首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Abstract

Marked oscillations in wind speed, wind direction and pressure with periods of between 5 and 15 minutes were recorded on a number of occasions and it is assumed that they were produced by atmospheric gravity waves. Gossard and Munk (1954) have shown that the phase velocity of a gravity wave can be calculated using wind and pressure fluctuation data from a single station by means of the “impedance equation”. It is also possible to measure the phase velocity of a gravity wave using an array of microbarovariographs. In this investigation, the phase velocity of gravity waves calculated using these two different methods are compared and the feasibility of deriving wave characteristics from single point measurements is discussed. The results show that, while in a few isolated cases the two velocities agree reasonably well, the application of the impedance equation to data from a single station is limited due to the superposition of local wind systems upon the wave-induced perturbations.  相似文献   

2.
Abstract

Detailed comparisons are made between the predictions of Benjamin's weakly nonlinear theory for internal solitary waves in fluids of great depth, with observational data on solitary wave-type disturbances in the lower atmosphere associated with the “morning glory” phenomenon.

It is shown that, while the theory is not wholly unreasonable, neither is it completely satisfactory. In particular, although the calculated wave speeds are generally close to those observed, they are no improvement on those based on linear long wave theory; at the same time the predicted wave half-widths are too large by a factor of two to three. The limitations of the theory appear to be associated with the requirement that wave half-widths are much less than the total fluid depth, a condition not satisfied in the atmospheric case. However, the alternative theory for shallow fluids, based on the Korteweg-de Vries equation is found to be even more unsuitable.

Our analyses highlight some of the problems in comparing theory with observations and bring to the fore some of the present limitations of the data for such purposes.  相似文献   

3.
Abstract

Inertial waves are excited in a fluid contained in a slightly tilted rotating cylindrical cavity while the fluid is spinning up from rest. The surface of the fluid is free. Since the perturbation frequency is equal to the rotation speed resonance occurs at a critical height to radius aspect ratio of the fluid. Detailed study of a particular inertial wave shows that in solid body rotation this “eigenratio” agrees with predictions from linear inviscid theory to within 0.5%. Measured time dependence of the eigenratio during spin-up from rest is a function of the tilt amplitude and agrees favorably with predictions from a numerical study. Mean flow associated with the inertial wave becomes unstable during spin-up and in the steady state. A boundary for the unstable region is found experimentally.  相似文献   

4.
2008年5月11日山西地区5个地壳形变测项出现了“前驱波”信号,但其真实的物理本质究竟如何?至今仍存质疑。为此,本文借助小波变换方法对气压波和“前驱波”在不同时、频段的相关性进行了较系统的诊断;还进一步将“前驱波”与短时气压波动所产生的干扰实例进行了对比分析。结果表明:这些“前驱波”并非源自汶川MS8.0地震,而主要是气压波动的干扰。   相似文献   

5.
6.
Abstract

The vortex pair known as a modon is a classical solitary wave in the sense that it decays exponentially with distance from the center of the wave whenever the modon's phase speed of the wave is outside the linear range. In contrast, when ?1 < c < 0, the modon “far field” is oscillatory so that the modon is “nonlocal” in the sense that it has nonzero amplitude even at arbitrarily far distances from the vortex maximum. However, Tribbia and Verkley have independently noted that the oscillatory far field may be very weak for some parameter ranges.  相似文献   

7.
Abstract

A spectral low-order model is proposed in order to investigate some effects of bottom corrugation on the dynamics of forced and free Rossby waves. The analysis of the interaction between the waves and the topographic modes in the linear version of the model shows that the natural frequencies lie between the corresponding Rossby wave frequencies for a flat bottom and those applying in the “topographic limit” when the beta-effect is zero. There is a possibility of standing or eastward-travelling free waves when the integrated topograhic effect exceeds the planetary beta-effect.

The nonlinear interactions between forced waves in the presence of topography and the beta-effect give rise to a steady dynamical mode correlated to the topographic mode. The periodic solution that includes this steady wave is stable when the forcing field moves to the West with relatively large phase speed. The energy of this solution may be transferred to the steady zonal shear flow if the spatial scale of this zonal mode exceeds the scale of the directly forced large-scale dynamical mode.  相似文献   

8.
Abstract

It is successfully demonstrated that substantial redistribution of the angular momentum within a completely liquid-filled cylinder in uniform rotation can be brought about by the induction of turbulent mixing through the resonant excitation of standing inertial waves. This means of mixing is accomplished without significant net circulation in the meridional plane, or strong boundary restraint.

Intense cyclonic vortices are created with an apparently high conversion of energy from the inertial wave excited. Visualizations and measurements of vortex strength and circulation distribution are presented and dimensional arguments are applied to interpret from the measurements the partition of the turbulence into relative velocity- and angular momentum-diffusing elements. This indicates tentatively the mechanism responsible; momentum advected by the inertial wave is irreversibly diffused by turbulence of smaller scale. Anisotropy with enhanced radial transport is an essential feature of the nett turbulence in such a mechanism. Similar combinations of large-scale waves and turbulence can be expected to occur in the geophysical situations to which the phenomenon of angular momentum mixing relates. The experiment does not, however, test the effectiveness of isotropic turbulence in the same rôle.  相似文献   

9.
—?Seismic precursors to space shuttle re-entry shock fronts are detected at TXAR in Southwest Texas when the ground track of the orbiter vehicle passes within ~150–200?km of the observatory. These precursors have been termed “shuttle-quakes” because their seismograms superficially mimic the seismograms of small earthquakes from shallow sources. Analysis of the “shuttle-quake” seismograms, however, reveals one important difference. Unlike ordinary earthquakes, the propagation azimuths and horizontal phase velocities of the individual phases of the “shuttle-quakes” are functionally related. From a theoretical model developed to account for the origin of these precursors it is found that the seismic phases of “shuttle-quakes” are “bow” waves. A “bow” wave originates at the advancing tip of the shock front trace (i.e., intersection of the re-entry shock front with the surface of the earth) when the ground speed of the orbiter vehicle exceeds the horizontal phase velocity of a particular seismic phase. “Bow” waves are shown to differ in two important respects from the ordinary seismic phases. They vanish ahead of the advancing tip of the shock front trace and their propagation azimuths and horizontal phase velocities are functionally related. The ground speed of the orbiter vehicle exceeds the horizontal phase velocities of crustal seismic phase over much of the re-entry flight profile. As a result, P,S, and R g “bow” waves will be seen as precursors to the re-entry shock front at stations located within a few hundred km of its ground track.  相似文献   

10.
Abstract

The problem of oblique incidence of internal ocean waves on a thin submerged ocean barrier is considered when the ocean has exponential density stratification. A Wiener-Hopf approach is used combined with numerical evaluation of series. Results for the reflected energy are obtained and reveal a complex dependence on incidence and barrier height. Application of this model to waves incident on the Mid-Atlantic ridge suggests that the ridge almosts isolates first mode energy on one side of the ocean from the other side. In certain circumstances there, is a surprising appearance of “barrier” waves. These waves are closely confined to the barrier and propagate along it.  相似文献   

11.
Abstract

Baroclinic waves in a rotating two-layer shear flow are observed by measuring fluctuations in the height of the interface using a technique which does not disturb the flow. Decomposition of the shape of the interface into azimuthal Fourier components shows that the wave spectrum is dominated by a single wave number, but other components have significant amplitudes. Nonlinear interactions between these components are isolated by comparing the results with the predictions of a linear stability theory. The observed interactions are reminiscent of those found by Hide, Mason and Plumb (1977) in a different system, thus demonstrating that they are a fundamental property of baroclinic waves.  相似文献   

12.
Abstract

It is demonstrated in laboratory experiments with rotating shallow water that large scale Rossby vortices, greater than the Rossby-Obukhov radius in size, have dispersive and non-linear properties that are fundamentally different for the two possible polarities. We call this “cyclonic-anticyclonic asymmetry”. This asymmetry manifests itself in the following way: first, anticylones, unlike cyclones, do not undergo the dispersive spreading inherent in a linear wave packet. and therefore, having a considerably longer natural lifetime, are obvious candidates for Rossby solitons; second, dipolar vortices are, because of the comparatively rapid decay of a cyclone, transformed into anticyclonic solitons; third, anticyclones are much more readily generated by zonal flows of the type existing in planetary atmospheres. The evident dominance of anticyclones amongst the long-lived vortices in the atmospheres of giant planets strongly suggests that the cyclonic-anticyclonic symmetry plays a decisive role in the atmospheric cyclogenesis of large planets.

According to our concept, the Rossby soliton is a “real” vortex; unlike a wave, it retains some fluid particles within it throughout its lifetime. Two similar solitons can merge by mutual collisions. This picture of a “vortical” soliton differs in an essential way from the earlier idea due to Maxworthy and Redekopp (1976) of purely “wave-like” Rossby solitons that can freely pass through one another.

Laboratory experiments were performed by us to simulate the new Rossby solition, with special reference to naturally-occurring vortices of the same general type as Jupiter's great red spot. The experimental data presented contradict the idea of “pure wave solitons” but confirm our concept of “vortical solutions”.  相似文献   

13.
Abstract

The effects of the upper boundary condition on the regime diagram and certain characteristics of the convection within a rotating, differentially heated cylindrical anulus of water were studied in the laboratory. It was found that the regime diagram was not substantially affected by the upper boundary condition. However, the thermal amplitude of the baroclinic waves, as a function of parameter space, and, as expected from previous work, the angular drift velocity of those waves were found to be strongly affected by the upper boundary condition. When the upper surface was free, the amplitude changes were explosive and highly non-linear (as discovered earlier by Kaiser, 1970). When the upper surface was rigid, they were smooth and quite linear. The baroclinic wave patterns drifted round the annulus at rates which were in direct response to the imposed “thermal wind”. However, (as previously observed by Koschmieder, 1972), when the upper surface was rigid they drifted approximately ten times more slowly than when it was free.  相似文献   

14.
This paper documents an experimental investigation in which a differentially-heated rotating annulus experiment was used to investigate the effects of topography on fluid flow under conditions similar to the atmospheric and oceanic circulation on Earth and other planets. In particular, the relationship between the effects of topographic resonance and the existence and mechanism for generation of low-frequency variability (LFV) were studied, motivated by outstanding questions in works such as Jin and Ghil (J. Atmos. Sci., 1990, 47) and Read and Risch (Geophys. Astrophys. Fluid Dyn., 2011, 105). Whilst employing sinusoidal wavenumber-3 topography a new regime was encountered within a region of stationary wavenumber-3 structural vacillation. Denoted as the “stationary-transition” regime, it featured periodic oscillations between a dominant stationary wavenumber-3 flow and axisymmetric or chaotic flow. Further investigation found that the “stationary-transition” regime appeared to be a near-resonant region where nonlinear topographic resonant instability led to a 23–42 “day” oscillatory behaviour. Within the regime, a Hopf bifurcation sequence was discovered, and the nonlinear instabilities were found to have terms in both wave-zonal flow and wave–wave interactions, including a notable resonant wave-triad. This report summarises the nature of the “stationary-transition” regime, and also makes comparisons with similar regimes of LFV found in other experimental studies, as well as intraseasonal oscillations in the atmosphere.  相似文献   

15.
ABSTRACT

In an age of billion dollar particle accelerators and Mars rovers, it is surprising that solitary waves were first discovered by a man on horseback with no tools but his own eyes. A century and a half later, more complicated patterns of ridges, so-called hyperelliptic two-polycnoidal waves, were discovered in the ocean during a beach vacation. The inverse scattering method, which solves nonlinear partial differential equations through a sequence of solving purely linear equations, is a blend of quantum theory and hydrodynamics that arose from informal, unstructured conversations (i.e. goofing off) among a group of postdocs from different disciplines who were randomly assigned to the same office. The cnoidal wave in the lemniscate case is well-approximated by a nonlinear solitary wave and equally well approximated by a linear sine wave. It is always and exactly the superposition of solitary waves even in the limit in which it is an infinitesimal sine wave. The history and science of solitary waves has the disorienting quality of an M. C. Escher drawing. Here, we cannot give an understanding of these deep subjects in so brief an article; rather we strive to unveil the beauty and unexpectedness of these topics to give the reader a reason to pursue these in the much more comprehensive reviews and books we cite. Further, we stress the “scotomas” (blind spots), misconceptions and surprises, the sociology and epistemology of science. It is true that failed theories, scotomas, serendipity and cognitive saltation (progress in jumps) is characteristic of science. It is also true that the invention of the train was the invention of the train wreck. Engineering learns from each disaster and science should do the same. The highly nonlinear history of nonlinear waves is reported not to disrespect the past but to replace scientific fatalism with a constructive wariness. We are not smarter or more enlightened than Scott Russell or Stokes or Landau, but we can learn from their scotomas and misconceptions as much as from their triumphs.  相似文献   

16.
Numerical solutions of the wave equation for a particular type of non-linear “constant Q” medium were carried out. These solutions were obtained after the transformation of the space derivatives in finite differences; power series of the time are used to express the solutions. The medium is characterized by a not single valued stress-strain relation; the stresses are greater when the absolute values of strain are increasing (passive work), and are less when they are decreasing (active work). A loss of energy follows which is constant for every cycle and independent of frequency. This model represents the simplest type of medium in agreement with the laboratory data on rock samples. For a similar medium the stress’values do not depend only on the instantaneous value of the strain, but also on the previous strain values, i.e. the history of the medium. All these characteristics are not compatible with linearity and require particular types of computing procedures similar to the one shown in this paper. The results of calculations here shown refer both to the propagation of an isolated wave and to the generation of a wave in a spherical hole by change of pressure. They refer particularly to the shape, the amplitude and the width of the isolated wave along the propagation path. The most important results for this type of medium are the following: a) for a plane single isolated wave, the displacement amplitude wave does not change along the propagated distance. The width increases linearly as function of the distance; b) the corresponding particle velocity decreases in amplitude; c) for single isolated spherical waves the displacement amplitude decreases with propagated distance only due to the geometric factor, i.e. inversely proportional to the propagated distance; its width increases in the same way as for plane waves. The comparison between these theoretical results with the field and seismological data show a sufficiently good agreement as far as the value interval of wave width and frequencies is concerned. Less satisfactory is the comparison regarding a linear dependence of the wave width on the distance. This fact happens probably because in the field often long trains of waves and not isolated waves occur. In effect, for trains of waves the behaviour is different than that of an isolated wave; particularly, for the former the frequency variations along the travelled path is less and the displacement variations greater. However, it seems likely that a further similar theoretical research for trains of waves propagating in this type of non-linear medium might be carried out to complete the present research.  相似文献   

17.
Abstract

New rates of decay are presented for temporally-attenuated gravity waves in deep water, allowance being made for the energy dissipated in the Stokes interfacial boundary layer in the air. This decay-rate, involving air drag, may then be used to deduce a new “free-surface” boundary condition for the problem of the mass transport velocity due to progressive waves; for shallow-water waves, two specific velocity profiles are calculated, and indicate large differences in comparison with the corresponding profiles of Longuet-Higgins (1953) for a vacuum-water interface.  相似文献   

18.
We analyse the fluctuations of the electron density and of the magnetic field in the Earth’s magnetosheath to identify the waves observed below the proton gyrofrequency. We consider two quiet magnetosheath crossings i.e. 2 days characterized by small-amplitude waves, for which the solar wind dynamic pressure was low. On 2 August 1978 the spacecraft were in the outer magnetosheath. We compare the properties of the observed narrow-band waves with those of the unstable linear wave modes calculated for an homogeneous plasma with Maxwellian electron and bi-Maxwellian (anisotropic) proton and alpha particle distributions. The Alfvén ion cyclotron (AIC) mode appears to be dominant in the data, but there are also density fluctuations nearly in phase with the magnetic fluctuations parallel to the magnetic field. Such a phase relation can be explained neither by the presence of a proton or helium AIC mode nor by the presence of a fast mode in a bi-Maxwellian plasma. We invoke the presence of the helium cut-off mode which is marginally stable in a bi-Maxwellian plasma with <alpha> particles: the observed phase relation could be due to a hybrid mode (proton AIC + helium cut-off) generated by a non-Maxwellian or a non-gyrotropic part of the ion distribution functions in the upstream magnetosheath. On 2 September 1981 the properties of the fluctuations observed in the middle of the magnetosheath can be explained by pure AIC waves generated by protons which have reached a bi-Maxwellian equilibrium. For a given wave mode, the phase difference between B \Vert and the density is sensitive to the shape of the ion and electron distribution functions: it can be a diagnosis tool for natural and simulated plasmas.  相似文献   

19.
利用水位、 气压和理论固体潮数据, 采用卷积回归法中水位对气压的阶跃响应函数, 定量地分析和判定了华北北部板桥井、 大灰厂井、 黄骅井、 大甸子井、 丰镇井和三号地井的井-含水层系统的地下水类型, 并结合研究时段内各井的气压系数和M2波潮汐因子的结果进行了对比分析. 结果表明: ① 各井的滞后时间与阶跃响应函数之间存在明显的以e为底的指数函数关系, 且底数e的系数的正负决定了井-含水层系统的地下水类型; ② 承压井的阶跃响应函数随滞后时间的增大而增大, 且最佳阶跃响应函数值越大, 相应的气压系数和M2波潮汐因子也越大, 反之亦然; ③ 潜水井和半承压水井的阶跃响应函数随滞后时间的增大而减小, 其最佳阶跃响应函数与气压系数和M2波潮汐因子间的关系不明显, 可能与含水层的水力特性、 井孔结构及固体潮汐波的频率有关.   相似文献   

20.
Abstract

We discuss the propagation of internal waves in a rotating stratified unbounded fluid with randomly varying stability frequency, N. The first order smoothing approximation is used to derive the dispersion relation for the mean wave field when N is of the form N 2 = N o 2(1 + ?μ), where μ is a centered stationary random function of either depth (z) or time (t), N o = constant and O < ?2 ≦ 1. Expressions are then derived for the change in phase speed and growth rate due to the random fluctuations μ; in particular, attention is focused on the behaviour of these expressions for short and long correlation lengths (case μ = μ(z)) and times (case μ = μ(t)). For the case μ = μ(z), which represents a model for the temperature and salinity fine-structure in the ocean, the appropriate statistics of the fluctuations observed at station P (50°N, 145°W) have been incorporated into the theory to estimate the actual importance of the effects due to these random fluctuations. It is found that the phase speed of the mean wave decreases significantly if (i) the wavelength is short compared to g/No 2 or (ii) the wave number vector is essentially horizontal and the wave frequency is very close to N o. Also, the random fluctuations cause a significant growth (decay) in the amplitude of a wave propagating upwards (downwards) through a depth of a few kilometers. However, in the direction of energy propagation, the kinetic energy is conserved. Finally, it is shown that the average effect of the depth dependent fluctuations at station P is to slightly decrease the stability frequency and the magnitude of the group velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号