‘Plata plume’) that extends northward along the continental shelf off Uruguay and Southern Brazil. Depending upon the prevailing rainfall, wind and tidal conditions, the Patos/Mirim Lagoon complex (Lat. ∼32°S) may also produce a freshwater outflow plume that expands across the inner continental shelf. Under these circumstances the Patos outflow plume can be embedded in temperature, salinity and current fields that are strongly influenced by the larger Plata plume. The purpose of this paper is to present observations of such an embedded plume structure and to determine the dynamical characteristics of the ambient and embedded plumes.  相似文献   

18.
During a coordinated campaign devoted to wave-turbulence interactions, measurements with the high vertical resolution PROUST radar and radiosounding have been performed in an upper level potential vorticity anomaly. This campaign took place during September 1996 at St Santin, France, (44° 39′N, 2° 12′E), where the radar is located. Radiosonde data reveal, along the eastern part of the nomaly, the presence of a saturated wave field, while the radar observes turbulent activity in regions of wave-induced windshears. Characteristic parameters of the a saturation mechanism determined by the radar and radiosondes are in generally good agreement with the saturation onset conditions provided by linear saturation theory. The predicted relationship between vertical wavelength, period and energy dissipation rate proposed by the saturated-cascade theory is also assessed, although the proportionality factor is smaller than foreseen. When approaching the jetstream region, modulation by the wave field of the background windshear gives rise to Kelvin–Helmholtz instabilities whose convective billows are observed by the radar.  相似文献   

19.
Observations of semidiurnal internal tidal currents from three moorings deployed on the continental shelf off central Chile during summer and winter of 2005 are reported. The spectra of the baroclinic currents showed large peaks at the semidiurnal band with a dominant counterclockwise rotation, which was consistent with internal wave activity. The amplitude of the barotropic tidal currents varied according to the spring–neap cycle following the sea level fluctuations. In contrast, the amplitudes of the internal tide showed high spatial-temporal variability not directly related to the spring–neap modulation. Near the middle of the continental shelf and near the coast (San Vicente Bay) the variance of the semidiurnal baroclinic current is larger than the variance of its barotropic counterpart. The vertical structure of the baroclinic tidal current fluctuations was similar to the structure of the first baroclinic internal wave mode. In general, in the three study sites the variance of the baroclinic current was larger near the surface and bottom and tended to show a minimum value at mid depths. Kinetic energy related to semidiurnal internal waves was larger in winter when stratification of the water column was stronger. During summer, upwelling and the decrease of freshwater input from nearby rivers reduced the vertical density stratification. The amplitude of the semidiurnal internal tide showed a tendency to be enhanced with increasing stratification as observed in other upwelling areas. The continental shelf break and submarine canyons, which limit the continental shelf in the alongshore direction, represent near-critical slopes for the semidiurnal period and are suggested to be the main internal tide generation sites in the study region.  相似文献   

20.
In this paper the application of an edge detection technique to gravity data is described. The technique is based on the tilt angle map (TAM) obtained from the first vertical gradient of a gravity anomaly. The zero contours of the tilt angle correspond to the boundaries of geologic discontinuities and are used to detect the linear features in gravity data. I also present that the distance between zero and ±p\mathord
/ \vphantom p4 4 \pm {\pi \mathord{\left/ {\vphantom {\pi 4}} \right. \kern-\nulldelimiterspace} 4} pairs obtained from the TAM corresponds to the depth to the top of the vertical contact model. Alternatively, the half distance between - p\mathord/ \vphantom p4 4 - {\pi \mathord{\left/ {\vphantom {\pi 4}} \right. \kern-\nulldelimiterspace} 4} and + p\mathord/ \vphantom p4 4 + {\pi \mathord{\left/ {\vphantom {\pi 4}} \right. \kern-\nulldelimiterspace} 4} radians is equal to the depth to the same model. I illustrate the applicability of the present method by gravity data due to buried vertical prisms, imaging the positions of the edges of the prisms. The results obtained from the theoretical data, with and without random noise, have been discussed. The analysis of the TAM has been demonstrated on a field example from the Kozaklı-Central Anatolian region, Turkey, and the location and depth of the edges of the structural uplifts of the Kozaklı graben are imaged. The results indicated that depth values from these sources have ranged between 0.2 and 0.6 km. I have also compared the Euler deconvolution technique with the TAM images obtained from the first vertical gradient of residual gravity anomaly. Both techniques have agreed closely in detecting the horizontal location and depth of the uplift edges in the subsurface with good precision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号