首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The magnetohydrodynamic stability of a class of magnetohydrostatic equilibria is investigated. The effect of gravity is included as well as the stabilising influence of the dense photospheric line-tying.

Although the two-dimensional equilibria exhibit a catastrophe point, when the ratio of plasma pressure to magnetic pressure exceeds a critical value, arcade structures, with both footpoints connected to the photosphere, become unstable to three-dimensional disturbances before the catastrophe point is reached.

Numerical results for field lines that are open into the solar corona suggest that they are completely stable. Although there is no definite proof of stability, this would allow the point of non-equilibrium to be reached.  相似文献   

2.
Abstract

Barotropic instability of weakly non-parallel zonal flows with localized intense shear regions is investigated numerically. The numerical integrations of the linear stability problem reveal the existence of unstable localized wave packets whose spatial structure and eigenfrequencies depend on two parameters which measure the degree of supercriticality and the zonal length-scale of the shear region. The results indicate that the structure of the instability is determined by conditions that ensure the decay of the wave packet at infinity and the transition from long to short waves across a turning point (critical layer) region which is controlled by non-parallel effects. The controlling influence exerted by the weak non-parallel effects on the evolution of the instability underlines the weakness of the parallel flow assumption which can be used locally, away from critical layers, as a diagnostic tool only.  相似文献   

3.
Abstract

In this paper we study the stability of an idealised magnetostatic coronal loop, incorporating both the effect of line-tying, due to the dense photosphere, and of pressure gradients. The stability equations may be solved analytically for our particular equilibrium. From the marginally stable case, the critical conditions separating instability from stability are derived. It is found that stretching or twisting a loop eventually makes it kink unstable.  相似文献   

4.
Abstract

Recent calculations suggest that the bulk of the solar toroidal field may be stored in a thin, convectively stable region situated between the convection zone proper and the radiative zone. Determining the stability properties of such a field is therefore important with implications for both the generation and escape of magnetic flux. The plane layer, linear stability analysis of Hughes (1985) is extended to incorporate the effects of uniform rotation. Detailed studies are made of interchange, or “axisymmetric” modes and of undular, or wavelike, motions, considering modes of both low and high frequency. The force due to rotation acts to constrain the fluid motions, a feature which is strongly stabilizing for direct modes, but can, in certain circumstances, be destabilizing for oscillatory motions.

For the interchange modes we show that the instability discussed at length by Hughes (1985), driven by fields increasing with height, is still present and indeed may be enhanced by rotational effects. We also study the more conventional instabilities, discussing the transformation between direct and oscillatory modes and considering in detail some peculiar properties of the oscillatory instabilities.

The more relevant instabilities in an astrophysical context are likely to be undular modes. Previous studies of low frequency modes driven by top heavy field gradients are extended to consider modes of various frequencies for a wide range of parameter values. Of particular interest is the occurrence of two distinct modes of instability for bottom heavy field gradients. We also exhibit some of the peculiar stability boundaries which can result when none of the competing influences in the problem is dominant.  相似文献   

5.
Abstract

The stability of a baroclinic zonal current to symmetric perturbations on an equatorial β-plane is considered. The fluid is assumed to be Boussinesq, inviseid, adiabatic, hydrostatic, and stably stratified. The solutions exhibit the same stability properties as those on an f-plane: instability occurs whenever Ri < 1/(1 + d), where Ri is the Richardson number and d is a measure of the horizontal shear of the current; the most unstable motions tend to parallel the isotherms of potential temperature; and they have infinitely small scales of variation perpendicular to the isotherms. The variation of Coriolis parameter leads to one important difference in the structure of the eigenfunctions: the rapidly growing modes are concentrated in high latitudes, and the slowly growing ones in low latitudes.

The suggestion that the symmetric cloud bands observed at low latitudes in Jupiter's atmosphere are caused by symmetric instabilities is re-examined in the light of these results. These cloud bands would have to be associated with the slowly-growing, low-latitude modes. These modes consist of small scale motions parallel to the isotherms, with the magnitude of the motions having a large scale modulation as a function of latitude. The time scales of these modes and the latitude scales of their modulation agree qualitatively with the observations of Jupiter's cloud bands, so long as Ri is not very close to zero or to its critical value.  相似文献   

6.
Abstract

Magnetic field generation in a continuous medium in processes without self-excitation—the so-called semi-dynamo, involving as essential elements both magnetohydrodynamic processes and the presence of an impressed e.m.f.—has been studied for the case of the topological pumping effect on the magnetic field generation by an impressed e.m.f. operating in a three-dimensional Bénard convection layer.

Under conditions of interest for astrophysical applications the magnetic flux produced can exceed substantially that excited by the e.m.f. in the absence of motion.

The results obtained permitted an evaluation of the general quasi-steady magnetic field of the Sun generated by an azimuthal Coriolis e.m.f. which is active in the outermost layers of the convective envelope, taking into account small-scale convective and turbulent motions. In the polar regions of the Sun this field can reach ~10?1 G.  相似文献   

7.
Abstract

This paper presents the first attempt to examine the stability of a poloidal magnetic field in a rapidly rotating spherical shell of electrically conducting fluid. We find that a steady axisymmetric poloidal magnetic field loses its stability to a non-axisymmetric perturbation when the Elsasser number A based on the maximum strength of the field exceeds a value about 20. Comparing this with observed fields, we find that, for any reasonable estimates of the appropriate parameters in planetary interiors, our theory predicts that all planetary poloidal fields are stable, with the possible exception of Jupiter. The present study therefore provides strong support for the physical relevance of magnetic stability analysis to planetary dynamos. We find that the fluid motions driven by magnetic instabilities are characterized by a nearly two-dimensional columnar structure attempting to satisfy the Proudman-Taylor theorm. This suggests that the most rapidly growing perturbation arranges itself in such a way that the geostrophic condition is satisfied to leading order. A particularly interesting feature is that, for the most unstable mode, contours of the non-axisymmetric azimuthal flow are closely aligned with the basic axisymmetric poloidal magnetic field lines. As a result, the amplitude of the azimuthal component of the instability is smaller than or comparable with that of the poloidal component, in contrast with the instabilities generated by toroidal decay modes (Zhang and Fearn, 1994). It is shown, by examining the same system with and without fluid inertia, that fluid inertia plays a secondary role when the magnetic Taylor number Tm ? 105. We find that the direction of propagation of hydromagnetic waves driven by the instability is influenced strongly by the size of the inner core.  相似文献   

8.
Abstract

We investigate the evolution of a parallel shear flow which has embedded within it a thin, symmetrically positioned layer of stable density stratification. The primary instability of this flow may deliver either Kelvin-Helmholtz waves or Holmboe waves, depending on the strength of the stratification. In this paper we describe a sequence of numerical simulations which reveal for the first time the behavior of the Holmboe wave at finite amplitude and clarify its structural relationship to the Kelvin-Helmholtz wave.

The flows investigated have initial profiles of horizontal velocity and Brunt-Vaisala frequency given in nondimensional form by U = tanhζ and N 2=J sech2 RCζ, respectively, in which ζ is a nondimensional vertical coordinate, J is the value of the gradient Richardson number N 2/(dU/dζ)2 at ζ=0, and R = 3. Linear stability theory predicts that the flow will develop Holmboe instability when J exceeds some critical value Jc' and Kelvin-Helmholtz instability when J is less than Jc; Jc being approximately equal to 0.25 when R=3. We simulate the evolution of flows with J=0.9, J=0.45, and J = 0.22, and find that the first two simulations yield Holmboe waves while the third yields a Kelvin-Helmholtz wave, as predicted.

The Holmboe wave is a superposition of two oppositely propagating disturbances, a right-going mode whose energy is concentrated in the region above the centre of the shear layer, and a left-going mode whose energy is concentrated below the centre of the shear layer. The horizontal speed of the modes varies periodically, and the variations are most pronounced at low values of J. If J ζ Jc' the minimum horizontal speed of the modes vanishes and the modes become phase-locked, whereupon they roll up to form a Kelvin-Helmholtz wave as predicted by Holmboe (1962). When J is moderately greater than Jc' the Holmboe wave ejects long, thin plumes of fluid into the regions above and below the shear layer, as has often been observed in laboratory experiments, and we examine in detail the mechanism by which this occurs.  相似文献   

9.
Abstract

To model penetrative convection at the base of a stellar convection zone we consider two plane parallel, co-rotating Boussinesq layers coupled at their fluid interface. The system is such that the upper layer is unstable to convection while the lower is stable. Following the method of Kondo and Unno (1982, 1983) we calculate critical Rayleigh numbers Rc for a wide class of parameters. Here, Rc is typically much less than in the case of a single layer, although the scaling Rc~T2/3 as T → ∞ still holds, where T is the usual Taylor number. With parameters relevant to the Sun the helicity profile is discontinuous at the interface, and dominated by a large peak in a thin boundary layer beneath the convecting region. In reality the distribution is continuous, but the sharp transition associated with a rapid decline in the effective viscosity in the overshoot region is approximated by a discontinuity here. This source of helicity and its relation to an alpha effect in a mean-field dynamo is especially relevant since it is a generally held view that the overshoot region is the location of magnetic field generation in the Sun.  相似文献   

10.
Abstract

Stability analysis is formulated for a two-layer fluid model in which the upper and lower layers are convectively stable and unstable, respectively. With discontinuities in viscosity and conductivity at the interface, the exchange of stability does not generally hold and overstability is possible. A detailed analytical treatment is presented for the case of small viscosity and conductivity in which viscous and conducting boundary layers are formed at the interface.

The usual damping effect due to the energy dissipation by viscosity and thermal conductivity exists irrespective of whether the mode is the convection or the gravity wave, but, for larger horizontal wave lengths, the effect of the boundary layer can become more important. The jump in the thermal conductivity in the boundary layer can give rise to overstability of the gravity wave in agreement with Souffrin and Spiegel (1967). The jump in the viscosity provides a self-catalytic action for the unstable flow if the viscosity is assumed to be the nonlinear turbulent viscosity due to the motion itself. The effect, however, is not strong enough to overcome the usual viscous damping.  相似文献   

11.
Abstract

The instability of a current with a geostrophic surface density front is investigated by means of a reduced gravity model having a velocity profile with nearly uniform potential vorticity. It is shown that currents are unstable when the mean potential vorticity decreases toward the surface front at the critical point of the frontal trapped waves investigated by Paldor (1983). This instability is identical with that demonstrated by Killworth (1983) in the longwave limit.

The cross-stream component of mass flux and the rates of energy conversions among the five energy forms defined by Orlanski (1968) are also calculated. The main results are as follows, (a) The mass flux toward the surface front is positive near the front and negative around the critical point. The positive mass flux near the front does not vanish at the position of the undisturbed surface front, so that the mean position of the front moves outward and the region of the strong current spreads. (b) The potential energy of the mean flow integrated over the fluid is released through the work done by the force of the pressure gradient of the mean flow on the fluid, and is converted into the kinetic energy of the mean flow. (c) In the critical layer, the mean flow is rapidly accelerated with the growth of the unstable wave. This acceleration is caused by the rapid phase shift of the unstable wave in the critical layer.  相似文献   

12.
Abstract

The influence of mesoscale topography on the baroclinic instability of a two-layer model of the open ocean is considered. For westward velocities in the top layer (U), and for a sinusoidal topography independent of x or longitude (a cross-stream topography), the critical value of U (Uc ) leading to instability is the same as when there is no topography. The wavelength of the unstable perturbation corresponding to U c is shortened. For a given wavevector (k) of the perturbation the system becomes stable (as also in the absence of topography) for large values of |U|. The minimum value of the shear leading to stability is, however, significantly reduced by the topography.

For sufficiently large values of the height of the topographic features, instabilities appear which are localized within a narrow range of the shear. These instabilities are studied for a topography that depends both on x and y.

For a cross-stream topography the growth rates are somewhat smaller than those without topography and they depend only weakly on ky . For the topographies considered here which depend both on x and y, perturbations with different values of ky can again have roughly the same growth rate.

In the case of stable oscillations, variations in the eddy energy with very long periods are made possible by the coexistence of topographic modes with closely lying periods.  相似文献   

13.
Abstract

An array of current meters was placed on the continental slope and rise for two months in the autumn of 1970. The bottom boundary layer was penetrated on the slope. On the smallest array scale, of the order of 1 kilometer, the array functioned as a directional internal wave antenna. Moving shoreward, the current spectra show strong suppression of the inertial peak and strong enhancement of the semidiurnal tide. The measured wave number spectra show that the tidal energy is almost completely baroclinic, and probably being generated in the region where the slope becomes “critical” for the tidal period. If this area is typical of worldwide conditions, a substantial fraction of the dissipation of surface tides takes place on the continental slopes by conversion to baroclinic waves. The bottom boundary layer has been modeled by an extension of the work of Ellison (1956) to a sloping boundary in a fluid of positive stability. An equivalent constant eddy coefficient has the value 3 cm2/sec as determined from the measurements.  相似文献   

14.
Abstract

Calculations are presented for the evolution of a magnetic field which is subject to the effect of three-dimensional motions in a convecting layer of highly conducting fluid with hexagonal symmetry. The back reaction of the field on the motions via the Lorentz force is neglected. We consider cases where the imposed field is either vertical or horizontal. In the former case, flux accumulates at cell centres, with subsidiary concentrations at the vertices of the pattern. In the latter, topological asymmetries between up- and down-moving fluid regions generate positive flux at the base of the layer and negative flux at the top, though the system is actually an amplifier rather than a self-excited dynamo. Spiral field lines form in the interiors of the cells, and the phenomenon of “flux expulsion” found in two-dimensional solutions is somewhat altered when the imposed field is horizontal. Applications for stellar magnetic fields include a possible mechanism for burying flux at the base of a convection zone.  相似文献   

15.
This study proposes the use of several problems of unstable steady state convection with variable fluid density in a porous layer of infinite horizontal extent as two-dimensional (2-D) test cases for density-dependent groundwater flow and solute transport simulators. Unlike existing density-dependent model benchmarks, these problems have well-defined stability criteria that are determined analytically. These analytical stability indicators can be compared with numerical model results to test the ability of a code to accurately simulate buoyancy driven flow and diffusion. The basic analytical solution is for a horizontally infinite fluid-filled porous layer in which fluid density decreases with depth. The proposed test problems include unstable convection in an infinite horizontal box, in a finite horizontal box, and in an infinite inclined box. A dimensionless Rayleigh number incorporating properties of the fluid and the porous media determines the stability of the layer in each case. Testing the ability of numerical codes to match both the critical Rayleigh number at which convection occurs and the wavelength of convection cells is an addition to the benchmark problems currently in use. The proposed test problems are modelled in 2-D using the SUTRA [SUTRA––A model for saturated–unsaturated variable-density ground-water flow with solute or energy transport. US Geological Survey Water-Resources Investigations Report, 02-4231, 2002. 250 p] density-dependent groundwater flow and solute transport code. For the case of an infinite horizontal box, SUTRA results show a distinct change from stable to unstable behaviour around the theoretical critical Rayleigh number of 4π2 and the simulated wavelength of unstable convection agrees with that predicted by the analytical solution. The effects of finite layer aspect ratio and inclination on stability indicators are also tested and numerical results are in excellent agreement with theoretical stability criteria and with numerical results previously reported in traditional fluid mechanics literature.  相似文献   

16.
Abstract

A study is made of the nonlinear stability of a weakly supercritical zonal shear flow in the β-plane approximation. The dynamics of initially small disturbances are examined. The main nonlinear effects are associated with the rearrangement of the critical layer. It is shown that as the wave grows in amplitude, linear regimes of the critical layer (viscous and nonstationary) change over to a nonlinear regime while the exponential law of disturbance growth becomes a power-law.  相似文献   

17.

Linear stability of rotating thermal convection in a horizontal layer of Boussinesq fluid under the fixed heat flux boundary condition is examined by the use of a vertically truncated system up to wavenumber one. When the rotation axis is in the vertical direction, the asymptotic behavior of the critical convection for large rotation rates is almost the same as that under the fixed temperature boundary condition. However, when the rotation axis is horizontal and the lateral boundaries are inclined, the mode with zero horizontal wavenumber remains as the critical mode regardless of the rotation rate. The neutral curve has another local minimum at a nonzero horizontal wavenumber, whose asymptotic behavior coincides with the critical mode under the fixed temperature condition. The difference of the critical horizontal wavenumber between those two geometries is qualitatively understood by the difference of wave characteristics; inertial waves and Rossby waves, respectively.  相似文献   

18.
Abstract

The stability of an isolated one-layer reduced gravity front is examined. It is shown that the system is unstable to long-wave disturbances provided merely that a simple condition on the depth profile is satisfied far from the front. The instability does not require the extremum of potential vorticity needed by quasi-geostrophic theory. The instability releases mean kinetic and mean potential energy from the system, but lacking a second layer cannot truly be termed baroclinic instability.  相似文献   

19.
Abstract

Laboratory experiments concerning azimuthal jets in two-layer rotating systems in the absence and presence of bottom topography aligned along the jets have been conducted. The jets were forced by the selective withdrawal of fluid from the upper layer of a two-fluid system contained in a circular dishpan geometry. The principal parameters measured in the experiments were the jet Rossby number, Ro, and a stratification parameter F = r 1/(λ1λ2)1/2 where r 1 is the radius of the circular disc used for the selective withdrawal (i.e., r 1 is the approximate radius of curvature of the jet) and λ12 are the internal Rossby radii of deformation in the upper and lower fluids, respectively.

The no-topography experiments show that for a sufficiently small F, the particular value depending on Ro, the jet is stable for the duration of the experiment. For sufficiently large F, again as a function of Ro, the jet becomes unstable, exhibiting horizontal wave disturbances from modes three to seven. An Ro against F flow regime diagram is presented.

Experiments are then conducted in the presence of a bottom topography having constant cross-section and extending around a mid-radius of the dishpan. The axis of the topography is in the vicinity of the jet axis forced in the no-topography experiments and the crest of the topography is in the vicinity of the interface between the two fluids (i.e., the front associated with the jet). The experiments show that in all cases investigated the jet tends to be stabilized by the bottom topography. Experiments with the topography in place, but with the interface between the fluids being above the topography crest, are shown to be unstable but more irregular than their no-topography counterparts.

Various quantitative measurements of the jet are presented. It is shown, for example, that the jet Rossby number defined in terms of the fluid withdrawal rate from the tank. Q, can be well correlated with a dimensionless vorticity gradient, VG , across the upper layer jet. This allows for an assessment of the stability characteristics of a jet based on a knowledge of VG (which can be estimated given a jet profile) and F.  相似文献   

20.
Abstract

Models of a differentially rotating compressible convection zone are calculated, considering the inertial forces in the poloidal components of the equations of motion. Two driving mechanisms have been considered: latitude dependent heat transport and anisotropic viscosity. In the former case a meridional circulation is induced initially which in turn generates differential rotation, whereas in the latter case differential rotation is directly driven by the anisotropic viscosity, and the meridional circulation is a secondary effect.

In the case of anisotropic viscosity the choice of boundary conditions has a big influence on the results: depending on whether or not the conditions of vanishing pressure perturbation are imposed at the bottom of the convection zone, one obtains differential rotation with a fast (≥ 10 ms?1) or a slow (~ 1 ms?1) circulation. In the latter case the rotation law is mainly a function of radius and the rotation rate increases inwards if the viscosity is larger in radial direction than in the horizontal directions.

The models with latitude dependent heat transport exhibit a strong dependence on the Prandtl number. For values of the Prandtl number less than 0.2 the pole-equator temperature difference and the surface velocity of the meridional circulation are compatible with observations. For sufficiently small values of the Prandtl number the convection zone becomes globally unstable like a layer of fluid for which the critical Rayleigh number is exceeded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号