首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examine the equilibrium form, properties, stability and nonlinear evolution of steadily-rotating simply-connected vortex patches in the single-layer quasi-geostrophic model of geophysical fluid dynamics. This model, valid for rotating shallow-water flow in the limit of small Rossby and Froude numbers, has an intrinsic length scale L D called the “Rossby deformation length” relating the strength of the stratification to that of the background rotation. Here, we generate steadily-rotating vortex equilibria for a wide range of γ?=?L/L D , where L is the typical horizontal length scale of the vortex. We vary both γ (over the range 0.02?≤?γ?≤?10) and the vortex aspect ratio λ (over the range 0?<?λ?<?1). We find two modes of instability arising at sufficiently small aspect ratio λ?<?λ c (γ): an asymmetric (dominantly wave 3) mode at small γ (or large L D ) and a symmetric (dominantly wave 4) mode at large γ (or small L D ). At marginal stability, the asymmetric mode dominates for γ???3, while the symmetric mode dominates for γ???3. The nonlinear evolution of weakly-perturbed unstable equilibria results in major structural changes, in most cases producing two dominant vortex patches and thin, quasi-passive filaments. Overall, the nonlinear evolution can be classified into three principal types: (1) vacillations for a limited range of aspect ratios λ when 5?≤?γ?≤?6, (2) filamentation and a single-dominant vortex for γ???1, and (3) vortex splitting – asymmetric for 1???γ???4 and symmetric for γ???4.  相似文献   

2.
Abstract

The vortex pair known as a modon is a classical solitary wave in the sense that it decays exponentially with distance from the center of the wave whenever the modon's phase speed of the wave is outside the linear range. In contrast, when ?1 < c < 0, the modon “far field” is oscillatory so that the modon is “nonlocal” in the sense that it has nonzero amplitude even at arbitrarily far distances from the vortex maximum. However, Tribbia and Verkley have independently noted that the oscillatory far field may be very weak for some parameter ranges.  相似文献   

3.
Abstract

Using a contour dynamical algorithm, we have found rotating tripolar V-state solutions for the inviscid Euler equations in two-dimensions. We have studied their geometry as a function of their physical parameters. Their stability was investigated with the aid of contour surgery, and most of the states were found to be stable. Under finite-amplitude perturbations, tripoles are shown to either fission into two asymmetric dipoles or to evolve into a shielded axisymmetric vortex, demonstrating the existence of two new ‘‘reversible transitions'’ between topologically distinct coherent vortex structures. These dynamical results are confirmed by pseudo-spectral simulations, with which we also show how continuous tripolar long-lived coherent vortex structures can be generated in a variety of ways.  相似文献   

4.
Abstract

A numerical technique is presented whereby aquifer hydraulic diffusivities (D) and macrodispersivities (α) are calculated by linear equations rewritten from flow and solute transport differential equations. The approach requires a GIS to calculate spatial and temporal hydraulic head (h) and solute concentration gradients. The model is tested in Portugal, in a semi-confined aquifer periodically monitored for h and chloride/sulphate concentrations. Average D (0.46 m2/s) and α (1975 m) compare favourably with literature results. The relationship between α and scale (L) is also investigated. In this context, two aquifer groups could be identified: the first group is heterogeneous at the “macroscopic” scale (solute travelled distances <1 km), but homogeneous at the “megascopic” scale. The overall scale dependency in this case is given by an equation of logarithmic type. The second group is heterogeneous at the macroscopic and megascopic scales, with a scale dependency of linear type.

Citation Pacheco, F.A.L., 2013. Hydraulic diffusivity and macrodispersivity calculations embedded in a geographic information system. Hydrological Sciences Journal, 58 (4), 930–944.  相似文献   

5.
Abstract

In this study, the equations of the three-dimensional convective motion of an infinite Prandtl number fluid are solved in spherical geometry, for Rayleigh numbers up to 15 times the critical number. An iterative method is used to find stationary solutions. The spherical parts of the operators are treated using a Galerkin collocation method while the radial and time dependences are expressed using finite difference methods. A systematic search for stationary solutions has led to eight different stream patterns for a low Rayleigh number (1.28 times the critical number). They can be classified as:

I) Axisymmetrical solutions, analogous to rolls in plane geometry.

II) Solutions which have several ascending plumes within a large area of ascending current, and also several descending plumes within an area of descending current. This type of flow is analogous to bimodal circulation in plane geometry.

III) Solutions characterized by isolated ascending (or descending) plumes separated from each other by a closed polyhedral network of descending (or ascending) currents. This type of circulation is called ‘polygonal’ in analogy with hexagonal circulation in plane geometry.

The behaviour of each of the eight solutions has been studied by increasing the Rayleigh number up to 15 times the critical number. A trend towards transitions from type (I) and type (II) solutions to type (III) solutions is observed. It is inferred that only the “polygonal” solutions are stable for a Rayleigh number greater than 15 times the critical number.  相似文献   

6.
Abstract

We consider the mixing of passive tracers and vorticity by temporally fluctuating large scale flows in two dimensions. In analyzing this problem, we employ modern developments stemming from properties of Hamiltonian chaos in the particle trajectories; these developments generally come under the heading “chaotic advection” or “Lagrangian turbulence.” A review of the salient properties of this kind of mixing, and the mathematics used to analyze it, is presented in the context of passive tracer mixing by a vacillating barotropic Rossby wave. We then take up the characterization of subtler aspects of the mixing. It is shown the chaotic advection produces very nonlocal mixing which cannot be represented by eddy diffusivity. Also, the power spectrum of the tracer field is found to be k ? l at shortwaves—precisely as for mixing by homogeneous, isotropic two dimensional turbulence,—even though the physics of the present case is very different. We have produced two independent arguments accounting for this behavior.

We then examine integrations of the unforced barotropic vorticity equation with initial conditions chosen to give a large scale streamline geometry similar to that analyzed in the passive case. It is found that vorticity mixing proceeds along lines similar to passive tracer mixing. Broad regions of homogenized vorticity ultimately surround the separatrices of the large scale streamline pattern, with vorticity gradients limited to nonchaotic regions (regions of tori) in the corresponding passive problem.

Vorticity in the chaotic zone takes the form of an arrangement of strands which become progressively finer in scale and progressively more densely packed; this process transfers enstrophy to small scales. Although the enstrophy cascade is entirely controlled by the large scale wave, the shortwave enstrophy spectrum ultimately takes on the classical k ? l form. If one accepts that the enstrophy cascade is indeed mediated by chaotic advection, this is the expected behavior. The extreme form of nonlocality (in wavenumber space) manifest in this example casts some doubt on the traditional picture of enstrophy cascade in the Atmosphere, which is based on homogeneous two dimensional turbulence theory. We advance the conjecture that these transfers are in large measure attributable to large scale, low frequency, planetary waves.

Upscale energy transfers amplifying the large scale wave do indeed occur in the course of the above-described process. However, the energy transfer is complete long before vorticity mixing has gotten very far, and therefore has little to do with chaotic advection. In this sense, the vorticity involved in the enstrophy cascade is “fossil vorticity,” which has already given up its energy to the large scale.

We conclude with some speculations concerning statistical mechanics of two dimensional flow, prompted by our finding that flows with identical initial energy and enstrophy can culminate in very different final states. We also outline prospects for further applications of chaotic mixing in atmospheric problems.  相似文献   

7.
Lawrence argued that the inundation ratio Λ, defined as the mean flow depth d divided by the roughness height k, is the dominant control of flow resistance f and should be used as the primary variable when evaluating the hydraulics of overland flow on rough surfaces. Lawrence defined three flow regimes on the basis of Λ and developed an expression for f in terms of Λ for each regime. Common sense, however, suggests that f is independent of Λ where Λ < 1 because when roughness elements protrude through the flow, the value of f for the flow is the same regardless of the height of the elements. The error appears to have crept in as a result of Lawrence's representation of roughness elements by hemispheres. Lawrence found that fd/k, which she interpreted to mean f ∝ Λ. However, in her model the length dimension denoted by k is in fact half the breadth b/2 of the roughness elements. The distinction between k and b/2 is important, especially for roughness elements where kb/2. Thus, contrary to Lawrence's claim, f is not generally a function of Λ. Instead, f is a function of Λ only where Λ > 1. Where Λ < 1, f is a function of d/(b/2) or d/b. © 1998 John Wiley & Sons, Ltd.  相似文献   

8.
Abstract

Various interactions between small numbers (two and four) of baroclinic, geostrophic point vortices in a two-layer system are studied with attention to the qualitative changes in behavior which occur as size of the deformation radius is varied.

A particularly interesting interaction, which illustrates the richness of baroclinic vortex dynamics, is a collision between two hetons. (A heton is a vortex pair in which the constituent vortices have opposite signs and are in opposite layers. The “breadth” of a heton is the distance between its constituent vortices. A translating heton transports heat.) When two hetons, which initially have different breadths, collide, the result is either an exchange of partners, or a “slip-through” collision in which the initial structures are preserved. It is shown here that the outcome is always an exchange, provided the deformation radius is sufficiently small. This strongly contrasts with a collision between pairs of classical, one-layer vortices in which no exchange occurs if the initial ratio of the breadths is sufficiently extreme.

Finally the transport of passive fluid by a translating baroclinic pair is investigated. A pair of vortices in the top layer transports no lower layer fluid if the distance between the vortices is less than 1.72 deformation radii. By contrast, the size of the region trapped by a heton increases without bound as the spacing between the vortices increases.  相似文献   

9.
The research of the information dimension (D 1) in an active fault zone considers the contribution of each seismic event to information and reflects the characteristics of the temporal and spatial distributions of earthquakes from a new point of view, avoiding some short-comings of the research about the capacity dimension (D 0). The results of calculation show that the information dimension of the temporal distribution in Xianshuihe active fault zone before Luhuo large earthquake isD 1=0.1051. It is a consult creterion of large earthquakes in future in the fault zone. The information dimensions of the temporal distribution of the earthquakes in Anninghe active fault zone are respectivelyD 1(t N)=0.1363 (for the north section) andD 1(t S)=0.06710 (for the south section). The information dimensions of the spatial distribution are respectivelyD 1(K N)=1.053 (for the north section) andD 1(K S)=0.7758 (for the south section). The north section and the south section belong to two self-similar systems with different information dimensions respectively. The extent of the self-organization of seismic activity in the south section is higher than that in the north section. This is helpful for us to judge the major dangerous section in the key region of the seismic monitoring. The research about the information dimension of the temporal and the spatial distributions of earthquakes is significant for the exploration of active fault zones and seismic prediction. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,13, 372–379, 1991. This paper is sponsored by the Chinese Joint Seismological Science Foundation. The English version is improved by Zhenwen An.  相似文献   

10.
海原断层系的分形研究   总被引:17,自引:0,他引:17       下载免费PDF全文
本文根据Okubo等人测量圣安德烈斯断层系所用的复盖维数法,对海原断层系进行了分形测量,求出海原断层系的整体维数D_0=1.137,其景泰段D_0=1.109,海原段D_0=1.182。计算中未得到邵家水段和李使堡段的分维数。此外,文中还着重探讨了断层几何与地震活动性及其力学环境的关系,进一步证明了自相似断层的几何复杂性与地震活动密切相关,剪切断裂带具较低分维数(1.1—1.3),而在张性环境中形成的断裂体系具较高的分维数(1.5—1.6)。最后本文讨论了断层迹线图等因素对分形测量精度的影响。  相似文献   

11.
Abstract

Collisions between isolated(i.e. localized) dipolar vortex states, called modons, are examined in various numerical solutions of the quasigeostrophic, equivalent barotropic equation. For a range of parameters, the collision interactions are soliton-like in that the vorticity maxima are displaced (phase-shifted) with only small speed changes and little excitation of internal degrees of freedom. For other parameters, new “inelastic” effects are observed, including speed changes due to vorticity rearrangement, vorticity filamentation, modon “capture” or “fusion” in an overtaking collision, and the “fission” of a modon into its component vorticity monopoles in a head-on collision.  相似文献   

12.
Abstract

We investigate the influence of differential rotation on magnetic instabilities for an electrically conducting fluid in the presence of a toroidal basic state of magnetic field B 0 = BMB0(r, θ)1 φ and flow U0 = UMU0 (r, θ)1φ, [(r, θ, φ) are spherical polar coordinates]. The fluid is confined in a rapidly rotating, electrically insulating, rigid spherical container. In the first instance the influence of differential rotation on established magnetic instabilities is studied. These can belong to either the ideal or the resistive class, both of which have been the subject of extensive research in parts I and II of this series. It was found there, that in the absence of differential rotation, ideal modes (driven by gradients of B 0) become unstable for Ac ? 200 whereas resistive instabilities (generated by magnetic reconnection processes near critical levels, i.e. zeros of B0) require Ac ? 50. Here, Λ is the Elsasser number, a measure of the magnetic field strength and Λc is its critical value at marginal stability. Both types of instability can be stabilised by adding differential rotation into the system. For the resistive modes the exact form of the differential rotation is not important whereas for the ideal modes only a rotation rate which increases outward from the rotation axis has a stabilising effect. We found that in all cases which we investigated Λc increased rapidly and the modes disappeared when Rm ≈ O(ΛC), where the magnetic Reynolds number Rm is a measure of the strength of differential rotation. The main emphasis, however, is on instabilities which are driven by unstable gradients of the differential rotation itself, i.e. an otherwise stable fluid system is destabilised by a suitable differential rotation once the magnetic Reynolds number exceeds a certain critical value (Rm )c. Earlier work in the cylindrical geometry has shown that the differential rotation can generate an instability if Rm ) ?O(Λ). Those results, obtained for a fixed value of Λ = 100 are extended in two ways: to a spherical geometry and to an analysis of the effect of the magnetic field strength Λ on these modes of instability. Calculations confirm that modes driven by unstable gradients of the differential rotation can exist in a sphere and they are in good agreement with the local analysis and the predictions inferred from the cylindrical geometry. For Λ = O(100), the critical value of the magnetic Reynolds number (Rm )c Λ 100, depending on the choice of flow U0 . Modes corresponding to azimuthal wavenumber m = 1 are the most unstable ones. Although the magnetic field B 0 is itself a stable one, the field strength plays an important role for this instability. For all modes investigated, both for cylindrical and spherical geometries, (Rm )c reaches a minimum value for 50 ≈ Λ ≈ 100. If Λ is increased, (Rm )c ∝ Λ, whereas a decrease of Λ leads to a rapid increase of (Rm )c, i.e. a stabilisation of the system. No instability was found for Λ ≈ 10 — 30. Optimum conditions for instability driven by unstable gradients of the differential rotation are therefore achieved for ≈ Λ 50 — 100, Rm ? 100. These values lead to the conclusion that the instabilities can play an important role in the dynamics of the Earth's core.  相似文献   

13.
In this paper, a second order space discontinuous Galerkin (DG) method is presented for the numerical solution of inviscid shallow water flows over varying bottom topography. Novel in the implementation is the use of HLLC and kinetic numerical fluxes1 in combination with a dissipation operator, applied only locally around discontinuities to limit spurious numerical oscillations. Numerical solutions over (non-)uniform meshes are verified against exact solutions; the numerical error in the L2-norm and the convergence of the solution are computed. Bore–vortex interactions are studied analytically and numerically to validate the model; these include bores as “breaking waves” in a channel and a bore traveling over a conical and Gaussian hump. In these complex numerical test cases, we correctly predict the generation of potential vorticity by non-uniform bores. Finally, we successfully validate the numerical model against measurements of steady oblique hydraulic jumps in a channel with a contraction. In the latter case, the kinetic flux is shown to be more robust.  相似文献   

14.
ABSTRACT

Sourcing subsurface evaporation (Ess) into groundwater (Eg) and unsaturated zone (Eu) components has received little scientific attention so far, despite its importance in water management and agriculture. We propose a novel sourcing framework, with its implementation in dedicated post-processing software called SOURCE (used along with the HYDRUS1D model), to study evaporation sourcing dynamics, define quantitatively “shallow” and “deep” water table conditions and test the applicability of water table fluctuation (WTF) and “bucket” methods for estimation of Eg and Eu separately.

For the “shallow” and “deep” water table we propose Eg?>?0.95Ess and Eg = 0 criteria, respectively. Assessment of the WTF method allowed sourcing of very small fluxes otherwise neglected by standard hydrological methods. Sourcing with SOURCE software was more accurate than the standard “bucket” method mainly because of greater flexibility in spatio-temporal discretization. This study emphasized the dry condition relevance of groundwater evaporation which should be analysed by applying coupled flow of heat, vapour and liquid water.
Editor D. Koutsoyiannis; Associate editor S. Kanae  相似文献   

15.
Two possible mechanisms for vortex self-organization   总被引:3,自引:0,他引:3  
Since the 21st century, the self-organization phe-nomenon has drawn a wide attention of Chinese sci-ence and technology researchers, and the study fields involve silicate chemistry[1, 2], the classification of re-mote sensing data[3], nanometer material[4―6], medium resistance to discharges[7], forest fires[8], mud-rock flow[9], sandpile formation[10, 11], urban geography[12], economic geography[13], intense storms over the Loess Plateau[14] and vortices over the Tibetan Plateau[15], etc. Re…  相似文献   

16.
Abstract

An idealized nonlinear αω-dynamo is investigated. Emphasis is placed upon the different spatial symmetries, and the asymmetries that arise after secondary bifurcations. On varying the main control parameter D (the dynamo number), many transitions are found involving solutions without an equatorial symmetry, and solutions with quasiperiodic time dependence, but no chaos. Instead of a cascade to smaller spatial scales when D is highly supercritical it is found that additional asymmetries are introduced at tertiary bifurcations. Our complete bifurcation diagrams allow us to follow in detail how stability is passed from one solution to another as D varies. In these diagrams there are typically multiple stable solutions at any value of D, which suggests that similar stars can have different magnetic patterns.  相似文献   

17.
Based on fault maps, whether or not the fracture geometry of rocks is self-similar, was examined by using a box-counting algorithm. The statistical self-similarity (fractal structure) of the fault fracture systems holds well at the scale of about 2 to 20 km. The fractal dimension in Japan varied from 1.05 to 1.60. The fractal dimension is about 1.5–1.6 at the central part of the Japan Arc, and decreases with distance from the center. At a smaller scale, the fractal structure also holds well in the rock fracture geometry. The fractal dimension of the North Izu Peninsula fault system (branching faults) is 1.49 at the scale of 0.625 to 10 km, the fractal dimension of rock fracture geometry at the scale order of 10–1 to 10–2 meters is about 1.49–1.61. The upper limit of the fractal dimension of rock fracture geometry is about 1.6, judging from the estimation of fractal dimension on actual fracture geometry of rocks. This value may impose a restraint on modeling of faulting and the fracture process of rocks.  相似文献   

18.
Abstract

A linear analysis is used to study the stability of a rapidly rotating, electrically-conducting, self-gravitating fluid sphere of radius r 0, containing a uniform distribution of heat sources and under the influence of an azimuthal magnetic field whose strength is proportional to the distance from the rotation axis. The Lorentz force is of a magnitude comparable with that of the Coriolis force and so convective motions are fully three-dimensional, filling the entire sphere. We are primarily interested in the limit where the ratio q of the thermal diffusivity κ to the magnetic diffusivity η is much smaller than unity since this is possibly of the greatest geophysical relevance.

Thermal convection sets in when the temperature gradient exceeds some critical value as measured by the modified Rayleigh number Rc. The critical temperature gradient is smallest (Rc reaches a minimum) when the magnetic field strength parameter Λ ? 1. [Rc and Λ are defined in (2.3).] The instability takes the form of a very slow wave with frequency of order κ/r 2 0 and its direction of propagation changes from eastward to westward as Λ increases through Λ c ? 4.

When the fluid is sufficiently stably stratified and when Λ > Λm ? 22 a new mode of instability sets in. It is magnetically driven but requires some stratification before the energy stored in the magnetic field can be released. The instability takes the form of an eastward propagating wave with azimuthal wavenumber m = 1.  相似文献   

19.
Abstract

In order to show that aperiodic magnetic cycles, with Maunder minima, can occur naturally in nonlinear hydromagnetic dynamos, we have investigated a simple nonlinear model of an oscillatory stellar dynamo. The parametrized mean field equations in plane geometry have a Hopf bifurcation when the dynamo number D=1, leading to Parker's dynamo waves. Including the nonlinear interaction between the magnetic field and the velocity shear results in a system of seven coupled nonlinear differential equations. For D>1 there is an exact nonlinear solution, corresponding to periodic dynamo waves. In the regime described by a fifth order system of equations this solution remains stable for all D and the velocity shear is progressively reduced by the Lorentz force. In a regime described by a sixth order system, the solution becomes unstable and successive transitions lead to chaotic behaviour. Oscillations are aperiodic and modulated to give episodes of reduced activity.  相似文献   

20.
We calculated the fractal dimensions Db of the perimeter of tropical cyclone(TC)Dan based on the satellite GMS-5 infrared sensor images from 1800 UTC,1 October 1999 to 1200 UTC,9 October 1999.The fractal dimensions Db were used to characterize objectively the temporal change of TC complex structure.Our results show that the change of fractal dimension during TC Dan motion can be divided into three stages.The statistically significant difference does not exist either between Dm1 and DL or between Dm3 and DL,but it exists between Dm2 and DL,where Dmi denotes the mean value of Db in i-th stage(i=1,2 and3);DL denotes Lovejoy’s fractal dimension calculated based on satellite and radar data within the size range(1–1.2×106 km2),which is used as a"normal value"of the fractal dimension of the cumulus cloud perimeter for the global tropical region.TC Dan turns to the north from the west abruptly at the end of the second stage.The emergence of the second stage with high fractal dimensions may be viewed as a possible premonition for the track turning.Our results also show that there are two kinds of processes resulting in the translation from the first stage to the second stage.One is the interaction of TC circulation and an adjacent small scale convective cloud cluster,causing to the complexity increase of a local segment of the perimeter.The other includes the fragmentation of a strong convective area within the TC inner region,the self-organization of the small strong convective cloud clusters,the emergence,development,and merger of the small scale non-convective holes,and the formation of a gap of the perimeter,causing to the complexity increase of the whole TC perimeter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号