首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 743 毫秒
1.
We present an improved solution method for modeling thermally driven convection and dynamo in a rotating spherical shell. In this method, we introduce a high-order three-point combined compact difference scheme (CCDS) on non-uniform grid points in radius, while spherical harmonic expansion is conventionally performed in the angular direction. The governing equations in the spectral form are time-stepped together with the implicit CCDS up to the second derivative. To improve stability of the scheme, a boundary closure scheme is developed on non-uniform mesh. Numerical comparison with a published benchmark solution at moderate Ekman and Rayleigh numbers demonstrates that accuracy and convergence of the CCDS is fairly good and superior to the existing finite difference scheme using more stencil. With this scheme, we could more accurately solve problems of convection and also dynamo action in planetary core with less grid points.  相似文献   

2.
The magnetohydrodynamic dynamo problem is solved for an electrically conducting spherical fluid shell with spherically symmetric distributions of gravity and heat sources. The dynamics of motions generated by thermal buoyancy are dominated by the effects of rotation of the fluid shell. Dynamos are found for low and intermediate values of the Taylor number, T ? 105, if the scale of the nonaxisymmetric component of the velocity field is sufficiently small. The generation of magnetic fields of quadrupolar symmetry is preferred at Rayleigh numbers close to the critical value Rc for onset of convection. As the Rayleigh number increases, the generation of dipolar magnetic fields becomes preferred.  相似文献   

3.
Abstract

A magnetohydrodynamic, dynamo driven by convection in a rotating spherical shell is supposed to have averages that are independent of time. Two cases are considered, one driven by a fixed temperature difference R and the other by a given internal heating rate Q. It is found that when q, the ratio of thermal conductivity to magnetic diffusivity, is small, R must be of order q ?4/3 and Q of order q ?2 for dynamo action to be possible; q is small in the Earth's core, so it is hoped that the criteria will prove useful in practical as well as theoretical studies of dynamic dynamos. The criteria can be further strengthened when the ohmic dissipation of the field is significant in the energy balance. The development includes the derivation of two necessary conditions for dynamo action, both based on the viscous dissipation rate of the velocity field that drives the dynamo.  相似文献   

4.
It has been suggested that there exists a stably stratified electrically conducting layer at the top of the Earth's outer fluid core and that lateral temperature gradients in the lower mantle is capable of a driving thermal-wind-type flow near the core–mantle boundary. We investigate how such a flow in a stable layer could influence the geomagnetic field and the geodynamo using a very simple two-dimensional kinematic dynamo model in Cartesian geometry. The dynamo has four layers representing the inner core, convecting lower outer core, stable upper core, and insulating mantle. An α2 dynamo operates in the convecting outer core and a horizontal shear flow is imposed in the stable layer. Exact dynamo solutions are obtained for a range of parameters, including different conductivities for the stable layer and inner core. This allows us to connect our solutions with known, simpler solutions of a single-layer α2 dynamo, and thereby assess the effects of the extra layers. We confirm earlier results that a stable, static layer can enhance dynamo action. We find that shear flows produce dynamo wave solutions with a different spatial structure from the steady α2 dynamos solutions. The stable layer controls the behavior of the dynamo system through the interface conditions, providing a new means whereby lateral variations on the boundary can influence the geomagnetic field.  相似文献   

5.
板块运动是地幔对流的主要证据之一.同时,作为地球动力系统中一个相对独立部分,板块自身的存在和运动对地幔内部物质的流动形态有巨大影响.地幔内部的流动由两部分组成:一是由内部非绝热温度差异造成的自由对流解;另一部分是由在地表运动的板块所激发.作为系列工作的第一部分,本文研究球腔中的自由热对流问题.得到了对地幔对流研究有实际意义的下边界为自由、上边界为刚性情况下的临界瑞利数值,不同的瑞利数时球腔内流场和温度场的分布形态等.  相似文献   

6.
As a step towards a physically realistic model of a fast dynamo, we study numerically a kinematic dynamo driven by convection in a rapidly rotating cylindrical annulus. Convection maintains the quasi-geostrophic balance whilst developing more complicated time-dependence as the Rayleigh number is increased. We incorporate the effects of Ekman suction and investigate dynamo action resulting from a chaotic flow obtained in this manner. We examine the growth rate as a function of magnetic Prandtl number Pm, which is proportional to the magnetic Reynolds number. Even for the largest value of Pm considered, a clearly identifiable asymptotic behaviour is not established. Nevertheless the available evidence strongly suggests a fast dynamo process.  相似文献   

7.
We study magnetic field variations in numerical models of the geodynamo, with convection driven by nonuniform heat flow imposed at the outer boundary. We concentrate on cases with a boundary heat flow pattern derived from seismic anomalies in the lower mantle. At a Rayleigh number of about 100 times critical with respect to the onset of convection, the magnetic field is dominated by the axial dipole component and has a similar spectral distribution as Earth’s historical magnetic field on the core-mantle boundary (CMB). The time scales of variation of the low-order Gauss coefficients in the model agree within a factor of two with observed values. We have determined the averaging time interval needed to delineate deviations from the axial dipole field caused by the boundary heterogeneity. An average over 2000 years (the archeomagnetic time scale) is barely sufficient to reveal the long-term nondipole field. The model shows reduced scatter in virtual geomagnetic pole positions (VGPs) in the central Pacific, consistent with the weak secular variation observed in the historical field. Longitudinal drift of magnetic field structures is episodic and differs between regions. Westward magnetic drift is most pronounced beneath the Atlantic in our model. Although frozen flux advection by the large-scale flow is generally insufficient to explain the magnetic drift rates, there are some exceptions. In particular, equatorial flux spot pairs produced by expulsion of toroidal magnetic field are rapidly advected westward in localized equatorial jets which we interpret as thermal winds.  相似文献   

8.
A recent dynamo model for Mercury assumes that the upper part of the planet's fluid core is thermally stably stratified because the temperature gradient at the core–mantle boundary is subadiabatic. Vigorous convection driven by a superadiabatic temperature gradient at the boundary of a growing solid inner core and by the associated release of light constituents takes place in a deep sub-layer and powers a dynamo. These models have been successful at explaining the observed weak global magnetic field at Mercury's surface. They have been based on the concept of codensity, which combines thermal and compositional sources of buoyancy into a single variable by assuming the same diffusivity for both components. Actual diffusivities in planetary cores differ by a large factor. To overcome the limitation of the codensity model, we solve two separate transport equations with different diffusivities in a double diffusive dynamo model for Mercury. When temperature and composition contribute comparable amounts to the buoyancy force, we find significant differences to the codensity model. In the double diffusive case convection penetrates the upper layer with a net stable density stratification in the form of finger convection. Compared to the codensity model, this enhances the poloidal magnetic field in the nominally stable layer and outside the core, where it becomes too strong compared to observation. Intense azimuthal flow in the stable layer generates a strong axisymmetric toroidal field. We find in double diffusive models a surface magnetic field of the observed strength when compositional buoyancy plays an inferior role for driving the dynamo, which is the case when the sulphur concentration in Mercury's core is only a fraction of a percent.  相似文献   

9.
Intermediate dynamos are axisymmetric, spherical models that evade Cowling's theorem by invoking an α-effect to create the meridional magnetic field from the zonal. Usually the energy source maintaining the motions is a specified thermal wind, but here the dynamo is driven by the buoyancy created by a uniform distribution of heat sources. It has been argued by Braginsky and Meytlis (this journal, vol. 55, 1990) that, in a rapidly rotating, strongly magnetic system such as the Earth's core, heat is transported principally by a small-scale turbulence that is highly anisotropic. They conclude that the diffusion of heat parallel to the rotation axis is then significantly greater than it is in directions away from that axis. A preliminary study of the consequences of this idea is reported here. Solutions are derived numerically using both isotropic and non-isotropic thermal diffusivity tensors, and the results are compared. It is shown that even a small degree of anisotropy can materially alter the character of the dynamo.  相似文献   

10.
Abstract

A spherical αω-dynamo is studied for small values of the viscous coupling parameter ε ~ v1/2, paying attention particularly to large dynamo numbers. The present study is a follow-up of the work by Hollerbach et al. (1992) with their choice of α-effect and Archimedean wind including also the constraint of magnetic field symmetry (or antisymmetry) due to equatorial plane. The magnetic field scaled by ε1/2 is independent of ε in the solutions for dynamo numbers smaller than a certain value of D b (the Ekman state) which are represented by dynamo waves running from pole to equator or vice-versa. However, for dynamo numbers larger than D b the solution bifurcates and subsequently becomes dependent on ε. The bifurcation is a consequence of a crucial role of the meridional convection in the mechanism of magnetic field generation. Calculations suggest that the bifurcation appears near dynamo number about 33500 and the solutions for larger dynamo numbers and ε = 0 become unstable and fail, while the solutions for small but non-zero ε are characterized by cylindrical layers of local maximum of magnetic field and sharp changes of geostrophic velocity. Our theoretical analysis allows us to conclude that our solution does not take the form of the usual Taylor state, where the Taylor constraint should be satisfied due to the special structure of magnetic field. We rather obtained the solution in the form of a “weak” Taylor state, where the Taylor constraint is satisfied partly due to the amplitude of the magnetic field and partly due to its structure. Calculations suggest that the roles of amplitude and structure are roughly fifty-fifty in our “weak” Taylor state solution and thus they can be called a Semi-Taylor state. Simple estimates show that also Ekman state solutions can be applicable in the geodynamo context.  相似文献   

11.
Investigation of magnetic field generation by convective flows is carried out for three values of kinematic Prandtl number: P = 0.3, 1 and 6.8. We consider Rayleigh–Bénard convection in Boussinesq approximation assuming stress-free boundary conditions on horizontal boundaries and periodicity with the same period in the x and y directions. Convective attractors are modelled for increasing Rayleigh numbers for each value of the kinematic Prandtl number. Linear and non-linear dynamo action of these attractors is studied for magnetic Prandtl numbers P m ≤ 100. Flows, which can act as magnetic dynamos, have been found for all the three considered values of P, if the Rayleigh number R is large enough. The minimal R, for which of magnetic field generation occurs, increases with P. The minimum (over R) of critical Pm for magnetic field generation in the kinematic regime is admitted for P = 0.3. Thus, our study indicates that smaller values of P are beneficial for magnetic field generation.  相似文献   

12.
We are using a three-dimensional convection-driven numerical dynamo model without hyperdiffusivity to study the characteristic structure and time variability of the magnetic field in dependence of the Rayleigh number (Ra) for values up to 40 times supercritical. We also compare a variety of ways to drive the convection and basically find two dynamo regimes. At low Ra, the magnetic field at the surface of the model is dominated by the non-reversing axial dipole component. At high Ra, the dipole part becomes small in comparison to higher multipole components. At transitional values of Ra, the dynamo vacillates between the dipole-dominated and the multipolar regime, which includes excursions and reversals of the dipole axis. We discuss, in particular, one model of chemically driven convection, where for a suitable value of Ra, the mean dipole moment and the temporal evolution of the magnetic field resemble the known properties of the Earth’s field from paleomagnetic data.  相似文献   

13.
Abstract

We describe nonlinear time-dependent numerical simulations of whole mantle convection for a Newtonian, infinite Prandtl number, anelastic fluid in a three-dimensional spherical shell for conditions that approximate the Earth's mantle. Each dependent variable is expanded in a series of 4,096 spherical harmonics to resolve its horizontal structure and in 61 Chebyshev polynomials to resolve its radial structure. A semiimplicit time-integration scheme is used with a spectral transform method. In grid space there are 61 unequally-spaced Chebyshev radial levels, 96 Legendre colatitudinal levels, and 192 Fourier longitudinal levels. For this preliminary study we consider four scenarios, all having the same radially-dependent reference state and no internal heating. They differ by their radially-dependent linear viscous and thermal diffusivities and by the specified temperatures on their isothermal, impermeable, stress-free boundaries. We have found that the structure of convection changes dramatically as the Rayleigh number increases from 105 to 106 to 107. The differences also depend on how the Rayleigh number is increased. That is, increasing the superadiabatic temperature drop, δT, across the mantle produces a greater effect than decreasing the diffusivities. The simulation with a Rayleigh number of 107 is approximately 10,000 times critical, close to estimates of that for the Earth's mantle. However, although the velocity structure for this highest Rayleigh number scenario may be adequately resolved, its thermodynamic structure requires greater horizontal resolution. The velocity and thermodynamic structures of the scenarios at Rayleigh numbers of 105 and 106 appear to be adequately resolved. The 105 Rayleigh number solution has a small number of broad regions of warm upflow embedded in a network of narrow cold downflow regions; whereas, the higher Rayleigh number solutions (with large δT) have a large number of small hot upflow plumes embedded in a broad weak background of downflow. In addition, as would be expected, these higher Rayleigh number solutions have thinner thermal boundary layers and larger convective velocities, temperatures perturbations, and heat fluxes. These differences emphasize the importance of developing even more realistic models at realistic Rayleigh numbers if one wishes to investigate by numerical simulation the type of convection that occurs in the Earth's mantle.  相似文献   

14.
Abstract

This paper develops further a convection model that has been studied several times previously as a very crude idealization of planetary core dynamics. A plane layer of electrically-conducting fluid rotates about the vertical in the presence of a magnetic field. Such a field can be created spontaneously, as in the Childress—Soward dynamo, but here it is uniform, horizontal and externally-applied. The Prandtl number of the fluid is large, but the Ekman, Elsasser and Rayleigh numbers are of order unity, as is the ratio of thermal to magnetic diffusivity. Attention is focused on the onset of convection as the temperature difference applied across the layer is increased, and on the preferred mode, i.e., the planform and time-dependence of small amplitude convection. The case of main interest is the layer confined between electrically-insulating no-slip walls, but the analysis is guided by a parallel study based on illustrative boundary conditions that are mathematically simpler.  相似文献   

15.
Abstract

Finite amplitude solutions for convection in a rotating spherical fluid shell with a radius ratio of η=0.4 are obtained numerically by the Galerkin method. The case of the azimuthal wavenumber m=2 is emphasized, but solutions with m=4 are also considered. The pronounced distinction between different modes at low Prandtl numbers found in a preceding linear analysis (Zhang and Busse, 1987) is also found with respect to nonlinear properties. Only the positive-ω-mode exhibits subcritical finite amplitude convection. The stability of the stationary drifting solutions with respect to hydrodynamic disturbances is analyzed and regions of stability are presented. A major part of the paper is concerned with the growth of magnetic disturbances. The critical magnetic Prandtl number for the onset of dynamo action has been determined as function of the Rayleigh and Taylor numbers for the Prandtl numbers P=0.1 and P=1.0. Stationary and oscillatory dynamos with both, dipolar and quadrupolar, symmetries are close competitors in the parameter space of the problem.  相似文献   

16.
Abstract

Numerical simulations of thermal convection in a rapidly rotating spherical fluid shell with and without inhomogeneous temperature anomalies on the top boundary have been carried out using a three-dimensional, time-dependent, spectral-transform code. The spherical shell of Boussinesq fluid has inner and outer radii the same as those of the Earth's liquid outer core. The Taylor number is 107, the Prandtl number is 1, and the Rayleigh number R is 5Rc (Rc is the critical value of R for the onset of convection when the top boundary is isothermal and R is based on the spherically averaged temperature difference across the shell). The shell is heated from below and cooled from above; there is no internal heating. The lower boundary of the shell is isothermal and both boundaries are rigid and impermeable. Three cases are considered. In one, the upper boundary is isothermal while in the others, temperature anomalies with (l,m) = (3,2) and (6,4) are imposed on the top boundary. The spherically averaged temperature difference across the shell is the same in all three cases. The amplitudes of the imposed temperature anomalies are equal to one-half of the spherically averaged temperature difference across the shell. Convective structures are strongly controlled by both rotation and the imposed temperature anomalies suggesting that thermal inhomogeneities imposed by the mantle on the core have a significant influence on the motions inside the core. The imposed temperature anomaly locks the thermal perturbation structure in the outer part of the spherical shell onto the upper boundary and significantly modifies the velocity structure in the same region. However, the radial velocity structure in the outer part of the shell is different from the temperature perturbation structure. The influence of the imposed temperature anomaly decreases with depth in the shell. Thermal structure and velocity structure are similar and convective rolls are more columnar in the inner part of the shell where the effects of rotation are most dominant.  相似文献   

17.
In Kim et al. (Kim, E., Hughes, D.W. and Soward, A.M., “An investigation into high conductivity dynamo action driven by rotating convection”, Geophys. Astrophys. Fluid Dynam. 91, 303–332 ().) we investigated kinematic dynamo action driven by rapidly rotating convection in a cylindrical annulus. Here we extend this work to consider self-consistent nonlinear dynamo action in which the back-reaction of the Lorentz force on the flow is taken into account. In particular, we investigate, as a function of magnetic Prandtl number, the evolution of an initially weak magnetic field in two different types of convective flow – one chaotic and the other integrable. On saturation, the latter shows a systematic dependence on the magnetic Prandtl number whereas the former appears not to. In addition, we show how, in keeping with the findings of Cattaneo et al. (Cattaneo, F., Hughes, D.W. and Kim, E., “Suppression of chaos in a simplified nonlinear dynamo model”, Phys. Rev. Lett. 76, 2057–2060 ().), saturation of the growth of the magnetic field is brought about, for the originally chaotic flow, by a strong suppression of chaos.  相似文献   

18.
We consider an electrically conducting fluid confined to a thin rotating spherical shell in which the Elsasser and magnetic Reynolds numbers are assumed to be large while the Rossby number is assumed to vanish in an appropriate limit. This may be taken as a simple model for a possible stable layer at the top of the Earth's outer core. It may also be a model for the thin shells which are thought to be a source of the magnetic fields of some planets such as Mercury or Uranus. Linear hydromagnetic waves are studied using a multiple scale asymptotic scheme in which boundary layers and the associated boundary conditions determine the structure of the waves. These waves are assumed to be of the form of an asymptotic series expanded about an ambient magnetic field which vanishes on the equatorial plane and velocity and pressure fields which do not. They take the form of short wave, slowly varying wave trains. The results are compared to the author's previous work on such waves in cylindrical geometry in which the boundary conditions play no role. The approximation obtained is significantly different from that obtained in the previous work in that an essential singularity appears at the equator and nonequatorial wave regions appear.  相似文献   

19.
Recent observations and progress in the understanding of various requirements for the generation of magnetic fields permit much more definite conclusions to be drawn about the fields of the giant planets than was possible until quite recently. The Jovian magnetic field of about 4 gauss could be either of primordial origin or generated by a thermally driven dynamo. The expected Saturnian field of about 1 gauss can be similarly accounted for either by a thermally or by a precessionally driven dynamo. The presence of a field on Uranus of perhaps 0.1 gauss presents a problem because although it could be accounted for by a thermally driven dynamo operating in a highly conductive shell of hydrogen, the so far unobserved thermal flux and convection may be too low. If such a dynamo were to operate then one would expect the field to show seasonal variations. A precessional dynamo driven by Miranda seems to be marginally possible. On Neptune a conductive shell similar to that on Uranus appears to be much thinner, which perhaps explains the absence of an active dynamo driven either thermally or precessionally by Triton. It is, however, very likely that Neptune does have a magnetic field but that it is too weak to lead to observable electromagnetic radiations.  相似文献   

20.
We investigate numerically kinematic dynamos driven by flow of electrically conducting fluid in the shell between two concentric differentially rotating spheres, a configuration normally referred to as spherical Couette flow. We compare between axisymmetric (2D) and fully 3D flows, between low and high global rotation rates, between prograde and retrograde differential rotations, between weak and strong nonlinear inertial forces, between insulating and conducting boundaries and between two aspect ratios. The main results are as follows. Azimuthally drifting Rossby waves arising from the destabilisation of the Stewartson shear layer are crucial to dynamo action. Differential rotation and helical Rossby waves combine to contribute to the spherical Couette dynamo. At a slow global rotation rate, the direction of differential rotation plays an important role in the dynamo because of different patterns of Rossby waves in prograde and retrograde flows. At a rapid global rotation rate, stronger flow supercriticality (namely the difference between the differential rotation rate of the flow and its critical value for the onset of nonaxisymmetric instability) facilitates the onset of dynamo action. A conducting magnetic boundary condition and a larger aspect ratio both favour dynamo action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号