首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

An asymptotic approximation to the solution of the time-dependent linearized equations governing the motion of an incompressible, inviscid rotating fluid of spherical configuration having uniform density, variable depth and a free upper surface is obtained using the ray method without a shallow water assumption. This result is then modified to obtain a ray approximation to the solution of the time-reduced problem and the free oscillations of the fluid are studied. Axisymmetric modes covering the whole sphere and asymmetric modes trapped in both equatorial and non-equatorial regions are discovered, and all these modes are shown to have countably many resonance frequencies. A shallow water limit is defined and this limit of the time-reduced approximation is obtained. Most of the modes of free oscillation are lost in this limit and the limiting axisymmetric modes are shown to be trapped in the equatorial region and are singular at the wave region boundaries. The limiting approximation is compared to previous results obtained under a shallow water assumption.  相似文献   

2.
The vertical thermohaline structure in the western equatorial Pacific is examined with a Gravest Empirical Mode (GEM) diagnosis of in-situ mooring measurements. The poor GEM performance in estimating deep thermohaline variability from satellite altimetry confirms a lack of vertical coherence in the equatorial ocean. Mooring observation reveals layered equatorial water with phase difference up to 6 months between thermocline and sub-thermocline variations. The disjointed layers reflect weak geostrophy and resemble pancake structures in non-rotating stratified turbulence. A coherency theorem is then proved, stating that traditional stationary GEM represents in-phase coherent structure and can not describe vertically out-of-phase variability. The fact that stationary GEM holds both spatial and temporal coherence makes it a unique tool to diagnose vertical coherent structure in geophysical flows. The study also develops a non-stationary GEM projection that captures more than 40% of the thermohaline variance in the equatorial deep water.  相似文献   

3.
Stable-boundary-layer regimes from the perspective of the low-level jet   总被引:2,自引:0,他引:2  
This paper reviews results from two field studies of the nocturnal stable atmospheric boundary layer (SBL) over the Great Plains of the United States. Data from a scanning remote-sensing system, a High-Resolution Doppler Lidar (HRDL), provided measurements of mean and turbulent wind components at high spatial and temporal resolution through the lowest 500–1000 m of the atmosphere. This data set has allowed the characteristics of the low-level jet (LLJ) maximum (speed, height, direction) to be documented through entire nights. LLJs form after sunset and produce strong shear in the layer below the LLJ maximum or nose, which is a source of turbulence and mixing in the SBL. Simultaneous HRDL measurements of turbulence quantities related to turbulence kinetic energy (TKE) has allowed the turbulence in the subjet layer to be related to LLJ properties. Turbulence structure was found to be a function of the bulk stability of the subjet layer. For the strong-LLJ (> 15 m s−1), weakly stable cases the strength of the turbulence is proportional to the strength of the LLJ. For these cases with nearly continuous turbulence in the subjet layer, low-level jet scaling, in which lengths are scaled by the LLJ height and velocity variables are scaled by the LLJ speed, was found to be appropriate. For the weak-wind (< 5 m s−1 in the lowest 200 m), very stable boundary layer (vSBL), the boundary layer was found to be very shallow (sometimes < 10 m deep), and turbulent fluxes between the earth’s surface and the atmosphere were found to be essentially shut down. For more intermediate wind speeds and stabilities, the SBL shows varying degrees of intermittency due to various mechanisms, including shearinstability and other gravity waves, density currents, and other mesoscale disturbances.  相似文献   

4.
The equatorial undercurrent (EUC), the shallow meridional overturning cells feeding it, and their role in El Niño and decadal variability in the equatorial Pacific are studied using both in situ data and an ocean general circulation model. Using temperature and current data from the TAO/TRITON moorings at the equator, their data gaps are filled and it was shown that continuous time series of mass transport, temperature, depth, and kinetic energy of the EUC could be constructed for the period 1980–2002 with an excellent accuracy. This dataset was analysed and used to validate the output from an oceanic general circulation model (OGCM). The OGCM was then used to find that variations in the strength of the EUC, shallow meridional overturning (pycnocline convergence and surface divergence), and equatorial upwelling had the same variations in mass transport on interannual and longer time scales within the period 1951–1999. These variations are all caused by variations of the zonal wind stress zonally integrated, in agreement with simple linear and steady dynamics theories. Impact of these mass transport variations and of temperature variations on heat budgets in the entire equatorial band of the Pacific and in its eastern part are quantified.  相似文献   

5.
Planetary equatorial waves are studied with the shallow water equations in the presence of a mean zonal thermocline gradient. The interactions between this gradient and waves are represented by three non-linear terms in the equations: one in the wind-forcing formulation in the x-momentum equation, and two for the advection of mass and divergence of the velocity field in the continuity equation. When the mean gradient is imposed but small, these three (linearized) terms will perturb the behavior of the equatorial waves. This paper gives a simple analytic treatment of this problem.The equatorial Kelvin mode is first solved with all three contributions, using a Wentzel-Kramers-Brillouin method. The Kelvin mode shows a spatial or/and temporal growth when the thermocline gradient is negative which is the usual situation in the equatorial Pacific ocean (deep thermocline in the west and shallow in the east). The more robust and efficient contribution comes from the advection term.The single effect of the advection of the mean zonal thermocline gradient is then studied for the Kelvin and planetary Rossby modes. The Kelvin mode remains unstable (damped), while the Rossby modes appear damped (unstable) for a negative (positive) thermocline gradient.  相似文献   

6.
The problem of zonal jet formation and cyclone–anticyclone asymmetry in decaying rotating turbulence is addressed using both laboratory experiments and numerical simulations with a high-resolution shallow water model in a spherical geometry. Experiments are performed at different Rossby and Froude numbers and applying a rigid wall as meridional boundary in the numerical scheme to mimic the experimental apparatus. The formation of a zonally banded flow pattern, i.e. meridionally confined easterly/westerly jets, has observed; both experimental and numerical results confirmed that this tendency is favoured by high-planetary vorticity gradients. Also, in the experiments characterized by large rotation speeds and small Rossby deformation radius, an initial symmetric distribution of relative vorticity is found to evolve towards a dominance of anticyclonic structures, indicating a breaking of the cyclone–anticyclone symmetry. This aspect has deepened by numerically analysing the sensitivity of the temporal variations of the asymmetry index with respect to the position of the meridional confinement as well as the effect of relaxing the divergence of the fluid (i.e. non-divergent case) to zero. Results suggested that experiments characterized by the higher rotation speed and the lower fluid thickness are better reproduced by a divergent model with a high-latitude meridional boundary.  相似文献   

7.
Niobium–tantalum systematics of slab-derived melts are powerful tracers that discriminate residual high-pressure rutile-bearing eclogite from low-pressure garnet-bearing amphibolite in subducting plates. Previously reported low Nb–Ta ratios in modern slab melts suggested a predominance of shallow melting in the presence of residual amphibole and that deep melting of rutile-bearing eclogitic slabs, devoid of residual amphibole, is volumetrically insignificant. This study evaluates Nb/Ta in combination with other trace element systematics of modern intra-oceanic and slab melt-related arc lavas from the south-western volcanic chain of the Solomon Islands that cover over 1000 km of the SW Pacific plate border. After a change of subduction polarity, an old subducted Pacific slab and a recently subducting Indian–Australian slab are both present beneath the arc. Solomon arc lavas show sub- to superchondritic Nb–Ta ratios (ca. 10 to 27) which is the largest range ever reported in modern island arc lavas. The large range of Nb/Ta likely results from enrichment of the depleted sub-arc mantle by two distinct slab-derived melts in addition to fluids. One minor slab melt component is derived from the shallow and recent subducting Indian–Australian plate where amphibole is still a significant residual phase. The second slab melt component is predominant in Solomon arc lavas and can be attributed to deep rutile–eclogite-controlled melting of old subducted Jurassic Pacific oceanic crust where residual amphibole is entirely absent or insignificant. The deep Pacific slab melt component is the most likely origin of the extremely high and superchondritic Nb/Ta signatures that produce the upper half of the observed range of Nb/Ta in Solomon arc lavas. The slab melt component that enriched the sub-arc mantle with an unusually high Nb/Ta signature is derived from an initially intact Pacific plate that was probably subject to a slab break-off event and subsequent melting at depths exceeding 100 km. The geochemical evidence presented here shows that old and cold subducted oceanic crust, which is initially not torn, may resist shallow melting but can melt at greater depths instead. The resulting slab melts are generated in the presence of residual rutile-bearing eclogite and significantly fractionate Nb–Ta ratios which may be of relevance at a global scale.  相似文献   

8.
In the arid to semi-arid district of Chengcheng, Weinan City, in central Shaanxi Province, diminishing groundwater reserves in the shallow Quaternary (QLB) aquifer and elevated fluoride in the similarly shallow Permo-Triassic (PTF) aquifer, have promoted interest in the development of groundwater resources in the deep but poorly understood Cambrian-Ordovician carbonate aquifer system (COC). To investigate the origin of the COC groundwaters and the relationship between the deep and shallower systems, a hydrochemical study was undertaken involving 179 major and minor ion analyses, 39 stable isotope analyses (δD and δ18O), and 14 carbon isotope analyses (14C and δ13C). PHREEQC 3.0 was used to investigate mixing. Hydrochemical data support the presence of a well-connected regional flow system extending southwards from the more mountainous north. Stable isotope data indicate that the COC groundwaters originate as soil zone infiltration, under a much cooler regime than is found locally today. This is confirmed by 14C, which indicates the groundwater to be palaeowater recharged during the late Pleistocene (∼10–12 ka B.P.). The presence of nitrate in the COC groundwaters suggests leakage from overlying shallow aquifers currently provides an additional source of COC recharge, with major faults possibly providing the primary pathways for downward vertical flow.  相似文献   

9.
INTRODUCTIONThe Zhangzhou basinislocated onthe southeast coast of Fujian Province .Interms of geotectonicunits ,it lies in the east Fujian volcanic fault-depression zone between the Wuyi-Daiyun mountainupheaval zone and depression zone of Taiwan Straits of the south China block. In terms ofseismotectonics ,it islocatedinthe middle sectionof the southeasterncoastal seismic zone .In history,the area was influenced by repeated destructive earthquakes , and the seismic activity was closely…  相似文献   

10.
The origin and the chemical and isotopic evolution of dissolved inorganic carbon (DIC) in groundwater of the Okavango Delta in semi-arid Botswana were investigated using DIC and major ion concentrations and stable oxygen, hydrogen and carbon isotopes (δD, δ18O and δ13CDIC). The δD and δ18O indicated that groundwater was recharged by evaporated river water and unevaporated rain. The river water and shallow (<10 m) groundwater are Ca–Na–HCO3 type and the deep (≥10 m) groundwater is Na–K–HCO3 to HCO3–Cl–SO4 to Cl–SO4–HCO3. Compared to river water, the mean DIC concentrations were 2 times higher in shallow groundwater, 7 times higher in deep groundwater and 24 times higher in island groundwater. The δ13CDIC indicate that DIC production in groundwater is from organic matter oxidation and in island groundwater from organic matter oxidation and dissolution of sodium carbonate salts. The ionic and isotopic evolution of the groundwater relative to evaporated river water indicates two independent pools of DIC.  相似文献   

11.
Magnetotelluric measurements in the period range 100–86400 s were conducted at a coastal station under the equatorial electrojet (Eusebio, 3.87°S, 321.58°E). The magnetotelluric data were hand-scaled and analysed to obtain a scalar apparent resistivity profile at Eusebio. The depth of the intermediate conducting layer was found to be in the range 45–75 km and the final conducting layer seems to begin at a depth of about 350 km. Possible effects of the source field equatorial electrojet are discussed and our results are compared with those of an African station under the equatorial electrojet.  相似文献   

12.
With the use of the method of low-frequency microseismic sounding, the configuration of the magmatic feeding system of the Tolbachinsky Dol—a regional zone of areal basaltic volcanism in the southern part of the Klyuchevskoy volcano group in Kamchatka—is studied. The initial data are obtained by a stepby-step recording of the background microseismic noise in 2010–2015 within a thoroughly marked-out survey area covering the zones of fissure eruptions in 1975–1976 and 2012–2013 and, partly, the edifice of the Ploskii (flat) Tolbachik volcano. The depth sections reflecting the distributions of the relative velocities of seismic waves in the Earth’s crust are constructed. For a more reliable interpretation of the revealed deep anomalies, the results of independent geological and geophysical studies are used. The ascertained low-velocity structures are closely correlated to the manifestations of present-day volcanism. It is shown that the feeding structure of the Tolbachinsky Dol is spatially heterogeneous, incorporating subvertical and lateral pipeshaped magma conduits, closely spaced magma feeding channels, and shallow magma reservoirs. A longlived local transcrustal magma conducting zone is revealed, and regularities in the deep structure of the feeding systems of fissure eruptions are identified. The configuration of the established subvertical magma conduits permits basalts moving to rise to the surface by different paths, which, inter alia, explains the contrasting magma compositions observed during a single eruption. Thus, based on the instrumental data, it is shown that the magmatic feeding structure of the Tolbachinsky Dol has a number of specific peculiarities and is significantly more complicated than has been previously thought about the areal volcanic fields.  相似文献   

13.
全球大洋混合层深度的计算及其时空变化特征分析   总被引:5,自引:0,他引:5       下载免费PDF全文
本文利用2005-2009年的全球网格化Argo数据,分别采用温度判据和密度判据计算了全球大洋混合层深度(Mixed Layer Depth, MLD),讨论了障碍层(Barrier Layer, BL)和补偿层(Compensated Layer, CL)对混合层深度计算的影响,得到了合成的混合层深度,并研究了其时空变化特征. 研究表明:(1)在赤道西太平洋(10°S -5°N,150°E-150°W),孟加拉湾,热带西大西洋(10°N-20°N,30°W-60°W)是障碍层高发区域. 冬季的北太平洋副热带区域(30°N附近)以及东北大西洋(40°N-60°N,0°-30°W)是补偿层发生的区域. (2) 在各个半球的夏季MLD都比较浅,在各个半球的冬季MLD则普遍比较深. 北太平洋和北大西洋的MLD的分布和变化比较相似,印度洋MLD受季风影响显著,呈现半年周期变化. 太平洋和大西洋的MLD 的经向分布大致呈现出"两端深,中间浅"的拱形特点. (3)混合层深度距平场EOF第一模态时间变化为周期的年信号,北太平洋和北大西洋、南大洋(尤其是南极绕流区)都是MLD变化剧烈的海域,第二模态显示全球大洋混合层深度距平存在着一个半年的变化周期.  相似文献   

14.
Despite the strong interaction between surface and subsurface waters, groundwater flow representation is often oversimplified in hydrological models. For instance, the interplay between local or shallow aquifers and deeper regional‐scale aquifers is typically neglected. In this work, a novel hillslope‐based catchment model for the simulation of combined shallow and deep groundwater flow is presented. The model consists of the hillslope‐storage Boussinesq (hsB) model representing shallow groundwater flow and an analytic element (AE) model representing deep regional groundwater flow. The component models are iteratively coupled via a leakage term based on Darcy's law, representing delayed recharge to the regional aquifer through a low conductivity layer. Simulations on synthetic single hillslopes and on a two‐hillslope open‐book catchment are presented, and the results are compared against a benchmark three‐dimensional Richards equation model. The impact of hydraulic conductivity, hillslope plan geometry (uniform, convergent, divergent), and hillslope inclination (0.2%, 5%, and 30%) under drainage and recharge conditions are examined. On the single hillslopes, good matches for heads, hydrographs, and exchange fluxes are generally obtained, with the most significant differences in outflows and heads observed for the 30% slope and for hillslopes with convergent geometry. On the open‐book catchment, cumulative outflows are overestimated by 1–4%. Heads in the confined and unconfined aquifers are adequately reproduced throughout the catchment, whereas exchange fluxes are found to be very sensitive to the hillslope drainable porosity. The new model is highly efficient computationally compared to the benchmark model. The coupled hsB/AE model represents an alternative to commonly used groundwater flow representations in hydrological models, of particular appeal when surface–subsurface exchanges, local aquifer–regional aquifer interactions, and low flows play a key role in a watershed's dynamics. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Comprehensive fog field observations were conducted during the winters of 2006–2009 at the Nanjing University of Information Science and Technology to study the macro and micro-physical structures and the physical–chemical processes of dense fogs in the area. The observations included features of the fog boundary layer, characteristics of fog water, the particle spectrum, the chemical composition of atmospheric aerosols, radiation and heat components, turbulence, meteorological elements (air temperature, pressure, wind speed, wind direction), and environmental monitoring. The fogs observed were divided into four types: radiation fog, advection–radiation fog, advection fog, and precipitation fog, according to the mechanisms and primary factors of the fog processes. Fog boundary-layer structures of different types and their corresponding characteristics were then studied. Fog boundary-layer features, temperature structures, wind fields, and fog maintenance are discussed. The results show that radiation fog had remarkable diurnal variation and formed mostly at sunset or midnight, and lifted after sunrise or at noon, and that advection–radiation fog and advection fog were of very long duration. Extremely dense fogs occurred only in radiation-related cases. Inversion in radiation fog was short-lived, disappearing 1 or 2 hours after sunrise or at noon, faster than that in advection–radiation fog. When wind direction reversed from easterly to westerly or from southerly to northerly, the fog became an extremely dense fog. Low-level jet at times impeded fog development, whereas at other times it encouraged fog continuance. The deep inversion was merely an essential condition for a thick fog layer; sufficient vapor supply was advantageous to the formation and maintenance of a deep fog layer.  相似文献   

16.
使用重力资料推断解释地壳深部构造,关键在于浅层影响的消除。作者广泛收集整理了研究区的浅层地质资料,用三维重力正演方法逐层消除其影响,获得了一些较好的结果。在正演计算中发现,一些构造在下第三系以下已基本消失;而另一些构造却在此深度才逐渐显露。我们认为,浅层地质资料越完整准确,则三维重力正演计算的结果也将越好。在地壳深部构造的研究中,此方法与人工地震测深得到的地壳厚度基本一致,而花费却很低廉。它也是研究深浅构造关系的一种好方法。   相似文献   

17.
Lunar seismicity and tectonics   总被引:1,自引:0,他引:1  
Seismic signals from 300–700 deep moonquakes and about four shallow moonquakes are detected by the long-period seismometers of two or more of the Apollo seismic stations annually. Deep-moonquake activity detected by the Apollo seismic network displays tidal periodicities of 0.5 and 1 month, 206 d and 6 a. Repetitive moonquakes from 60 hypocenters produce seismograms characteristic of each. At each hypocenter, moonquakes occur only within an active period of a few days during a characteristic phase of the monthly lunar tidal cycle. An episode of activity may contain up to four quakes from one hypocenter. Nearly equal numbers of hypocenters are active at opposite phases of the monthly cycle, accounting for the 0.5-month periodicity. The 0.5- and 1-month activity peaks occur near times of extreme latitudinal and longitudinal librations and earth-moon separation (EMS). The 206-d and 6-a periodicities in moonquake occurrence and energy release characteristics are associated with the phase variations between the librations and EMS. Because of the exact relationship between tidal phases and the occurrence of deep moonquakes from a particular hypocenter, it is possible to predict not only the occurrence times from month to month, often to within several hours, but also the magnitudes of the moonquakes from that hypocenter. The predicted occurrence of large A1 moonquakes in 1975, following a 3-a hiatus, confirms the correlation between A1-moonquake activity and the 6-a lunar tidal cycle and implies a similar resurgence for all of the deep moonquakes. Because no matching shallow moonquake signals have been identified to date, tidal periodicities cannot be identified for the individual sources. However, shallow moonquakes generally occur near the times of extreme librations and EMS and often near the same tidal phase as the closest deep moonquake epicenters. With several possible exceptations, the deep-moonquake foci located to date occur in three narrow belts on the nearside of the moon. The belts are 100–300 km wide, 1,000–2,500 km long and 800–1,000 km deep and define a global fracture system that intersects in central Oceanus Procellarum. A fourth active, although poorly defined, zone is indicated. The locations of 17 shallow-moonquake foci, although not as accurate as the deep foci, show fair agreement with the deep-moonquake belts. Focal depths calculated for the shallow moonquakes range from 0–200 km. Deep-moonquake magnitudes range from 0.5 to 1.3 on the Richter scale with a total energy release estimated to be about 1011 erg annually. The largest shallow moonquakes have magnitudes of 4–5 and release about 1015–1018 erg each. Tidal deformation of a rigid lunar lithosphere overlying a reduced-rigidity asthenosphere leads to stress and strain concentrations near the base of the lithosphere at the level of the deep moonquakes. Although tidal strain energy can account for the deep moonquakes in this model, it cannot account for the shallow moonquakes. The tidal stresses within the lunar lithosphere range from about 0.1 to 1 bar and are insufficient to generate moonquakes in unfractured rock, suggesting that lunar tides act as a triggering mechanism. The largest deep moonquakes of each belt usually occur near the same characteristic tidal phases corresponding to near minimum or maximum tidal stress, increasing tidal stress, and alignments of tidal shear stresses that correspond to thrust faulting along planes parallel to the moonquake belts and dipping 30–40°. With few exceptions, the shallow moonquakes occur at times of near minimum tidal stress conditions and increasing tidal stress that also suggest thrust faulting. The secular accumulation of strain energy required for the shallow moonquakes and implied by the uniform polarities of the deep moonquake signals probably results from weak convection. A convective mechanism would explain the close association between moonquake locations and the distribution of filled mare basins and thin lunar crust, the earth-side topographic bulge, and the ancient lunar magnetic field. The low level of lunar seismic activity and the occurrence of thrust faulting both at shallow and great depths implies that the moon is presently cooling and contracting at a slow rate.  相似文献   

18.
It is shown that magnetostrophic waves which are generated in the equatorial plane of the Earth’s core due to the instability of the equatorial jet and which propagate almost transversely to the rotational axis off the tangent cylinder, have a negative helicity in the northern hemisphere and positive helicity in the southern hemisphere. When the wave trains propagate through the regions with a constant azimuthal magnetic field caused by the Ω-effect, this helicity distribution induces an electromotive force (emf) (due to the α-effect), which may lead to the maintenance of the initial dipole field by the scenario of the α-Ω dynamo.  相似文献   

19.
Peatlands are globally important long-term sinks of carbon, however there is concern that enhanced peat decomposition and moss moisture stress due to climate change mediated drought will reduce moss productivity making these ecosystems vulnerable to carbon loss and associated long-term degradation. Peatlands are resilient to summer drought moss stress because of negative ecohydrological feedbacks that generally maintain a wet peat surface, but where feedbacks may be contingent on peat depth. We tested this ‘survival of the deepest’ hypothesis by examining water table (WT) position, near-surface moisture content, and soil water tension in peatlands that differ in size, peat depth, and catchment area during a summer drought. All shallow sites (<40 cm depth) lost their WT (i.e., the groundwater well was dry) for considerable time during the drought period. Near-surface soil water tension increased dramatically at shallow sites following WT loss, increasing ~5–7.5× greater at shallow sites compared to deep sites (≥40 cm depth). During a mid-summer drought intensive field survey, we found that 60–67% of plots at shallow sites exceeded a 100 mb tension threshold used to infer moss water stress. Unlike the shallow sites, tension typically did not exceed this 100 mb threshold at the deep sites. Using species dependent water content – chlorophyll fluorescence thresholds and relations between volumetric water content and WT depth, Monte Carlo simulations suggest that moss had nearly twice the likelihood of being stressed at shallow sites (0.38 ± 0.24) compared to deep sites (0.22 ± 0.18). This study provides evidence that mosses in shallow peatland may be particularly vulnerable to warmer and drier climates in the future, but where species composition may play an important role. We argue that a critical ‘threshold’ peat depth specific for different hydrogeological and hydroclimatic regions can be used to assess what peatlands are especially vulnerable to climate change mediated drought.  相似文献   

20.
A two-dimensional (2D) unsteady simulation model is applied to the problem of a submerged warm water discharge into a stratified lake or reservoir with an ice cover. Numerical simulations and analyses are conducted to gain insight into large-scale convective recirculation and flow processes in a cold waterbody induced by a buoyant jet. Jet behaviors under various discharge temperatures are captured by directly modeling flow and thermal fields. Flow structures and processes are described by the simulated spatial and temporal distributions of velocity and temperature in various regions: deflection, recirculation, attachment, and impingement. Some peculiar hydrothermal and dynamic features, e.g. reversal of buoyancy due to the dilution of a warm jet by entraining cold ambient water, are identified and examined. Simulation results show that buoyancy is the most important factor controlling jet behavior and mixing processes. The inflow boundary is treated as a liquid wall from which the jet is offset. Similarity and difference in effects of boundaries perpendicular and parallel to flow, and of buoyancy on jet attachment and impingement, are discussed. Symmetric flow configuration is used to de-emphasize the Coanda effect caused by offset.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号