首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Prediction of design hydrographs is key in floodplain mapping using hydraulic models, which are either steady state or unsteady. The former, which require only an input peak, substantially overestimate the volume of water entering the floodplain compared to the more realistic dynamic case simulated by the unsteady models that require the full hydrograph. Past efforts to account for the uncertainty of boundary conditions using unsteady hydraulic modeling have been based largely on a joint flood frequency–shape analysis, with only a very limited number of studies using hydrological modeling to produce the design hydrographs. This study therefore presents a generic probabilistic framework that couples a hydrological model with an unsteady hydraulic model to estimate the uncertainty of flood characteristics. The framework is demonstrated on the Swannanoa River watershed in North Carolina, USA. Given its flexibility, the framework can be applied to study other sources of uncertainty in other hydrological models and watersheds.  相似文献   

2.
Abstract

The initial-value problem of generation of storm surges by any symmetrically distributed and time-periodic surface wind near a circular island with variable topography is solved. The general steady-state motion at any distance is determined, and some of its characteristics are described. Graphical illustrations are provided for a physically plausible wind stress distribution near a conical island.  相似文献   

3.
Abstract

One-dimensional solute transport, originating from a continuous uniform point source, is studied along unsteady longitudinal flow through a heterogeneous medium of semi-infinite extent. Velocity is considered as directly proportional to the linear spatially-dependent function that defines the heterogeneity. It is also assumed temporally dependent. It is expressed in both the independent variables in degenerate form. The dispersion parameter is considered to be proportional to square of the velocity. Certain new independent variables are introduced through separate transformations to reduce the variable coefficients of the advection–diffusion equation to constant coefficients. The Laplace Transformation Technique (LTT) is used to obtain the desired solution. The effects of heterogeneity and unsteadiness on the solute transport are investigated.

Editor D. Koutsoyiannis; Associate editor F.F. Hattermann

Citation Kumar, A., Jaiswal, D.K., and Kumar, N., 2012. One-dimensional solute dispersion along unsteady flow through a heterogeneous medium, dispersion being proportional to the square of velocity. Hydrological Sciences Journal, 57 (6), 1223–1230.  相似文献   

4.
Abstract

In Japan low flat flood-prone areas are increasingly being developed. This paper describes a flood simulation model based on unsteady flow for calculating floods in such regions. The model is applied to the Tomoe River basin.  相似文献   

5.

Results from a new series of experiments on the geophysically important issue of spontaneous emission of internal gravity waves during unsteady interactions of vortical structures are presented. Vortex dipoles are a common element of a quasi-two-dimensional turbulent flow. Vortex dipoles perform translational motion and can collide with other vortices. During collision events the flow is unsteady and unbalanced and a further adjustment process associated with these events can therefore result in the spontaneous emission of gravity waves. Our laboratory experiments demonstrate that gravity waves are emitted when two translating vortex dipoles interact (collide) in a layered fluid, in accord with the current theoretical results. The emission was evident both in a two-layer system and in a fluid with a linear distribution of density with depth. The waves were generated during the period of deceleration of the secondary dipoles which constitute a vortex quadrupole emerging immediately after the collision of the primary dipoles.  相似文献   

6.
Abstract

In this unsteady barotropic model of the circulation over an oceanic continental shelf and shelf break, account is taken of variations in the surface wind stress along the coast. It is found that the position of maximum onshore flow is very sensitive to the alongshore variation of the wind stress, and that the longshore current becomes more influenced by the shelf break as the wind stress decreases.

The relation between the shelf break secondary upwelling and the surface wind stress is investigated. The secondary upwelling is greatest when the wind is increasing most rapidly.  相似文献   

7.
Abstract

The breakdown and separation or reattachment of boundary layers adjoining a mainstream are studied in the three related situations (i)-(iii) of the title. For (i) the classical steady boundary layer generally admits a logarithmic singularity in the displacement when breakdown occurs on a downstream-moving surface whereas the corresponding singularity for an upstream-moving surface can be logarithmic or of minus-one-sixth form. Conversely, the breakdown can be delayed to the onset of zero mainstream flow, in which case the displacement singularity is again logarithmic. In certain flows these singularities prove to be removable locally, yielding a breakaway separation or reattachment and including the first known successes of a classical strategy in describing large-scale separation. Other flows, by contrast, require an interactive strategy. Again, even on a fixed surface a breakdown different from Goldstein's can be produced if there is a moving section of surface further upstream. The application to (ii), semi-similar unsteady boundary layers, e.g. near an impulsively started wedge-like trailing edge, then follows readily and predicts analogous forms of singularity. The corresponding singularity in displacement predicted for fully unsteady classical boundary layers, (iii), occurs within a finite time and, like (i) (usually) and (ii), a three-tiered breakdown is involved at first. Subsequently interaction comes into play. Comparisons with numerical and/or earlier work are noted. In all three situations (i)-(iii), although the dynamics involved near breakdown, separation or reattachment are predominantly inviscid, the presence of small viscosity is of significance in enforcing smoothness of the local velocity profiles.  相似文献   

8.
Abstract

Finite difference algorithms have been developed to solve a one-dimensional non-linear parabolic equation with one or two moving boundaries and to analyse the unsteady plane flow of ice-sheets. They are designed to investigate the response of an ice-sheet to changes in climate, and to reconstruct climatic changes implied by past ice-sheet variations inferred from glacial geological data. Two algorithms are presented and compared. The first, a fixed domain method, replaces time as an independent variable with span. The grid interval in real space is kept constant, and thus the number of grid points changes with span. The second, a moving mesh method, retains time as one of the independent variables, but normalises the spatial variable relative to the span, which now enters the diffusion and advection coeficients in the parabolic equation for the surface profile.

Crank-Nicholson schemes for the solution of the equations are constructed, and iterative schemes for the solution of the resulting non-linear equations are considered.

Boundary (margin) motion is governed by the surface slope at the margin. Differentiation of the evolution equations results in an evolution equation for the margin slopes. It is shown that incorporation of this evolution equation, while not formally increasing the accuracy of the finite difference schemes, in practice increases accuracy of the solution.  相似文献   

9.
Abstract

Abstract Land development often results in adverse environmental impact for surface and subsurface water systems. For areas close to the coast, land changes may also result in seawater intrusion into coastal aquifers. Due to this, it is important to evaluate potential adverse effects in advance of any land development. For evaluation purposes a combined groundwater recharge model is proposed with a quasi three-dimensional unconfined groundwater flow equation. The catchment water balance for a planned new campus area of Kyushu University in southern Japan, was selected as a case study to test the model approach. Since most of the study area is covered with forest, the proposed groundwater recharge model considers rainfall interception by forest canopy. The results show that simulated groundwater and surface runoff agree well with observations. It is also shown that actual evapotranspiration, including rainfall interception by forest canopy, is well represented in the proposed simulation model. Several hydrological components such as direct surface runoff rate, groundwater spring flow rate to a ground depression, trans-basin groundwater flow etc., were also investigated.  相似文献   

10.
Abstract

A three-dimensional Environmental Fluid Dynamics Code model was developed for a 17-km segment of the Mobile River, Alabama, USA. The model external forcing factors include river inflows from upstream, tides from downstream, and atmospheric conditions. The model was calibrated against measured water levels, velocities, and temperatures from 26 April to 29 August 2011. The Nash-Sutcliffe coefficients for water levels were greater than 0.94 and for water temperatures ranged from 0.88 to 0.99. The calibrated model was extended approximately 13 km upstream for simulating unsteady flow, dye, and temperature distributions in the Mobile River under different upstream inflows and downstream harmonic tides. Velocity profiles and distributions of flow, dye, and temperature at various locations were analyzed and show that flow recirculation could only occur under small inflow (50 m3 s-1) when downstream tides control the flow pattern in the Mobile River. The model results reveal complex interactions among discharges from a power plant, inflows, and tides.
Editor D. Koutsoyiannis; Associate editor D. Yang  相似文献   

11.
Summary

Refering to numerous ratings of screw type current-meters and to the results of laboratory-experiments the author studies successively the degree of accuracy of measurements in very shallow water, the disturbing influence of a beam on which several current meters are fixed and finally the behaviour of current meters in return flow and in unsteady flow conditions.  相似文献   

12.
Abstract

Inertial waves are excited in a fluid contained in a slightly tilted rotating cylindrical cavity while the fluid is spinning up from rest. The surface of the fluid is free. Since the perturbation frequency is equal to the rotation speed resonance occurs at a critical height to radius aspect ratio of the fluid. Detailed study of a particular inertial wave shows that in solid body rotation this “eigenratio” agrees with predictions from linear inviscid theory to within 0.5%. Measured time dependence of the eigenratio during spin-up from rest is a function of the tilt amplitude and agrees favorably with predictions from a numerical study. Mean flow associated with the inertial wave becomes unstable during spin-up and in the steady state. A boundary for the unstable region is found experimentally.  相似文献   

13.
Abstract

The development of initially small perturbations in a weakly supercritical zonal shear flow on a β-plane is studied. Two different scenarios of evolution are possible. If the supercriticality is sufficiently small, the growth of a perturbation is stopped in the viscous critical layer regime; for this case the evolution equation (corrected by the inclusion of a quintic nonlinearity) is derived. At greater supercriticality the nonlinearity cannot stop the growth of the perturbation in a linear (viscous or unsteady) critical layer regime, and the evolution is more complicated. Transition to a nonlinear critical layer regime leads to a reduction in the growth rate and to a slowing (but not a stopping) of the increase in amplitude, A. These are connected to the formation of a plateau (S=constant) of width L=O(A ½) in the profile of absolute vorticity, S. Careful analysis reveals that the growth in amplitude ceases only when the whole instability domain (where the slope of unperturbed S-profile is positive) becomes covered again by the plateau.  相似文献   

14.
ABSTRACT

First of all models of the various transfer processes that occur in the snow cover are discussed in relation to its internal structure. When these processes are unsteady they can be described by the various forms of the equation of diffusion. However, the fact that the snowpack has a stratified structure complicates the application of this type of equation. To overcome this problem, in a particular case, a model is proposed for the flow of melt water in the presence of ice layers.  相似文献   

15.
Xun Zhou  Chao Song  Ting Li 《水文科学杂志》2013,58(13):2367-2375
ABSTRACT

The inland extending length of the freshwatersaltwater interface toe is useful in studies of seawater intrusion in coastal areas. The submarine fresh groundwater discharge in coastal zones is affected not only by hydraulic conductivity and hydraulic gradient of the aquifer, but also by the position of the interface. Two observation wells at different distances from the coast are required to calculate the fresh groundwater flow rate in coastal unconfined aquifers. By considering that the submarine groundwater discharge is equal to the groundwater flow rate, the length of the interface toe extending inland can be estimated when the groundwater flow is at a steady-flow state. Aquifers with horizontal and sloping confined beds and without/with unique surface vertical infiltration are considered. Examples used to illustrate the application of these methods indicate that the inland extending lengths of the interface toe in aquifers with vertical surface infiltration are much shorter than those in aquifers without vertical surface infiltration, and the length of the interface in aquifers with a horizontal confining lower bed are smaller than those in aquifers with a confining lower bed sloping towards the sea. The extent of the interface on the northwestern coast near the city of Beihai in southern Guangxi, China, on 18 January 2013 was estimated as 471478 m.
Editor M.C. Acreman Associate editor not assigned  相似文献   

16.
Summary In this paper, an investigation is made of the unsteady flow generated in a viscous, incompressible and homogeneous fluid bounded by (i) an infinite horizontal porous plate atz=0, or (ii) two infinite horizontal porous plates atz=0 andz=D. The fluid together with the plate(s) is in a state of solid body rotation with a constant angular velocity about the z-axis normal to the plate(s), and additionally, the plate(s) performs non-torsional elliptic harmonic oscillations in its (their) own plane(s). A uniform suction or injection is introduced in the configurations through the porous plate(s) and its influence on the unsteady flow and the associated boundary layers is examined. The unsteady flow field as well as the associated boundary layers is obtained explicitly. In contrast to the unsteady rotating flow without suction, solutions of the present problem with suction exhibit no resonant phenomena. It is shown that the suction is responsible for making the boundary layers thinner and for the elimination of the resonant phenomena. It is confirmed that the velocity field and the associated multiple boundary layers are significantly modified by suction. Physical significances of the mathematical results are discussed. Several limiting cases of interest are recovered from this analysis. The initial value problem for both the configurations is exactly solved by the Heaviside operational calculus combined with the theory of residues.  相似文献   

17.
Abstract

Maintaining and restoring the ecological integrity of floodplains remains a priority for many Australian federal and state government agencies. The Murray-Darling Basin Authority (MDBA) introduced the Proposed Basin Plan 2012, the Australian government’s latest basin-scale water planning instrument to promote a healthy, working river system. The proposal seeks to limit surface water (consumptive) use to 10 873 GL year-1 on a long-term average. The controversy prompted by this proposed reduction has underscored a need for rigorous and transparent modelling of ecological benefits. In this paper, we investigate the likely ecological outcomes of the proposal for Yanga National Park, one of the most significant environmental assets in the Murray-Darling Basin, using a decision support system. Our results indicate that the proposal will increase the inundation extent with a 33% (or 7000 ha) increase in median flood. The increase in inundation would improve the hydrological conditions in most wetlands in terms of the frequency and duration of events and inter-flood dry periods and enhance the habitat quality for a range of biota, though benefits are not distributed evenly across the wetland.
Editor D. Koutsoyiannis; Guest editor M. Acreman

Citation Wen, L. and Saintilan, N., 2014. Linking local ecological outcomes with basin-wide water planning: a case study of Yanga National Park, an important Australian inland forested wetland. Hydrological Sciences Journal, 59 (3–4), 904–915.  相似文献   

18.
Abstract

Thermoconvective instabilities were investigated in cylindrical water layers under a 0-4° C vertical temperature gradient. For aspect ratios (height/diameter) ranging from 0.3 to 5.7. angular flow patterns were deduced from thermocouple measurements. The first two diametrically antisymmetrical modes (n=l,2) were detected in the steady and unsteady regime. Slow oscillatory motions with a characteristic time of severals hours were found for aspect ratios (height/diameter) larger than 2. The Fourier analysis of the angular temperature distribution at regular time intervals yields the result that the vertical nodal planes rotate around the cylinder axis in the oscillatory regime. A physical mechanism is suggested to explain the occurrence of such oscillatory instability.  相似文献   

19.
Abstract

Exact solutions are obtained for a quasi-geostrophic baroclinic stability problem in which the rotational Froude number (inverse Burger number) is a linear function of the height. The primary motivation for this work was to investigate the effect of a radially-variable, dielectric body force, analogous to gravity, on baroclinic instability for the design of a spherical, synoptic-scale, atmospheric model experiment for a Spacelab flight. Such an experiment cannot be realized in a laboratory on the Earth's surface because the body force cannot be made strong enough to dominate terrestrial gravity. Flow in a rotating, rectilinear channel with a vertically variable body force and with no horizontal shear of the basic state is considered. The horizontal and vertical temperature gradients of the basic and reference states are taken as constants. Consequences of the body force variation and the other assumptions of the model are that the static stability (Brunt-Väisälä frequency squared) and the vertical shear of the basic state flow have the same functional form and that the transverse gradient of the potential vorticity of the basic state vanishes. The solutions show that the stability characteristics of the model are qualitatively similar to those of Eady's model. A short wavelength cutoff and a wavenumber of maximum growth rate are present. Further, the stability characteristics are quantitatively similar to Eady's results for parameters based on the vertically averaged Brunt-Väisälä: frequency. The solutions also show that the temperature amplitude distribution is particularly sensitive to the vertical variation of the static stability. For the static stability and shear decreasing (increasing) with height a relative enhancement of the temperature amplitude occurs at the lower (upper) surface. The other amplitudes and phases are only slightly influenced by the variation. The implication for the Spacelab experiment is that the variable body force will not significantly alter the dynamics from the constant gravity case. The solutions can be relevant to other geophysical fluid flows, including the atmosphere, ocean and annulus system in which the static stability undergoes variation with height.  相似文献   

20.
《水文科学杂志》2013,58(4):665-671
Abstract

Analytical solutions of a routing problem for storm water flowing through a linear reservoir are presented for the assumption of trapezoidal-shaped inflow hydrograph. The maximum ponded (water) depth in the detention basin is chosen as a main design criterion. Calculations are carried out for a given rain recurrence interval but for various rain durations and sand filter surface areas to reach the maximum permitted ponded depth. A design example is also provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号