首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Abstract

In this, the first part of a three part study, we develop a model for the theoretical analysis of 3‐dimensional internal gravity waves in atmospheres with arbitrary distributions of basic temperature, molecular weight, viscosity and conductivity (both eddy and molecular), Newtonian cooling, anisotropic hydromagnetic (ion) drag, and thermal excitation. Attention is given to the physical bases for our models, and a detailed outline is given of the numerical method used to solve the resulting system of equations.

As an application of the above development, we study the ability of five particular gravity waves (chosen for their observed importance in the neighborhood of 90–100 km—four of the waves are simulated tidal modes) to propagate from 90 km into the thermosphere. We choose to define the thermosphere as that portion of the atmosphere above the turbopause (ca. 110 km). Among the most significant results to emerge are the following: (i) the effects of molecular viscosity and conductivity appear to be more significant than the effects of hydromagnetic drag, and (ii) while most waves considered are significantly attenuated somewhere between 90 Ian and the thermosphere, the main semidiurnal tidal mode is not. In fact, semidiurnal temperature oscillations of only a few degrees amplitude at 90 km can give rise to oscillations of over a hundred degrees amplitude in the exosphere.  相似文献   

2.
The reflection/transmission laws (R/T laws) of plane waves at a plane interface between two homogeneous anisotropic viscoelastic (dissipative) halfspaces are discussed. Algorithms for determining the slowness vectors of reflected/transmitted plane waves from the known slowness vector of the incident wave are proposed. In viscoelastic media, the slowness vectors of plane waves are complex-valued, p = P + iA, where P is the propagation vector, and A the attenuation vector. The proposed algorithms may be applied to bulk plane waves (A = 0), homogeneous plane waves (A0, P and A parallel), and inhomogeneous plane waves (A0, P and A non-parallel). The manner, in which the slowness vector is specified, plays an important role in the algorithms. For unrestricted anisotropy and viscoelasticity, the algorithms require an algebraic equation of the sixth degree to be solved in each halfspace. The degree of the algebraic equation decreases to four or two for simpler cases (isotropic media, plane waves in symmetry planes of anisotropic media). The physical consequences of the proposed algorithms are discussed in detail. vcerveny@seis.karlov.mff.cuni.cz  相似文献   

3.
4.
Abstract

Starting from Euler's equations of motion a nonlinear model for internal waves in fluids is developed by an appropriate scaling and a vertical integration over two layers of different but constant density. The model allows the barotropic and the first baroclinic mode to be calculated. In addition to the nonlinear advective terms dispersion and Coriolis force due to the Earth's rotation are taken into account. The model equations are solved numerically by an implicit finite difference scheme. In this paper we discuss the results for ideal basins: the effects of nonlinear terms, dispersion and Coriolis force, the mechanism of wind forcing, the evolution of Kelvin waves and the corresponding transport of particles and, finally, wave propagation over variable topography. First applications to Lake Constance are shown, but a detailed analysis is deferred to a second paper [Bauer et al. (1994)].  相似文献   

5.
Abstract

In order to show that aperiodic magnetic cycles, with Maunder minima, can occur naturally in nonlinear hydromagnetic dynamos, we have investigated a simple nonlinear model of an oscillatory stellar dynamo. The parametrized mean field equations in plane geometry have a Hopf bifurcation when the dynamo number D=1, leading to Parker's dynamo waves. Including the nonlinear interaction between the magnetic field and the velocity shear results in a system of seven coupled nonlinear differential equations. For D>1 there is an exact nonlinear solution, corresponding to periodic dynamo waves. In the regime described by a fifth order system of equations this solution remains stable for all D and the velocity shear is progressively reduced by the Lorentz force. In a regime described by a sixth order system, the solution becomes unstable and successive transitions lead to chaotic behaviour. Oscillations are aperiodic and modulated to give episodes of reduced activity.  相似文献   

6.
The observation of the fault-zone trapped waves was conducted using a seismic line with dense receivers across surface rupture zone of the M=8.1 Kunlun Mountain earthquake. The fault zone trapped waves were separated from seismograms by numerical filtering and spectral analyzing. The results show that: a) Both explosion and earthquake sources can excite fault-zone trapped waves, as long as they locate in or near the fault zone; b) Most energy of the fault-zone trapped waves concentrates in the fault zone and the amplitudes strongly decay with the distance from observation point to the fault zone; c) Dominant frequencies of the fault-zone trapped waves are related to the width of the fault zone and the velocity of the media in it. The wider the fault zone or the lower the velocity is, the lower the dominant frequencies are; d) For fault zone trapped waves, there exist dispersions; e) Based on the fault zone trapped waves observed in Kunlun Mountain Pass region, the width of the rupture plane is deduced to be about 300 m and is greater than that on the surface. Foundation item: Joint Earthquake Science Foundation of China (201001). Contribution No. RCEG200305, Research Center of Exploration Geophysics, China Earthquake Administration.  相似文献   

7.
Aki (1969) first modeled coda waves of a local earthquake as a superposition of scattered surface waves. This paper attempts to clarify the constituents of surface-wave coda at long periods at very long lapse times. For a large earthquake of magnitude 7 or larger, vertical component oscillation in periods from 90 to 180 s persists for more than 20 hours from the earthquake origin time. Although the early portion of the coda envelope is successfully modeled by assuming incoherent scattered Rayleigh waves by heterogeneities distributed all over the Earth, the later potion of the observed coda envelope (roughly later than 35,000 s) has systematically larger amplitude than theoretical prediction. To clarify the cause of this discrepancy, we studied the constituents of vertical-component seismograms of three large earthquakes recorded by the F-net in Japan using the f-k power spectral analysis. We found that the direct and scattered fundamental-mode Rayleigh waves of velocity about 3.7 km/s are dominant in the earlier part of each envelope. It justifies the use of a scattering model of the fundamental Rayleigh waves for synthesizing the envelope. At lapse times later than 20,000 s–35,000 s, higher modes with phase velocities around 20 km/s become dominant. The transition time to the dominance of higher modes is found to become earlier for a deeper focus earthquake. The small coda attenuation factor from (1.90±0.23) × 10−3 to (2.38±0.32) × 10−3 estimated from later coda envelopes recorded at IRIS stations distributed worldwide also agrees with the attenuation factor of spheroidal modes according to PREM. We may interpret that higher mode waves are uniformly distributed at large lapse time due to large velocity dispersion and/or scattering and they dominate over the fundamental mode waves because of smaller attenuation in the lower mantle. The coda attenuation measurement proposed by Aki is found to be useful even for long periods and at very large lapse times.  相似文献   

8.
Low frequency electrostatic waves are studied in magnetized plasmas with an electron temperature which varies with position in a direction perpendicular to the magnetic field. For wave frequencies below the ion cyclotron frequency, the waves need not follow any definite dispersion relation. Instead a band of phase velocities is allowed, with a range of variation depending on the maximum and minimum values of the electron temperature. Simple model equations are obtained for the general case which can be solved to give the spatial variation of a harmonically time varying potential. A simple analytical model for the phenomenon is presented and the results are supported by numerical simulations carried out in a 2.5-dimensional particle-in-cell numerical simulation. We find that when the electron temperature is striated along B0 and low frequency waves (ci) are excited in this environment, then the intensity of these low frequency waves will be striated in a manner following the electron temperature striations. High frequency ion acoustic waves (ci) will on the other hand have a spatially more uniform intensity distribution.  相似文献   

9.
In a previous paper, Caillol [Geophys. Astrophys. Fluid Dyn., 2014, 108] investigated the steady nonlinear vortical structure of a singular vortex Rossby mode that has survived to a strong critical-layer-like interaction with a linearly stable, columnar, axisymmetric and dry vortex. We presented a general theory for this wave/mean flow interaction through the nonlinear critical layer theory and calculated the mean azimuthal and axial winds induced at the critical radius at the end of this interaction in the final stage. We here apply that theory to rapidly rotating geophysical vortices: tropical cyclones, cold-air mesocyclones and tornadoes. We find that the numerous assumptions invoked in that paper agree well with the reality of those intense vortices. We also find that in spite of a lack of moist-convection modelling, this dry vortex is fairly well accelerated at the critical radius by such a shear wave with a magnitude of order the square root of the damped-wave amplitude. The intensification level strongly depends on the aspect ratio, height of the system: rapid vortex and parent vortex, over core radius. The thinner the vortex is, the sharper the intensification is. This result is in sharp contrast to the numerous numerical simulations on VR wave/vortex interactions that yield a much smaller intensification of order the square of the wave amplitude. This weakly nonlinear approach nevertheless fails to model small vertical wavelength VR wave/vortex interactions for their related asymptotic expansions are divergent and for they yield strongly nonlinear VR waves coupled with evolving critical layers whose extent can no longer be considered as thin.  相似文献   

10.
Breakthrough point source model, extended earthquake source model is used to calculate more seismic source parameters in this paper. We express seismic source using higher degree moment tensors, to reduce a large number terms originally presenting in higher degree moment tensor representation, Haskell rupture model is used. We inverted the source parameters of Mani earthquake in Tibet using broad-band body wave of 32 stations of Global Seismograph Network (GSN), the results show that it is a strike-slip fault, rupture direction is 75° , rupture duration is 19 s, the fault plan is f =77° , d =88° , l =0° , the auxiliary plane is f =347° , d =90° , l =178° , and the fault dimension is 47 km′ 28 km. These results will give new quantitative data for earth dynamics and have practical meaning for seismic source tomography research.  相似文献   

11.
For transient, high frequency, and pulse like excitation of structures in the near field of strong earthquakes, the classical design approach based on relative response spectrum and mode superposition may not be conservative. For such excitations, it is more natural to use wave propagation methods. In this paper (Part I), we review several two-dimensional wave propagation models of buildings and show results for theoretical dispersion curves computed for these models. We also estimate the parameters of these models that would correspond to a seven-story reinforced concrete building in Van Nuys, California. Ambient vibration tests data for this building imply vertical shear wave velocity βz=112 m/s and anisotropy factor βxz=0.55 for NS vibrations, and βz=88 m/s and βxz=1 for EW vibrations. The velocity of shear waves propagating through the slabs is estimated to be about 2000 m/s. In the companion paper (Part II), we estimate phase velocities of vertically and horizontally propagating waves between seven pairs of recording points in the building using recorded response to four earthquakes.  相似文献   

12.
Abstract

We introduce a general expansion approach to obtain a fully consistent closed set of magnetohydrodynamic equations in two independent variables, which is particularly useful to describe axially symmetric, time-dependent problems with weak variation of all quantities in the radial direction. This is done by considering the hierarchy of expanded magnetofluid equations in cylindrical coordinates and equating terms with equal powers in the radial coordinate r. From geometrical considerations it is shown that the radial expansions of the pertaining physical quantities are either even series or odd series in r; this introduces a significant reduction in the number of variables and equations. The closure of the system is provided by appropriate boundary conditions. Among other possible applications, the method is relevant for the analysis of structure and dynamics of magnetic field concentrations in stellar atmospheres.  相似文献   

13.
Source extent parameters of the 1988 Lancang earthquake (M s=7.6) were estimated by computing the second-central moment of displacement pulses of far field long period SH waves. We inverted the source duration T, the fault length L and the directivity parameter D by the least squares, and obtained that T=11.77 s, D=15.05 km·s, and L=70.94 km. We also find that this event is a symmetrically bilateral rupture and fault segments in two opposite rupture directions have the same value of 35 km in length. Combining analysis of aftershock distribution, the results would imply that there is an area in the joint part of the rupture area of two main shocks, which is not broken yet during the main shocks. Due to the dislocation accompanied during the main shocks, the strain would be rearranged. The joint part has enough strength to accumulate enough strain energy to excite a larger aftershock.  相似文献   

14.
It is becoming increasingly clear that electron thermal effects have to be taken into account when dealing with the theory of ionospheric instabilities in the high-latitude ionosphere. Unfortunately, the mathematical complexity often hides the physical processes at work. We follow the limiting cases of a complex but systematic generalized fluid approach to get to the heart of the thermal processes that affect the stability of E region waves during electron heating events. We try to show as simply as possible under what conditions thermal effects contribute to the destabilization of strongly field-aligned (zero aspect angle) Farley-Buneman modes. We show that destabilization can arise from a combination of (1) a reduction in pressure gradients associated with temperature fluctuations that are out of phase with density fluctuations, and (2) thermal diffusion, which takes the electrons from regions of enhanced temperatures to regions of negative temperature fluctuations, and therefore enhanced densities. However, we also show that, contrary to what has been suggested in the past, for modes excited along the E0 × B direction thermal feedback decreases the growth rate and raises the threshold speed of the Farley-Buneman instability. The increase in threshold speed appears to be important enough to explain the generation of Type IV waves in the high-latitude ionosphere.  相似文献   

15.
We analyze the anelasticity of the earth using group delays of P-body waves of deep (>200 km) events in the period range 4–32 s for epicentral distances of 5–85 degrees. We show that Time Frequency Analysis (TFA), which is usually applied to very dispersive surface waves, can be applied to the much less dispersive P-body waves to measure frequency-dependent group delays with respect to arrival times predicted from the CMT centroid location and PREM reference model. We find that the measured dispersion is due to: (1) anelasticity (described by the P-wave quality factor Q p ), (2) ambient noise, which results in randomly distributed noise in the dispersion measurements, (3) interference with other phases (triplications, crustal reverberations, conversions at deep mantle boundaries), for which the total dispersion depends on the amplitude and time separation between the different phases, and (4) the source time function, which is dispersive when the wavelet is asymmetrical or contains subevents. These mechanisms yield dispersion ranging in the order of one to 10 seconds with anelasticity responsible for the more modest dispersion. We select 150 seismograms which all have small coda amplitudes extending to ten percent of the main arrival, minimizing the effect of interference. The main P waves have short durations, minimizing effects of the source. We construct a two-layer model of Q p with an interface at 660 km depth and take Q p constant with period. Our data set is too small to solve for a possible frequency dependence of Q p . The upper mantle Q 1 is 476 [299–1176] and the lower mantle Q 2 is 794 [633–1064] (the bracketed numbers indicate the 68 percent confidence range of Q p –1). These values are in-between the AK135 model (Kennett et al., 1995) and the PREM model (Dziewonski and Anderson, 1981) for the lower mantle and confirm results of Warren and Shearer (2000) that the upper mantle is less attenuating than PREM and AK135.  相似文献   

16.
The theoretical acceleration spectrum of observation site has been obtained from source acceleration spectrum derived from scaling law, using attenuation modelQ=Q ν f η . A comparison of a set of theoretical acceleration spectra with observation spectra has been made, and we have obtained the attenuation model for observation site and seismic moment magnitude. We obtain thatQ o=300,η=0.25 for Wuqia area, Xinjing Zizhizhou, and seismic moment magnitudes of 18 greater aftershocks of Wuqia earthquake occurred in 1985. In order to obtain seismic moment magnitued conveniently, three functional tables of acceleration spectra at 1Hz as the distances for variousQ value have been made. The seismic moment magnitude can be quickly measured from acceleration spectrum at 1Hz according to these tables (epicenter has to be known). The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,14, 435–445, 1992.  相似文献   

17.
Abstract

We investigate the evolution of a parallel shear flow which has embedded within it a thin, symmetrically positioned layer of stable density stratification. The primary instability of this flow may deliver either Kelvin-Helmholtz waves or Holmboe waves, depending on the strength of the stratification. In this paper we describe a sequence of numerical simulations which reveal for the first time the behavior of the Holmboe wave at finite amplitude and clarify its structural relationship to the Kelvin-Helmholtz wave.

The flows investigated have initial profiles of horizontal velocity and Brunt-Vaisala frequency given in nondimensional form by U = tanhζ and N 2=J sech2 RCζ, respectively, in which ζ is a nondimensional vertical coordinate, J is the value of the gradient Richardson number N 2/(dU/dζ)2 at ζ=0, and R = 3. Linear stability theory predicts that the flow will develop Holmboe instability when J exceeds some critical value Jc' and Kelvin-Helmholtz instability when J is less than Jc; Jc being approximately equal to 0.25 when R=3. We simulate the evolution of flows with J=0.9, J=0.45, and J = 0.22, and find that the first two simulations yield Holmboe waves while the third yields a Kelvin-Helmholtz wave, as predicted.

The Holmboe wave is a superposition of two oppositely propagating disturbances, a right-going mode whose energy is concentrated in the region above the centre of the shear layer, and a left-going mode whose energy is concentrated below the centre of the shear layer. The horizontal speed of the modes varies periodically, and the variations are most pronounced at low values of J. If J ζ Jc' the minimum horizontal speed of the modes vanishes and the modes become phase-locked, whereupon they roll up to form a Kelvin-Helmholtz wave as predicted by Holmboe (1962). When J is moderately greater than Jc' the Holmboe wave ejects long, thin plumes of fluid into the regions above and below the shear layer, as has often been observed in laboratory experiments, and we examine in detail the mechanism by which this occurs.  相似文献   

18.
A method of wave mode determination, which was announced in Balikhin and Gedalin, is applied to AMPTE UKS and AMPTE IRM magnetic field measurements downstream of supercritical quasiperpendicular shock. The method is based on the fact that the relation between phase difference of the waves measured by two satellites, Doppler shift equation, the direction of the wave propagation are enough to obtain the dispersion equation of the observed waves. It is shown that the low frequency turbulence mainly consists of waves observed below 1 Hz with a linear dependence between the absolute value of wave vector |k| and the plasma frame wave frequency. The phase velocity of these waves is close to the phase velocity of intermediate waves Vint = Vacos().  相似文献   

19.
Abstract

In a rapidly rotating, electrically conducting fluid we investigate the thermal stability of the fluid in the presence of an imposed toroidal magnetic field and an imposed toroidal differential rotation. We choose a magnetic field profile that is stable. The familiar role of differential rotation is a stabilising one. We wish to examine the less well known destabilising effect that it can have. In a plane layer model (for which we are restricted to Roberts number q = 0) with differential rotation, U = sΩ(z)1 ?, no choice of Ω(z) led to a destabilising effect. However, in a cylindrical geometry (for which our model permits all values of q) we found that differential rotations U = sΩ(s)1 ? which include a substantial proportion of negative gradient (dΩ/ds ≤ 0) give a destabilising effect which is largest when the magnetic Reynolds number R m = O(10); the critical Rayleigh number, Ra c, is about 7% smaller at minimum than at Rm = 0 for q = 106. We also find that as q is reduced, the destabilising effect is diminished and at q = 10?6, which may be more appropriate to the Earth's core, the effect causes a dip in the critical Rayleigh number of only about 0.001%. This suggests that we see no dip in the plane layer results because of the q = 0 condition. In the above results, the Elsasser number A = 1 but the effect of differential rotation is also dependent on A. Earlier work has shown a smooth transition from thermal to differential rotation driven instability at high A [A = O(100)]. We find, at intermediate A [A = O(10)], a dip in the Rac vs. Rm curve similar to the A = 1 case. However, it has Rac ≤ 0 at its minimum and unlike the results for high A, larger values of Rm result in a restabilisation.  相似文献   

20.
Abstract

The stratification profile of the Earth's magnetofluid outer core is unknown, but there have been suggestions that its upper part may be stably stratified. Braginsky (1984) suggested that the magnetic analog of Rossby (planetary) waves in this stable layer (the ‘H’ layer) may be responsible for a portion of the short-period secular variation. In this study, we adopt a thin shell model to examine the dynamics of the H layer. The stable stratification justifies the thin-layer approximations, which greatly simplify the analysis. The governing equations are then the Laplace's tidal equations modified by the Lorentz force terms, and the magnetic induction equation. We linearize the Lorentz force in the Laplace's tidal equations and the advection term in the magnetic induction equation, assuming a zeroth order dipole field as representative of the magnetic field near the insulating core-mantle boundary. An analytical β-plane solution shows that a magnetic field can release the equatorial trapping that non-magnetic Rossby waves exhibit. A numerical solution to the full spherical equations confirms that a sufficiently strong magnetic field can break the equatorial waveguide. Both solutions are highly dissipative, which is a consequence of our necessary neglect of the induction term in comparison with the advection and diffusion terms in the magnetic induction equation in the thin-layer limit. However, were one to relax the thin-layer approximations and allow a radial dependence of the solutions, one would find magnetic Rossby waves less damped (through the inclusion of the induction term). For the magnetic field strength appropriate for the H layer, the real parts of the eigenfrequencies do not change appreciably from their non-magnetic values. We estimate a phase velocity of the lowest modes that is rather rapid compared with the core fluid speed typically presumed from the secular variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号