首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The behavior of the main magnetic field components during a polarity transition is investigated using the α2-dynamo model for magnetic field generation in a turbulent core. It is shown that rapid reversals of the dipole field occur when the helicity, a measure of correlation between turbulent velocity and vorticity, changes sign. Two classes of polarity transitions are possible. Within the first class, termed component reversals, the dipole field reverses but the toroidal field does not. Within the second class, termed full reversals, both dipole and toroidal fields reverse. Component reversals result from long term fluctuations in core helicity; full reversals result from short term fluctuations. A set of time-evolution equations are derived which govern the dipole field behavior during an idealized transition. Solutions to these equations exhibit transitions in which the dipole remains axial while its intensity decays rapidly toward zero, and is regenerated with reversed polarity. Assuming an electrical conductivity of 3 × 105 mho m?1 for the fluid core, the time interval required to complete the reversal process can be as short as 7500 years. This time scale is consistent with paleomagnetic observations of the duration of reversals. A possible explanation of the cause of reversals is proposed, in which the core's net helicity fluctuates in response to fluctuations in the level of turbulence produced by two competing energy sources—thermal convection and segregation of the inner core. Symmetry considerations indicate that, in each hemisphere, helicity generated by heat loss at the core-mantle boundary may have the opposite sign of helicity generated by energy release at the inner core boundary. Random variations in rates of energy release can cause the net helicity and the α-effect to change sign occasionally, provoking a field reversal. In this model, energy release by inner core formation tends to destabilize stationary dynamo action, causing polarity reversals.  相似文献   

2.
In an electrically conducting fluid, two types of turbulence with a preferred direction are distinguished: planar turbulence, in which every velocity in the turbulent ensemble of flows has no component in the given direction; and two-dimensional turbulence, in which every velocity in the turbulent ensemble is invariant under translation in the preferred direction. Under the additional assumptions of two-scale and homogeneous turbulence with zero mean flow, the associated magnetohydrodynamic alpha- and beta-effects are derived in the second-order correlation approximation (SOCA) when the electrically conducting fluid occupies all space. Limitations of the SOCA are well known, but alpha- and beta-effects of a turbulent flow are useful in interpreting the dynamo effects of the turbulence. Two antidynamo theorems, which establish necessary conditions for dynamo action, are shown to follow from the special structures of these alpha- and beta-effects. The theorems, which are analogues of the laminar planar velocity and two-dimensional antidynamo theorems, apply to all turbulent ensembles with the prescribed alpha- and beta-effects, not just the planar and two-dimensional ensembles. The mean magnetic field is general in the planar theorem but only two-dimensional in the two-dimensional theorem. The two theorems relax the previous restriction to turbulence which is both two-dimensional and planar. The laminar theorems imply decay of the total magnetic field for any velocity of the associated turbulent ensemble. However, the mean-field theorems are not fully consistent with the laminar theorems because further conditions beyond those arising from the turbulence must be imposed on the beta-effect to establish decay of the mean magnetic field. In particular, negative turbulent magnetic diffusivities must be restricted. It is interesting that there is no inconsistency in the alpha-effects. The failure of the SOCA with the two-scale approximation to simply preserve the laminar antidynamo theorems at the beta-effect level is a further demonstration of the restricted validity of the theory and shows that negative diffusivity effects derived by approximation methods must be treated cautiously.  相似文献   

3.
We determine the nonlinear drift velocities of the mean magnetic field and nonlinear turbulent magnetic diffusion in a turbulent convection. We show that the nonlinear drift velocities are caused by three kinds of the inhomogeneities; i.e., inhomogeneous turbulence, the nonuniform fluid density and the nonuniform turbulent heat flux. The inhomogeneous turbulence results in the well-known turbulent diamagnetic and paramagnetic velocities. The nonlinear drift velocities of the mean magnetic field cause the small-scale magnetic buoyancy and magnetic pumping effects in the turbulent convection. These phenomena are different from the large-scale magnetic buoyancy and magnetic pumping effects which are due to the effect of the mean magnetic field on the large-scale density stratified fluid flow. The small-scale magnetic buoyancy and magnetic pumping can be stronger than these large-scale effects when the mean magnetic field is smaller than the equipartition field. We discuss the small-scale magnetic buoyancy and magnetic pumping effects in the context of the solar and stellar turbulent convection. We demonstrate also that the nonlinear turbulent magnetic diffusion in the turbulent convection is anisotropic even for a weak mean magnetic field. In particular, it is enhanced in the radial direction. The magnetic fluctuations due to the small-scale dynamo increase the turbulent magnetic diffusion of the toroidal component of the mean magnetic field, while they do not affect the turbulent magnetic diffusion of the poloidal field.  相似文献   

4.
Abstract

The geomagnetic field and its frequent polarity reversals are generally attributed to magnetohydrodynamic (MHD) processes in the Earth's metallic and fluid core. But it is difficult to identify convincingly any MHD timescales with that over which the reversals occur. Moreover, the geological record indicates that the intervals between the consecutive reversals have varied widely. In addition, there have been superchrons when the reversals have been frequent, and at least two, and perhaps three, 35-70 Myr long superchrons when they were almost totally absent. The evaluation of these long-term variations in the palaeogeophysical record can provide crucial constraints on theories of geomagnetism, but it has generally been limited to only the directional or polarity data. It is shown here that the correlation of the palaeogeomagnetic field strength with the field's protracted stability during a fixed polarity superchron provides such a constraint. In terms of a strong field dynamo model it leads to the speculation that the magnetic Reynolds number, and the toroidal field, increase substantially during a superchron of frequent reversals.  相似文献   

5.
The generation of magnetic fields in space plasmas and in astrophysics is usually described within the framework of magnetohydrodynamics. Turbulent helical flows produce magnetic fields very efficiently, with correlation length scales larger than those characterizing the flow. Within the context of the solar magnetic cycle, a turbulent dynamo is responsible for the so-called alpha effect, while the Omega effect is associated to the differential rotation of the Sun.We present direct numerical simulations of turbulent magnetohydrodynamic dynamos including two-fluid effects such as the Hall current. More specifically, we study the evolution of an initially weak and small-scale magnetic field in a system maintained in a stationary regime of hydrodynamic turbulence, and explore the conditions for exponential growth of the magnetic energy. In all the cases considered, we find that the dynamo saturates at the equipartition level between kinetic and magnetic energy, and the total energy reaches a Kolmogorov power spectrum.  相似文献   

6.
Parker’s two-dimensional (2D) dynamo model with an algebraic form of nonlinearity for the α-effect is considered. The model uses geostrophic distributions for the α-effect and differential rotation, which are derived from the three-dimensional (3D) convection models. The resulting configurations of the magnetic field in the liquid core are close to the solutions in Braginsky’s Z-model. The implications of the degree of geostrophy observed in the 3D dynamo models for the behavior of the mean magnetic field are explored. It is shown that the reduction in geostrophy leads to magnetic field reversals accompanied by the relative growth of the nondipole component of the field on the surface of the liquid core. The simulations with a random α-effect which causes turbulent pulsations are carried out. The approach is capable of producing realistic sequences of magnetic reversals.  相似文献   

7.
An inverse dynamo problem is presented in which we search for either kinematic dynamos which produce the same external magnetic fields or an invisible dynamo. The existence of flows which produce the same external magnetic fields is proved. However, we have not found general conditions necessary for such kind of dynamos. An “invisible dynamo” operates in an electrically conducting region surrounded by vacuum and generates a magnetic field trapped in the electrically conducting region so that no magnetic field exists in the vacuum. Invisible magnetic decay modes exist in cylinders, but no invisible growing field supported by the dynamo mechanism has been found.  相似文献   

8.
A nonlinear mean field dynamo in turbulent disks and spherical shells is discussed. We use a nonlinearity in the dynamo which includes the effect of delayed back-reaction of the mean magnetic field on the magnetic part of the — effect. This effect is determined by an evolutionary equation. The axisymmetric case is considered. An analytical expression (in a single-mode approximation) is derived which gives the magnitude of the mean magnetic field as a function of rotation and the parameters for turbulent disks. The value obtained for the mean magnetic field is in agreement with observations for galaxies.  相似文献   

9.
Abstract

We consider the turbulent dynamo action in a differentially rotating flow by making use of a kinematic approach when the effect of a generated magnetic field on turbulent motions is neglected. The mean electromotive force is calculated in a quasilinear approximation. Differential rotation can stretch turbulent magnetic field lines and break the symmetry of turbulence in such a way that turbulent motions become suitable for the generation of a large scale magnetic field. The presence of shear changes the type of an equation governing the mean magnetic field. Due to shear stresses the mean magnetic field can be generated by a turbulent dynamo action even in a uniform turbulence. The growth rate depends on the length scale of the mean field being faster for the field with a smaller length scale.  相似文献   

10.
Scaling laws are derived for the time-average magnetic dipole moment in rotating convection-driven numerical dynamo models. Results from 145 dynamo models with a variety of boundary conditions and heating modes, covering a wide section of parameter space, show that the time-average dipole moment depends on the convective buoyancy flux F. Two distinct regimes are found above the critical magnetic Reynolds number for onset of dynamo action. In the first regime the external magnetic field is dipole-dominant, whereas for larger buoyancy flux or slower rotation the external field is dominated by higher multipoles and the dipole moment is reduced by a factor of 10 or more relative to the dipolar regime. For dynamos driven by basal heating, the dipole moment M increases like M  F1/3 in the dipolar regime. Reversing dipolar dynamos tend to cluster near the multipolar transition, which is shown to depend on a local Rossby number parameter. The geodynamo lies close to this transition, suggesting an explanation for polarity reversals and the possibility of a weaker dipole earlier in Earth history. Internally heated dynamos generate smaller dipole moments overall and show a gradual transition from dipolar to multipolar states. Our scaling yields order of magnitude agreement with the dipole moments of Earth, Jupiter, Saturn, Uranus, Neptune, and Ganymede, and predicts a multipolar-type dynamo for Mercury.  相似文献   

11.
Abstract

Dynamo action in a highly conducting fluid with small magnetic diffusivity η is particularly sensitive to the topology of the flow. The sites of rapid magnetic field regeneration, when they occur, appear to be located at the stagnation points or in regions where the particle paths are chaotic. Elsewhere only slow dynamo action is to be expected. Two such examples are the nearly axially symmetric dynamo of Braginsky and the generalisation to smooth velocity fields of the Ponomarenko dynamo. Here a method of solution is developed, which applies to both these examples and is applicable to other situations, where magnetic field lines are close to either closed or spatially periodic contours. Particular attention is given to field generation in the neighbourhood of resonant surfaces where growth rates may be intermediate between the slow diffusive and fast convective time scales. The method is applied to the case of the two-dimensional ABC-flows, where it is shown that such intermediate dynamo action can occur on resonant surfaces.  相似文献   

12.
We investigate the temporal evolution of the magnetic dipole field intensity of the Earth through a multiscale dynamo mechanism. On a large range of spatio-temporal scales, the helical motions of the fluid flow are given by a schematic model of a fully developed turbulence. The system construction is symmetric with respect to left-handed and right-handed cyclones. The multiscale cyclonic turbulence coupled with a differential rotation (schematic ω dynamo) or alone (schematic 2 dynamo) is the ingredient of the loop through which poloidal and toroidal fields are built from one another. Two kinds of reaction of the magnetic field on the flow are considered: the presence of a magnetic field first favours a larger-scale organization of the flow, and, second, impedes this flow by the effect of growing Lorentz forces. We obtain the general features of the geomagnetic field intensity observed over geological times and describe a general mechanism for reversals, excursions and secular variation. The mechanism happens to keep a memory during the chrons and loose it during the events (excursions and inversions).  相似文献   

13.
We consider an unforced, incompressible, turbulent magnetofluid constrained by concentric inner and outer spherical surfaces. We define a model system in which normal components of the velocity, magnetic field, vorticity, and electric current are zero on the boundaries. This choice allows us to find a set of Galerkin expansion functions that are common to both velocity and magnetic field, as well as vorticity and current. The model dynamical system represents magnetohydrodynamic (MHD) turbulence in a spherical domain and is analyzed by the methods similar to those applied to homogeneous MHD turbulence. We find a statistical theory of ideal (i.e. no dissipation) MHD turbulence analogous to that found in the homogeneous case, including the prediction of coherent structure in the form of a large-scale quasistationary magnetic field. This MHD dynamo depends on broken ergodicity, an effect that is enhanced when total magnetic helicity is increased relative to total energy. When dissipation is added and large scales are only weakly damped, quasiequilibrium may occur for long periods of time, so that the ideal theory is still pertinent on a global scale. Over longer periods of time, the selective decay of energy over magnetic helicity further enhances the effects of broken ergodicity. Thus, broken ergodicity is an essential mechanism and relative magnetic helicity is a critical parameter in this model MHD dynamo theory.  相似文献   

14.
This article considers magnetic field generation by a fluid flow in a system referred to as the Archontis dynamo: a steady nonlinear MHD state is driven by a prescribed body force. The field and flow become almost equal and dissipation is concentrated in cigar-like structures centred on straight-line separatrices. Numerical scaling laws for energy and dissipation are given that extend previous calculations to smaller diffusivities. The symmetries of the dynamo are set out, together with their implications for the structure of field and flow along the separatrices. The scaling of the cigar-like dissipative regions, as the square root of the diffusivities, is explained by approximations near the separatrices. Rigorous results on the existence and smoothness of solutions to the steady, forced MHD equations are given.  相似文献   

15.
In the present project we investigate the evolution of a three-dimensional (3D), large-scale galactic magnetic field under the influence of gas flows in spiral arms and in the presence of dynamo action. Our principal goal is to check how the dynamical evolution of gaseous spiral arms affects the global magnetic field structure and to what extent our models could explain the observed spiral patterns of polarization B-vectors in nearby galaxies. A two-step scheme is used: the N-body simulations of a two-component, self-gravitating disk provide the time-dependent velocity fields which are then used as the input to solve the mean-field dynamo equations. We found that the magnetic field is directly influenced by large-scale non-axisymmetric density wave flows yielding the magnetic field locally well-aligned with gaseous spiral arms in a manner similar to that discussed already by Otmianowska-Mazur et al. 1997. However, an additional field amplification, introduced by a non-zero -term in the dynamo equations, is required to cause a systematic increase of magnetic energy density against the diffusive losses. Our simulated magnetic fields are also used to construct the models of a high-frequency (Faraday rotation-free) polarized radio emission accounting for effects of projection and limited resolution, thus suitable for direct comparisons with observations.  相似文献   

16.
Using a magnetic dynamo model, suggested by Kazantsev (J. Exp. Theor. Phys. 1968, vol. 26, p. 1031), we study the small-scale helicity generation in a turbulent electrically conducting fluid. We obtain the asymptotic dependencies of dynamo growth rate and magnetic correlation functions on magnetic Reynolds numbers. Special attention is devoted to the comparison of a longitudinal correlation function and a function of magnetic helicity for various conditions of asymmetric turbulent flows. We compare the analytical solutions on small scales with numerical results, calculated by an iterative algorithm on non-uniform grids. We show that the exponential growth of current helicity is simultaneous with the magnetic energy for Reynolds numbers larger than some critical value and estimate this value for various types of asymmetry.  相似文献   

17.
Reversals and excursions of Earth's geomagnetic field create marker horizons that are readily detected in sedimentary and volcanic rocks worldwide. An accurate and precise chronology of these geomagnetic field instabilities is fundamental to understanding several aspects of Quaternary climate, dynamo processes, and surface processes. For example, stratigraphic correlation between marine sediment and polar ice records of climate change across the cryospheres benefits from a highly resolved record of reversals and excursions. The temporal patterns of dynamo behavior may reflect physical interactions between the molten outer core and the solid inner core or lowermost mantle. These interactions may control reversal frequency and shape the weak magnetic fields that arise during successive dynamo instabilities. Moreover, weakening of the axial dipole during reversals and excursions enhances the production of cosmogenic isotopes that are used in sediment and ice core stratigraphy and surface exposure dating. The Geomagnetic Instability Time Scale (GITS) is based on the direct dating of transitional polarity states in lava flows using the 40Ar/39Ar method, in parallel with astrochronologic age models of marine sediments in which oxygen isotope and magnetic records have been obtained. A review of data from Quaternary lava flows and sediments gives rise to a GITS that comprises 10 polarity reversals and 27 excursions that occurred during the past 2.6 million years. Nine of the ten reversals bounding chrons and subchrons are associated with 40Ar/39Ar ages of transitionally-magnetized lava flows. The tenth, the Gauss-Matuyama chron boundary, is tightly bracketed by 40Ar/39Ar dated ash deposits. Of the 27 well-documented geomagnetic field instabilities manifest as short-lived excursions, 14 occurred during the Matuyama chron and 13 during the Brunhes chron. Nineteen excursions have been dated directly using the 40Ar/39Ar method on transitionally-magnetized volcanic rocks and these form the backbone of the GITS. Excursions are clearly not the rare phenomena once thought. Rather, during the Quaternary period, they occur nearly three times as often as full polarity reversals.  相似文献   

18.
We study the effect of stratification on large-scale dynamo action in convecting fluids in the presence of background rotation. The fluid is confined between two horizontal planes and both boundaries are impermeable, stress-free and perfectly conducting. An asymptotic analysis is performed in the limit of rapid rotation (τ???1 where τ is the Taylor number). We analyse asymptotic magnetic dynamo solutions in rapidly rotating systems generalising the results of Soward [A convection-driven dynamo I. The weak field case. Philos. Trans. R. Soc. Lond. A 1974, 275, 611–651] to include the effects of compressibility. We find that in general the presence of stratification delays the efficiency of large-scale dynamo action in this regime, leading to a reduction of the onset of dynamo action and in the nonlinear regime a diminution of the large-scale magnetic energy for flows with the same kinetic energy.  相似文献   

19.
Dynamo simulations require sub-grid scale (SGS) models for the momentum and heat flux, the Lorentz force, and the magnetic induction. Previous large eddy simulations (LES) using the scale similarity model have represented many aspects of the SGS motion. However, discrepancies are observed due to interchanging the order of filtering operation and spatial differentiation. In this study, we implement a correction term for this commutation error specifically for the scale-similarity model. Furthermore, we implement a dynamic scheme to evaluate time-dependent coefficients for the SGS models. We perform dynamo simulations in a rotating plane layer with different spatial resolutions, and compare results for the time dependence of the large-scale magnetic field. Simulations are performed at two different Rayleigh numbers, using constant values for the other dimensionless numbers (Ekman, Prandtl, and magnetic Prandtl numbers). Both cases show that the dynamic LES can accurately represent the large-scale magnetic field, whereas the dynamo failed in the direct simulations without the SGS terms at the same spatial resolutions. We conclude that the dynamic versions of the SGS and commutation error correction are essential for successful dynamos on coarser grids.  相似文献   

20.
In order to gain a better understanding of the physical processes underlying fast dynamo action it is instructive to investigate the structure of both the magnetic field and the velocity field after the dynamo saturates. Previously, computational results have been presented (Cattaneo, Hughes and Kim, 1996) that indicate, in particular, that Lagrangian chaos is suppressed in the dynamical regime of the dynamo. Here we extend their model by removing the assumption of neglecting the inertial term. This allows for an investigation into the effect of this term on the evolution of the dynamo via a comparison of the two models. Our results indicate that this term plays a crucial role in the physics of the dynamo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号