首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Abstract

In this study, the equations of the three-dimensional convective motion of an infinite Prandtl number fluid are solved in spherical geometry, for Rayleigh numbers up to 15 times the critical number. An iterative method is used to find stationary solutions. The spherical parts of the operators are treated using a Galerkin collocation method while the radial and time dependences are expressed using finite difference methods. A systematic search for stationary solutions has led to eight different stream patterns for a low Rayleigh number (1.28 times the critical number). They can be classified as:

I) Axisymmetrical solutions, analogous to rolls in plane geometry.

II) Solutions which have several ascending plumes within a large area of ascending current, and also several descending plumes within an area of descending current. This type of flow is analogous to bimodal circulation in plane geometry.

III) Solutions characterized by isolated ascending (or descending) plumes separated from each other by a closed polyhedral network of descending (or ascending) currents. This type of circulation is called ‘polygonal’ in analogy with hexagonal circulation in plane geometry.

The behaviour of each of the eight solutions has been studied by increasing the Rayleigh number up to 15 times the critical number. A trend towards transitions from type (I) and type (II) solutions to type (III) solutions is observed. It is inferred that only the “polygonal” solutions are stable for a Rayleigh number greater than 15 times the critical number.  相似文献   

2.
Abstract

The Samborombón Bay area (Argentina) is a coastal plain environment that contains groundwater resources with high salinity. In addition, there are local freshwater lenses associated with shell ridges and sand sheets in the region. In this work, the groundwater travel time in these freshwater lenses is estimated based on their geological conditions, which include hydraulic conductivity, recharge, morphology and discharge to surface freshwater or to saline groundwater. Groundwater travel times in the freshwater lenses were calculated from the equations developed by Chesnaux and Allen. The travel times estimated for the different scenarios were relatively short. The results indicate that the groundwater flow tends to be strongly dependent on the recharge conditions, with an excess of water in the water balance. The results can be applied to help design sustainable management methods to exploit this water resource system and also to assess the impact of contaminant plumes on this groundwater resource.

Citation Carol, E., Kruse, E. & Roig, A. (2010) Groundwater travel time in the freshwater lenses of Samborombón Bay, Argentina. Hydrol. Sci. J. 55(5), 754–762.  相似文献   

3.
Abstract

An analytical solution is developed to delineate the capture zone of a pumping well in an aquifer with a regional flow perpendicular to a stream, assuming a leaky layer between the stream and the aquifer. Three different scenarios are considered for different pumping rates. At low pumping rates, the capture zone boundary will be completely contained in the aquifer. At medium pumping rates, the tip of the capture zone boundary will intrude into the leaky layer. Under these two scenarios, all the pumped water is supplied from the regional groundwater flow in the aquifer. At high pumping rates, however, the capture zone boundary intersects the stream and pumped water is supplied from both the aquifer and the stream. The two critical pumping rates which separate these three scenarios, as well as the proportion of pumped water from the stream and the aquifer, are determined for different hydraulic settings.

Editor D. Koutsoyiannis; Associate editor A. Koussis

Citation Asadi-Aghbolaghi, M., Rakhshandehroo, G.R., and Kompani-Zare, M., 2013. An analytical approach to capture zone delineation for a well near a stream with a leaky layer. Hydrological Sciences Journal, 58 (8), 1813–1823.  相似文献   

4.
《水文科学杂志》2013,58(3):524-530
Abstract

Detection efficiencies of alternative groundwater monitoring networks were evaluated in relation to distance to a buffer zone (contaminant migration) boundary. This boundary establishes a distance limit within which contaminant plumes should pass through monitoring wells, located on curvilinear segments (monitoring loci) near a waste storage facility. Alternative strategies allocated monitoring wells to loci at specified distances, measured parallel to groundwater flow, from the downgradient boundaries of a landfill. One approach constrained wells to equal spacing, measured perpendicular to groundwater flow. Compressing well locations 10% closer to the downgradient corner of the landfill rendered alternative monitoring configurations. Computations by a monitoring efficiency model indicated: (a) networks largely maintained detection efficiency for different contaminant migration boundaries; (b) one network most efficiently attained a target detection capability for all contaminant migration boundaries; and (c) compressed networks slightly outperformed equal-spaced counterparts. Compressed networks with more wells along closer monitoring loci best maintained the detection efficiency when shifting the contaminant migration boundary closer to the landfill. Procedures described in this paper may be useful for examining trade-offs between monitoring efficiency and distance limits of contaminant travel at landfills posing potential hazards to underlying groundwater.  相似文献   

5.
Abstract

A class of exact solutions to the steady, two-dimensional magnetohydrodynamic equations ina cylindrical geometry is presented. These may model both closed and open magnetic structures found in the solar atmosphere. For closed structures, it is found that increasing the flow speed causes the summit of the arcade of closed magnetic fieldlines to rise. Parameter ranges also exist where the solution has regions of open and closed field, and so the solutions may be relevant for modelling flows in solar magnetic structures such as coronal streamers, X-ray bright points coronal plumes and coronal holes.  相似文献   

6.
Abstract

In this paper, starting from the spectral DIA equations obtained by Veltri et al. (1982), describing the spectral dynamical evolution of magnetohydrodynamic (MHD) turbulence in the presence of a background magnetic field B 0, we have derived an approximate form of these equations (shell model) more appropriate for numerical integration at high Reynolds numbers.

We have studied the decay of an initially isotropic state, with an initial imbalance between the energies for the two signs of the cross-helicity. Reynolds numbers up to 105 have been considered.

Numerical results show that the nonlinear energy cascade behaves anisotropically in the k-space, i.e. in the spectra there is a prevalence of the wavevectors perpendicular to B 0 with respect to the parallel wavevectors. This anisotropic effect, which is due to the presence of the background magnetic field, can be understood in terms of the so-called ‘‘Alfvén effect''.

A different source of anisotropy, due to the difference of the energy transfer for the two polarizations perpendicular to k, is recovered, but its effect is found to be mainly concentrated in the injection range.

Only little differences have been found, in the inertial range, in the spectral indices from the Kraichnan 3/2 value, which is valid for an isotropic spectrum. A form for the anisotropic spectrum can be recovered phenomenologically from our results. Values of the spectral indices quite different from the Kraichnan 3 2 value are obtained only when we consider stationary states with different forcing terms for the two modes of Alfvén wave propagation.

The comparison of our results with the observations of the v and B fluctuations in the interplanatery space shows that the anisotropy found in interplanetary fluctuations might be attributed only partially to the result of a nonlinear energy cascade.  相似文献   

7.
Abstract

If management of water resources is to fully take into account the requirements of the environment, it will benefit from quantitative predictions of the ecological effects of river flow alterations. A significant relationship between flow reductions caused by groundwater abstraction and ecological conditions (as measured by relevant biotic indices) has been shown in streams in the midlands of England. In this article, we combine this relationship with hydrological indices derived from calibrated regional groundwater models to assess river reaches that are likely to be ecologically impacted by abstraction and might consequently be at risk of failing to meet EC Water Framework Directive standards. We demonstrate the application of this method within the framework of the Ecological Limits of Hydrologic Alteration (ELOHA) approach to making water resource decisions. We provide examples of how this approach can be used to assess the implications of different groundwater abstraction scenarios for river water bodies.
Editor D. Koutsoyiannis; Guest editor M. Acreman

Citation Streetly, M.J., Bradley, D.C., Streetly, H.R., Young, C., Cadman D., and Banham, A., 2014. Bringing groundwater models to LIFE: a new way to assess water resource management options. Hydrological Sciences Journal, 59 (3–4), 578–593.  相似文献   

8.
Abstract

Estimating water resources is important for adequate water management in the future, but suitable data are often scarce. We estimated water resources in the Vilcanota basin (Peru) for the 1998–2009 period with the semi-distributed hydrological model PREVAH using: (a) raingauge measurements; (b) satellite rainfall estimates from the TRMM Multi-satellite Precipitation Analysis (TMPA); and (c) ERA-Interim re-analysis data. Multiplicative shift and quantile mapping were applied to post-process the TMPA estimates and ERA-Interim data. This resulted in improved low-flow simulations. High-flow simulations could only be improved with quantile mapping. Furthermore, we adopted temperature and rainfall anomalies obtained from three GCMs for three future periods to make estimations of climate change impacts (Delta-change approach) on water resources. Our results show more total runoff during the rainy season from January to March, and temporary storages indicate that less water will be available in this Andean region, which has an effect on water supply, especially during dry season.

Editor Z.W. Kundzewicz; Associate editor D. Gerten  相似文献   

9.
Abstract

A simple guide (shown in the appendix) is produced, which enables a water manager or engineer to make an estimate of statistics of water equivalent of snow cover for return periods between 5 and 100 years for most places in the United Kingdom. This paper describes how the guide was produced using many different sources of data. The methods described here will be of help to both meteorologists and hydrologists in temperate countries with similar snow questions.  相似文献   

10.
Abstract

The investigation is concerned with the impact of initial uncertainties on predictions. The problem can be solved exactly for sufficiently simple non-linear systems where an exact solution to the deterministic problem is known. In this paper we shall use the advective equation as an example.

It is found that the behavior at large times of the system depends on the initial uncertainty and the nature of the probability density function.

In applications it is normally necessary to introduce a closure approximation because exact analytical solutions are unknown. Such a closure scheme based on the neglect of third and higher moments will be used in the example and solutions from the closure scheme will be compared with the exact solutions.

It is found that the asymptotic values of the uncertainty may be less than the initial uncertainty.  相似文献   

11.
Abstract

Condensed layers do not only affect the water balance of the soil but they also promote soil erosion to a high degree due to acheive limited capability of absorbing water.

In the course of the essian land consolidation soils are being ameliorated among other measures by blowing up, loosening and deep ploughing. By destroying the impermeable layers the water balance will be improved and further soil erosion will be avoided as well.

The procedures that have been used and the results received up to now will be explained.  相似文献   

12.
Abstract

This study quantifies global changes in irrigation requirements for areas presently equipped for irrigation of major crop types, using climate projections from 19 GCMs up to the 2080s. Analysis is based on results from the global eco-hydrological model LPJmL that simulates the complex and dynamic interplay of direct and indirect climate change effects upon irrigation requirements. We find a decrease in global irrigation demand by ~17% in the ensemble median, due to a combination of beneficial CO2 effects on plants, shorter growing periods and regional precipitation increases. In contrast, increases of >20% are projected with a high likelihood (i.e. in more than two thirds of the climate change scenarios) for some regions, including southern Europe, and, with a lower likelihood, for parts of Asia and North America as well. If CO2 effects were not accounted for, however, global irrigation demand would hardly change, and increases would prevail in most regions except for southern Asia (where higher precipitation is projected). We stress that the CO2 effects may not be realized everywhere, that irrigation requirements will probably increase further due to growing global food demand (not considered here), and that a significant amount of water to meet future irrigation requirements will have to be taken from fossil groundwater, environmental flow reserves or diverted rivers.

Editor D. Koutsoyiannis; Associate editor A. Montanari

Citation Konzmann, M., Gerten, D., and Heinke, J., 2013. Climate impacts on global irrigation requirements under 19 GCMs, simulated with a vegetation and hydrology model. Hydrological Sciences Journal, 58 (1), 1–18.  相似文献   

13.
Abstract

Maximum observed floods (MOF) and their envelope curves are useful to hydrological engineers when estimating probable maximum floods or design floods. The World MOF and its envelope curve were developed originally in 1967 and modified in 2009 by our team. Based on MOF concepts and observed hydrological data in China, the China MOF and its envelope curve are presented, and their characteristics analysed. The results will be useful for flood design, for example for dam spillways, in China and in similar regions, in particular where no data are available, but cannot be used without modification and comparative analyses.

Editor Z.W. Kundzewicz

Citation Li, C., Wang, G., and Li, R., 2013. Maximum observed floods in China. Hydrological Sciences Journal, 58 (3), 728–735.  相似文献   

14.
Abstract

The development of historical water resources in the South Asian subcontinent has been largely dependent on the hydrological background. The runoff patterns are derived from climate statistics and the historical developments in different areas are related to these patterns.

Citation Sutcliffe, J., Shaw, J. & Brown, E. (2011) Historical water resources in South Asia: the hydrological background. Hydrol. Sci. J. 56(5), 775–788.  相似文献   

15.
Laboratory experiments were performed to study the influence of density and viscosity layering on the formation and stability of plumes. Viscosity ratios ranged from 0.1 to 6400 for buoyancy ratios between 0.3 and 20, and Rayleigh numbers between 105 and 2.108. The presence of a chemically stratified boundary layer generates long-lived thermochemical plumes. These plumes first develop from the interface as classical thermal boundary layer instabilities. As they rise, they entrain by viscous coupling a thin film of the other layer and locally deform the interface into cusps. The interfacial topography and the entrainment act to further anchor the plumes, which persist until the chemical stratification disappears through entrainment, even for Rayleigh numbers around 108. The pattern of thermochemical plumes remains the same during an experiment, drifting only slowly through the tank. Scaled to an Earth’s mantle without plate tectonics, our results show that: (1) thermochemical plumes are expected to exist in the mantle, (2) they could easily survive hundreds of millions of years, depending on the size and magnitude of the chemical heterogeneity on which they are anchored, and (3) their drift velocity would be at most 1-2 mm/yr. They would therefore produce long-lived and relatively fixed hotspots on the lithosphere. However, the thermochemical plumes would follow any large scale motion imposed on the chemical layer. Therefore, the chemical heterogeneity acts more as a ‘floating anchor’ than as an absolute one.  相似文献   

16.
D.A. Hughes 《水文科学杂志》2015,60(7-8):1286-1298
Abstract

Temporal variability can result from shifts in climate, or from changes in the runoff response due to land- or water-use changes, and represents a potential source of uncertainty in calibrating hydrological models. Parameter values were determined using Monte Carlo parameter sampling methods for a monthly rainfall–runoff model (Pitman model) for different sub-periods on four catchments, with different types and degrees of temporal variability, in Australia and Africa. For some catchments, parameters were not dependent upon the sub-period used and fell within expected ranges given the relatively high degree of model equifinality. In other catchments, dependencies can be identified that are associated with signals contained within the sub-periods. While the Pitman model is relatively robust in the face of temporal variability, it is concluded that better simulations will always be obtained from calibration data that include signals representing the total variability in climate, land-use change and catchment responses.  相似文献   

17.
F. NAEF 《水文科学杂志》2013,58(3):281-289
ABSTRACT

Up to now the study of snow cover conditions has been carried out on a local or regional scale. Research is hindered because the data are not even homogeneous in different countries. As a contribution to the assembly of such data, WDC-A for Glaciology has initiated an inventory of the observational methods and variables measured. Further, a Cryospheric Data Management System is being developed which will enable snow cover maps to be constructed, for example, using passive microwave data from the US DMSP satellite.  相似文献   

18.
Stormwater river plumes are important vectors of marine contaminants and pathogens in the Southern California Bight. Here we report the results of a multi-institution investigation of the river plumes across eight major river systems of southern California. We use in situ water samples from multi-day cruises in combination with MODIS satellite remote sensing, buoy meteorological observations, drifters, and HF radar current measurements to evaluate the dispersal patterns and dynamics of the freshwater plumes. River discharge was exceptionally episodic, and the majority of storm discharge occurred in a few hours. The combined plume observing techniques revealed that plumes commonly detach from the coast and turn to the left, which is the opposite direction of Coriolis influence. Although initial offshore velocity of the buoyant plumes was ∼50 cm/s and was influenced by river discharge inertia (i.e., the direct momentum of the river flux) and buoyancy, subsequent advection of the plumes was largely observed in an alongshore direction and dominated by local winds. Due to the multiple day upwelling wind conditions that commonly follow discharge events, plumes were observed to flow from their respective river mouths to down-coast waters at rates of 20–40 km/d. Lastly, we note that suspended-sediment concentration and beam-attenuation were poorly correlated with plume salinity across and within the sampled plumes (mean r2=0.12 and 0.25, respectively), while colored dissolved organic matter (CDOM) fluorescence was well correlated (mean r2=0.56), suggesting that CDOM may serve as a good tracer of the discharged freshwater in subsequent remote sensing and monitoring efforts of plumes.  相似文献   

19.
Abstract

A tension-saturated water slug descends through a homogenous soil after a rainfall (irrigation) event and shrinks due to transpiration by a distributed root-sink and evaporation. The upper (drainage) and lower (imbibition) sharp fronts of the slug separate it from the superjacent and subjacent vadose zones, where water is immobile. In the slug, the hydraulic conductivity is constant according to the Green-Ampt model. The capillary pressures as well as effective porosities on the fronts are given (generally, different) constants that can be viewed as a kind of hysteresis. A volumetric sink models mild (no desaturation of the slug) soil water withdrawal by the plant roots. The sink intensity varies with the depth from the soil surface and with time. Mathematically, the hydraulic head is immediately expressed by double integration of a governing 1-D flow equation. The pressure and kinematic conditions on the fronts result in a Cauchy problem for a system of two ODEs, which is solved by computer algebra routines.

Editor D. Koutsoyiannis

Citation Kacimov, A. and Obnosov, U., 2013. Pseudo-hysteretic double-front hiatus-stage soil water parcels supplying a plant–root continuum: the Green-Ampt-Youngs model revisited. Hydrological Sciences Journal, 58 (1), 1–12.  相似文献   

20.
Abstract

The trends of annual, seasonal and monthly precipitation in southern China (Guangdong Province) for the period 1956–2000 are investigated, based on the data from 186 high-quality gauging stations. Statistical tests, including Mann-Kendall rank test and wavelet analysis, are employed to determine whether the precipitation series exhibit any regular trend and periodicity. The results indicate that the annual precipitation has a slightly decreasing trend in central Guangdong and slight increasing trends in the eastern and western areas of the province. However, all the annual trends are not statistically significant at the 95% confidence level. The average precipitation increases in the dry season in central Guangdong, but decreases in the wet season, meaning that the precipitation becomes more evenly distributed within the year. Furthermore, the analysis of monthly precipitation suggests that the distribution of intra-annual precipitation changes over time. The results of wavelet analysis show prominent precipitation with periods ranging from 10 to 12 years in every sub-region in Guangdong Province. Comparing with the sunspot cycle (11-year), the annual precipitation in every sub-region in Guangdong province correlates with Sunspot Number with a 3-year lag. The findings in this paper will be useful for water resources management.

Editor Z.W. Kundzewicz; Associate editor Sheng Yue

Citation Dedi Liu, Shenglian Guo, Xiaohong Chen and Quanxi Shao, 2012. Analysis of trends of annual and seasonal precipitation from 1956 to 2000 in Guangdong Province, China. Hydrological Sciences Journal, 57 (2), 358–369.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号