首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Abstract

The asymptotic formulation of the Boussinesq approximation relates the pressure of the fluid to a thermodynamical quantity involving the heat capacity cPo . In this paper we examine the implications of such a scaling, in particular: (i) the singular degeneracy of the equation of state ρ = ρ* (1 ?α* (T?;T*)) of a liquid: this equation of state is valid only for small values of the coefficient α T*; (ii) in which manner the scaling introduces the Mach number of the flow as a small parameter e for a compressible fluid. The equations at order zero with respect to ? are the same equations for gases and for liquids only if the thermodynamics of the medium is described by using the Brunt-Väisälä frequency instead of the temperature.  相似文献   

3.
《Advances in water resources》2002,25(8-12):1105-1117
Macroscopic differential equations of mass and momentum balance for two immiscible fluids in a deformable porous medium are derived in an Eulerian framework using the continuum theory of mixtures. After inclusion of constitutive relationships, the resulting momentum balance equations feature terms characterizing the coupling among the fluid phases and the solid matrix caused by their relative accelerations. These terms, which imply a number of interesting phenomena, do not appear in current hydrologic models of subsurface multiphase flow. Our equations of momentum balance are shown to reduce to the Berryman–Thigpen–Chen model of bulk elastic wave propagation through unsaturated porous media after simplification (e.g., isothermal conditions, neglect of gravity, etc.) and under the assumption of constant volume fractions and material densities. When specialized to the case of a porous medium containing a single fluid and an elastic solid, our momentum balance equations reduce to the well-known Biot model of poroelasticity. We also show that mass balance alone is sufficient to derive the Biot model stress–strain relations, provided that a closure condition for porosity change suggested by de la Cruz and Spanos is invoked. Finally, a relation between elastic parameters and inertial coupling coefficients is derived that permits the partial differential equations of the Biot model to be decoupled into a telegraph equation and a wave equation whose respective dependent variables are two different linear combinations of the dilatations of the solid and the fluid.  相似文献   

4.
The response of single piles and pile groups under vertically and obliquely incident seismic waves is obtained using the hybrid boundary element (BEM) formulation. The piles are represented by compressible beam-column elements and the soil as a hysteretic viscoelastic half-space. A recently developed Green function corresponding to the dynamic Mindlin problem is implemented in the numerical formulation. Exact analytical solutions for the differential equations for the piles under distributed harmonic excitations are used. Treating the half-space as a three-dimensional elastic continuum, the interaction problem is formulated by satisfying equilibrium and displacement compatibility along the pile-soil interface. Solutions adopted for the seismic waves are obtained by direct integration of the differential equations in terms of amplitudes. Salient features of the seismic response are identified in several non-dimensional plots. Results of the analyses compare favourably with the limited data available in the literature.  相似文献   

5.
This work presents a new modelling scheme for the simulation of electromagnetic radio waves, based on a full-field simulator. Maxwell's equations are modified in order to include dielectric attenuation processes, such as bound- and free-water relaxation, ice relaxation and the Maxwell–Wagner effect. The new equations are obtained by assuming a permittivity relaxation function represented by a generalized Zener model. The convolution integral introduced by the relaxation formulation is circumvented by defining new hidden field variables, each corresponding to a different dielectric relaxation. The equations are solved numerically by using the Fourier pseudospectral operator for computing the spatial derivatives and a new time-splitting integration algorithm that circumvents the stiffness of the differential equations. The program is used to evaluate the georadar electromagnetic response of a Japanese burial site, in particular, a stone coffin-like structure.  相似文献   

6.
A stationary principle is described to yield governing integral formulations for dissipative systems. Variation is applied on selective terms of energy or momentum functionals resulting with force or mass balance equations respectively. Applying the principle for a motion of a viscous fluid yields the Navier-Stokes equations as an approximation of the functional (i.e. equating to zero part of the integrand). When a Darcy's flow regime in a porous media is considered, implementing a space averaging method on the resultant integral derived by the principle, Forchheimer's law for energy accumulation and solute transport equation for momentum assembling are yielded in differential form approximation of a more extended functional formulation.  相似文献   

7.
The strong coupling of applied stress and pore fluid pressure, known as poroelasticity, is relevant to a number of applied problems arising in hydrogeology and reservoir engineering. The standard theory of poroelastic behavior in a homogeneous, isotropic, elastic porous medium saturated by a viscous, compressible fluid is due to Biot, who derived a pair of coupled partial differential equations that accurately predict the existence of two independent dilatational (compressional) wave motions, corresponding to in-phase and out-of-phase displacements of the solid and fluid phases, respectively. The Biot equations can be decoupled exactly after Fourier transformation to the frequency domain, but the resulting pair of Helmholtz equations cannot be converted to partial differential equations in the time domain and, therefore, closed-form analytical solutions of these equations in space and time variables cannot be obtained. In this paper we show that the decoupled Helmholtz equations can in fact be transformed to two independent partial differential equations in the time domain if the wave excitation frequency is very small as compared to a critical frequency equal to the kinematic viscosity of the pore fluid divided by the permeability of the porous medium. The partial differential equations found are a propagating wave equation and a dissipative wave equation, for which closed-form solutions are known under a variety of initial and boundary conditions. Numerical calculations indicate that the magnitude of the critical frequency for representative sedimentary materials containing either water or a nonaqueous phase liquid is in the kHz–MHz range, which is generally above the seismic band of frequencies. Therefore, the two partial differential equations obtained should be accurate for modeling elastic wave phenomena in fluid-saturated porous media under typical low-frequency conditions applicable to hydrogeological problems.  相似文献   

8.
质点的轨迹计算是半拉格朗日模式的重要基础,传统的数值计算方法由于采用时间差分代替微分,只能得到质点运动轨迹终点的速度,因此质点的移动轨迹(位移)只能靠风速外推的方法计算,导致了模式计算不稳定等问题.借鉴精细积分法中使用半解析解的思路,利用正压原始方程研究了用运动方程的半解析解构建数值模式的可能性.求解了运动方程的一阶和二阶微分方程组的半解析解,通过时间积分半解析解计算质点运动轨迹.数值试验表明,一阶微分方程组的半解析解比差分解略有优势.二阶微分方程组的半解析解在时间步长增大时优势非常明显,而且在保证计算精度的前提下,节省计算时间,这对提高模式性能有重要作用.  相似文献   

9.
The dynamics of a stratified fluid contained in a rotating rectangular box is described in terms of the evolution of the lowest moments of its density and momentum fields. The first moment of the density field also gives the position of the fluids centre-of-mass. The resulting low-order model allows for fast assessment both of adopted parameterisations, as well as of particular values of parameters. In the ideal fluid limit (neglect of viscous and diffusive effects), in the absence of wind, the equations have a Hamiltonian structure that is integrable (non-integrable) in the absence (presence) of differential heating. In a non-rotating convective regime, dynamically rich behaviour and strong dependence on the single (lumped) parameter are established. For small values of this parameter, in a self-similar regime, further reduction to an explicit map is discussed in an Appendix. Introducing rotation in a nearly geostrophic regime leads through a Hopf bifurcation to a limit cycle, and under the influence of wind and salt to multiple equilibria and chaos, respectively.  相似文献   

10.
In this paper, a three-dimensional isopycnal approach is presented to simulate the dynamics of fluid mud covering the formation, development, transport, and disappearance of fluid mud. The basic assumption is the assignment of the fluid’s density as the indicating parameter for the rheological behavior. Considering stable stratification, as is usually the case for fluid mud, layers of constant density discretize the vertical domain. The non-Newtonian dynamics of fluid mud is simulated by solving the Cauchy equations for general continuum dynamics. Instead of using a turbulent viscosity approach, the viscosity is allowed to vary according to the rheological behavior of mud suspensions. This apparent viscosity can be determined for different rheological formulations in dependence of the volume solid fraction and the shear rate. An existing three-dimensional isopycnal hydrodynamic model was extended for vertical mass transport processes and was applied on a schematic system with hindered settling. For including the rheological behavior of fluid mud, the Worrall–Tuliani approach was parameterized and implemented. The resulting flow behavior is shown on a model application of fluid mud layers moving down an inclined plane. With these changes, it is demonstrated that the isopycnal model is capable of simulating fluid mud dynamics.  相似文献   

11.
The frequency versus wave number characteristics of four O(ΔS2) finite difference formulations for one-dimensional linear shell (ring and axisymmetric) equations are investigated and compared with the exact continuum characteristics. It is found that three of the formulations give virtually identical results. These are half-spacing techniques with equilibrium in terms of displacements or resultants and whole-spacing with equilibrium in terms of displacements. The formulation based on whole-spacing with equilibrium in terms of resultants produces some dramatically different results. These discrepancies partially explain some late time instability problems and critical time step behaviour that have been reported by other investigators.  相似文献   

12.
In this paper, we develop a new nearly analytic symplectic partitioned Runge–Kutta method based on locally one-dimensional technique for numerically solving two-dimensional acoustic wave equations. We first split two-dimensional acoustic wave equation into the local one-dimensional equations and transform each of the split equations into a Hamiltonian system. Then, we use both a nearly analytic discrete operator and a central difference operator to approximate the high-order spatial differential operators, which implies the symmetry of the discretized spatial differential operators, and we employ the partitioned second-order symplectic Runge–Kutta method to numerically solve the resulted semi-discrete Hamiltonian ordinary differential equations, which results in fully discretized scheme is symplectic unlike conventional nearly analytic symplectic partitioned Runge–Kutta methods. Theoretical analyses show that the nearly analytic symplectic partitioned Runge–Kutta method based on locally one-dimensional technique exhibits great higher stability limits and less numerical dispersion than the nearly analytic symplectic partitioned Runge–Kutta method. Numerical experiments are conducted to verify advantages of the nearly analytic symplectic partitioned Runge–Kutta method based on locally one-dimensional technique, such as their computational efficiency, stability, numerical dispersion and long-term calculation capability.  相似文献   

13.
Abstract

Geostrophic flow in the theory of a shallow rotating fluid is exactly analogous to the drift approximation in a strongly magnetized electrostatic plasma. This analogy is developed and exhibited in detailed to derive equations for the slow nearly geostrophic motion. The key ingredient in the theory is the isolation, to whatever order in Rossby number desired, of the fast motion near the inertial frequency. One of the remaining degrees of freedom represents a new approximate constant of the motion for nearly geostrophic flow. This is the analogue of the familiar magnetic moment adiabatic invariant in the plasma problem.

The procedure is a Rossby number expansion of the Hamiltonian for the fluid expressed in Lagrangian, rather than Eulerian variables. The fundamental Poisson brackets of the theory are not expanded so desirable properties such as energy conservation are maintained throughout.  相似文献   

14.
In this study,a new analytical approach is developed to analyze the free nonlinear vibration of conservative two-degree-of-freedom(TDOF) systems.The mathematical models of these systems are governed by second–order nonlinear partial differential equations.Nonlinear differential equations were transferred into a single equation by using some intermediate variables.The single nonlinear differential equations are solved by using the first order of the Hamiltonian approach(HA).Different parameters,which have a significant impact on the response of the systems,are considered and discussed.Some comparisons are presented to verify the results between the Hamiltonian approach and the exact solution.The maximum relative error is less than 2.2124 % for large amplitudes of vibration.It has been established that the first iteration of the Hamiltonian approach achieves very accurate results,does not require any small perturbations,and can be used for a wide range of nonlinear problems.  相似文献   

15.
Abstract

A new model of convection and mixing is presented. The fluid is envisioned as being composed of two buoyant interacting fluids, called thermals and anti-thermals. In the context of the Boussinesq approximation, pairs of governing equations are derived for thermals and anti-thermals. Each pair meets an Invariance Principle as a consequence of the reciprocity in the roles played by thermals and anti-thermals. Each pair is transformed into an average equation for which interaction terms cancel and another very simple equation linking the two fluid properties. An important parameter of the model is the fraction, f, of area occupied by thermals to the total area. A dynamic saturation equilibrium between thermals and antithermals is assumed. This implies a constant values of f throughout the system. The set of equations is written in terms of mean values and root-mean-square fluctuations, in keeping with equations of turbulence theories. The final set consists of four coupled non-linear differential equations. The model neglects dissipation and can be applied to any convective situations where molecular viscosity and diffusivity may be neglected. Applications of the model to mixed-layer deepening and penetrative convection are presented in subsequent papers.  相似文献   

16.
This contribution is aimed at a comparison of two different methods of how to deal with the solid inner core in geodynamo models. The first method, based on a direct application of the non-slip boundary conditions, was frequently used in the past. The second one, developed by the authors of the present paper, is based on an advanced analytical solution within the boundary layers and consequent formulation of new boundary conditions on the flow in the volume of the outer core. As an example we have used the results obtained by Hollerbach (1997) in the study of the influence of an imposed axial magnetic field on the fluid flow in a differentially rotating spherical shell. In the case of a weak imposed magnetic field, our solutions are very similar to those of Hollerbach. This non-trivial correspondence confirms the correctness of both methods, which are different not only in the formulation of boundary conditions, but also in the numerical methods: whereas Hollerbach used spectral methods, our computer code is based on finite differences. The influence of the conductivity of the inner core on the fluid flow was also studied.  相似文献   

17.
In any numerical solution of the DC resistivity experiment, care must be taken to deal with strong heterogeneity of electrical conductivity. In order to examine the importance of conductivity contrasts, we develop a scattering decomposition of the DC resistivity equation in the sparse differential domain as opposed to the traditional dense integral formulation of scattering‐type equations. We remove the singularity in the differential scattered series via separation of primary and secondary conductivity, thereby avoiding the need to address the singularity in a Green's function. The differential scattering series is observed to diverge for large conductivity contrasts and to converge for small contrasts. We derive a convergence criterion, in terms of matrix norms for the weak‐form finite‐volume equations, that accounts for both the magnitude and distribution of heterogeneity of electrical conductivity. We demonstrate the relationship between the differential scattering series and the Fréchet derivative of the electrical potential with respect to electrical conductivity, and we show how the development may be applied to the inverse problem. For linearization associated with the Fréchet derivative to be valid, the perturbation in electrical conductivity must be small as defined by the convergence of the scattered series. The differential scattering formulation also provides an efficient tool for gaining insight into charge accumulation across contrasts in electrical conductivity, and we present a derivation that equates accumulated surface charge density to the source of scattered potential.  相似文献   

18.
Currently, meteorological satellites provide multichannel image sequences including visible, temperature and water vapor channels. Based on a variational approach, we propose mathematical models to address some of the usual challenges in satellite image analysis such as: (i) the estimation and smoothing of the cloud structures by decoupling them into different layers depending on their altitudes, (ii) the estimation of the cloud structure motion by combining information from all the channels, and (iii) the 3D visualization of both the cloud structure and the estimated displacements. We include information of all the channels in a single variational motion estimation model. The associated Euler-Lagrange equations yield to a nonlinear system of partial differential equations that we solve numerically using finite-difference schemes. We illustrate the performance of the proposed models with numerical experiments on two multichannel satellite sequences of the North Atlantic, one of them from the Hurricane Vince. Based on a realistic synthetic ground truth motion, we show that our multichannel approach overcomes the single channel estimation for both the average Euclidean and angular errors.  相似文献   

19.
Abstract

A mathematical model of the flow and temperature distribution of polythermal glaciers or ice sheets is deduced. Cold ice is treated as a non-linear viscous heat conducting fluid, while temperate ice is regarded as a binary mixture of ice and water. The simplest mixture concept with two balance laws of mass but only one balance law of momentum and energy is proposed. The field equations for the ice and water content and the boundary conditions which must hold at the free surface, at the ice-water interface, at the cold-temperature transition surface and at the rock-bed are deduced. In particular it is shown that an earlier formulation of polythermal ice due to Fowler and Larson (1978) is inconsistent. No boundary value problems are solved as the emphasis is on the physical motivation and justification of the principles.  相似文献   

20.
A method has been presented to establish the theoretical dispersion curve for performing the inverse analysis for the Rayleigh wave propagation. The proposed formulation is similar to the one available in literature, and is based on the finite difference formulation of the governing partial differential equations of motion. The method is framed in such a way that it ultimately leads to an Eigen value problem for which the solution can be obtained quite easily with respect to unknown frequency. The maximum absolute value of the vertical displacement at the ground surface is formed as the basis for deciding the governing mode of propagation. With the proposed technique, the numerical solutions were generated for a variety of problems, comprising of a number of different layers, associated with both ground and pavements. The results are found to be generally satisfactory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号