首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 799 毫秒
1.
Abstract

The transition between axisymmetric and non-axisymmetric régimes of flow in a rotating annulus of liquid subject to horizontal temperature gradient is known from previous experimental studies to depend largely on two dimensionless parameters. These are Θ, which is proportional to the impressed density contrast Δρ and inversely proportional to the square of the angular speed of rotation ω, and  (Taylor number), which is proportional to ω2 /v2 where v is the coefficient of kinematic viscosity. At moderate values of , around 107, the critical value of Θ above which axisymmetric flow is found to OCCUT and below which non-axisymmetric fully-developed baroclinic waves (sloping convection) occur, is fairly insensitive to . Though sharp, the transition exhibits marked hysteresis when the upper surface of the liquid is free (but not when the upper surface is in contact with a rigid lid), and it is argued on the basis of the experimental evidence supported by various results of baroclinic instability theory that both the sharpness of the transition and the hysteresis phenomenon are consequences of the combined effects of potential vorticity gradients and viscosity on the process of sloping convection.

We also present some new experiments on fully-developed baroclinic waves, conducted in a large rotating annulus using liquids of very low viscosity (di-ethyl ether), thus attaining values of  as high as 109 to 1010. The transition from axisymmetric to non-axisymmetric flow is found to lose its sharpness at such high values of , and it is argued that this occurs because viscosity is no longer able to inhibit instabilities at wavelengths less than the so-called ‘Eady short-wave cut-off’, which owe their existence to potential vorticity gradients in the main body of the fluid.  相似文献   

2.
Abstract

The “viscous overturning” mechanism, described in its simplest form by the linearized instability theory of the previous paper, is discussed in relation to certain numerical solutions recently obtained by G. P. Williams for steady thermally driven axisymmetric convective flow of water (Prandtl number = 7) in a rotating annulus differentially heated in the horizontal, in the “upper symmetric regime” parameter range. Viscous overturning plays an important and clearly identifiable role in the flows A3B, A4 and A5, which have free‐slip side walls and top surface, and a less clearcut role in A3 and B2, for which only the top surface is free. The discussion leads to various predictions about annulus flows not yet studied in detail.  相似文献   

3.
Abstract

We study a semi-analytical model of convection in a rapidly-rotating, differentially-heated annulus with sloping top and bottom lids. Rapid rotation leads to a preservation of relatively simple, two-dimensional (2-D) structure in the experimentally-observed flow, while temporal complexity increases with the Rayleigh number. The model is, therefore, two-dimensional; it exhibits a sequence of bifurcations from steadily-drifting, azimuthally-periodic convection columns, also called thermal Rossby waves, through vacillation and a period-doubling cascade, to aperiodic, weakly-turbulent solutions.

Our semi-analytical results match to within a few percent previous numerical results with a limited-resolution 2-D model, and extend these results, due to the greater flexibility of the model presented here. Two types of vacillation are obtained, which we call, by analogy with classical nomenclature of the baroclinic annulus with moderate rotation rates, amplitude vacillation and tilted-trough vacillation. Their properties and dependence on the problem's nondimensional parameters are investigated. The period-doubling cascade for each type of vacillation is studied in some detail.  相似文献   

4.
Abstract

A theoretical analysis of pseudo two-dimensional, finite-amplitude, thermal convection is made for an infinite Prandtl number fluid which is subjected to a constant heat flux out of the top boundary and insulated at the bottom. For large Rayleigh numbers the convective flow becomes intermittent and the system is characterized by the following cyclic process: the formation of a thermal boundary layer by diffusion, the instability of this layer when it becomes sufficiently thick, the destruction of the layer by the convective flow, the dying down of the convection, and the reforming of the thermal boundary layer by diffusion. The periodicity and the horizontal wave number of the intermittent convective flow are found to be independent of the depth of the fluid layer but depend on the rate of cooling and the properties of the fluid.  相似文献   

5.
Abstract

The effects of the upper boundary condition on the regime diagram and certain characteristics of the convection within a rotating, differentially heated cylindrical anulus of water were studied in the laboratory. It was found that the regime diagram was not substantially affected by the upper boundary condition. However, the thermal amplitude of the baroclinic waves, as a function of parameter space, and, as expected from previous work, the angular drift velocity of those waves were found to be strongly affected by the upper boundary condition. When the upper surface was free, the amplitude changes were explosive and highly non-linear (as discovered earlier by Kaiser, 1970). When the upper surface was rigid, they were smooth and quite linear. The baroclinic wave patterns drifted round the annulus at rates which were in direct response to the imposed “thermal wind”. However, (as previously observed by Koschmieder, 1972), when the upper surface was rigid they drifted approximately ten times more slowly than when it was free.  相似文献   

6.
The differentially heated rotating annulus is a laboratory experiment historically designed for modelling large-scale features of the mid-latitude atmosphere. In the present study, we investigate a modified version of the classic baroclinic experiment in which a juxtaposition of convective and motionless stratified layers is created by introducing a vertical salt stratification. The thermal convective motions are suppressed in a central region at mid-depth of the rotating tank, therefore double-diffusive convection rolls can develop only in thin layers located at top and bottom, where the salt stratification is weakest. For high enough rotation rates, the baroclinic instability destabilises the flow in the top and the bottom shallow convective layers, generating cyclonic and anticyclonic eddies separated by the stable stratified layer. Thanks to this alternation of layers resembling the convective and radiative layers of stars, the planetary’s atmospheric troposphere and stratosphere or turbulent layers at the sea surface above stratified waters, this new laboratory setup is of interest for both astrophysics and geophysical sciences. More specifically, it allows to study the exchange of momentum and energy between the layers, primarily by the propagation of internal gravity waves (IGW). PIV velocity maps are used to describe the wavy flow pattern at different heights. Using a co-rotating laser and camera, the wave field is well resolved and different wave types can be found: baroclinic waves, Kelvin and Poincaré type waves. The signature of small-scale IGW can also be observed attached to the baroclinic jet. The baroclinic waves occur at the thin convectively active layer at the surface and the bottom of the tank, though decoupled they show different manifestation of nonlinear interactions. The inertial Kelvin and Poincaré waves seem to be mechanically forced. The small-scale wave trains attached to the meandering jet point to an imbalance of the large-scale flow. For the first time, the simultaneous occurrence of different wave types is reported in detail for a differentially heated rotating annulus experiment.  相似文献   

7.
We investigate instability of convective flows of simple structure (rolls, standing and travelling waves) in a rotating layer with stress-free horizontal boundaries near the onset of convection. We show that the flows are always unstable to perturbations, which are linear combinations of large-scale modes and short-scale modes, whose wave numbers are close to those of the perturbed flows. Depending on asymptotic relations of small parameters α (the difference between the wave number of perturbed flows and the critical wave number for the onset of convection) and ε (ε2 being the overcriticality and the perturbed flow amplitude being O(ε)), either small-angle or Eckhaus instability is prevailing. In the case of small-angle instability for rolls the largest growth rate scales as ε8/5, in agreement with results of Cox and Matthews (Cox, S.M. and Matthews, P.C., Instability of rotating convection. J. Fluid. Mech., 2000, 403, 153–172) obtained for rolls with k = k c . For waves, the largest growth rate is of the order ε4/3. In the case of Eckhaus instability the growth rate is of the order of α2.  相似文献   

8.
Abstract

A high vertical resolution model is used to examine the instability of a baroclinic zonal flow and a finite amplitude topographically forced wave. Two families of unstable modes are found, consisting of zonally propagating most unstable modes, and stationary unstable modes. The former have time scale and spatial structure similar to baroclinic synoptic disturbances, but are localized in space due to interaction with the zonally asymmetric forcing. These modes transport heat efficiently in both the zonal and meridional directions. The second family of stationary unstable modes has characteristics of modes of low frequency variability of the atmosphere. They have time scales of 10 days and longer, and are of planetary scale with an equivalent barotropic vertical structure. The horizontal structure resembles blocking flows. They are maintained by available potential energy of the basic wave, and have large zonal heat fluxes. The results for both families of modes are interpreted in terms of an interaction between forcing and baroclinic instability to create favoured regions for eddy development. Applications to baroclinic planetary waves are also considered.  相似文献   

9.
Abstract

It is shown that, even for vanishingly small diffusivities of momentum and heat, a rotating stratified zonal shear flow is more unstable to zonally symmetric disturbances than would be indicated by the classical inviscid adiabatic criterion, unless σ, the Prandtl number, = 1. Both monotonic instability, and growing oscillations ("overstability") are involved, the former determining the stability criterion and having the higher growth rates. The more σ differs from 1, the larger the region in parameter space for which the flow is stable by the classical criterion, but actually unstable.

If the baroclinity is sufficiently great for the classical criterion also to indicate instability, the corresponding inviscid adiabatic modes usually have the numerically highest growth rates. An exception is the case of small isotherm slope and small σ.

A single normal mode of the linearized theory is also, formally, a finite amplitude solution; however, no theoretical attempt is made to assess the effect of finite amplitude in general. But, in a following paper, viscous overturning (the mechanism giving rise to the sub‐classical monotonic instability when σ > 1) is shown to play an important role at finite amplitude in certain examples of nonlinear steady thermally‐driven axisymmetric flow of water in a rotating annulus. Irrespective of whether analogous mechanisms turn out to be identifiable and important in large‐scale nature, it appears then that a Prandtl‐type parameter should enter the discussion of any attempt to make laboratory or numerical models of zonally‐symmetric baroclinic geophysical or astrophysical flows.  相似文献   

10.
Abstract

The process of wave steepening in Long's model of steady, two-dimensional stably stratified flow over orography is examined. Under conditions of the long-wave approximation, and constant values of the background static stability and basic flow, Long's equation is cast into the form of a nonlinear advection equation. Spectral properties of this latter equation, which could be useful for the interpretation of data analyses under mountain wave conditions, are presented. The principal features, that apply at the onset of convective instability (density constant with height), are:

i) a power spectrum for available potential energy that exhibits a minus eight-thirds decay, in terms of the vertical wavenumber k z -;

ii) a rate of energy transfer across the spectrum that is inversely proportional to the wavenumber for large k z -;

iii) an equipartition between the kinetic energy of the horizontal motion and the available potential energy, under the longwave approximation, although all the disturbance energy is kinetic at the point where convective instability is initiated. It is also shown that features i) and ii) apply to more general conditions that are appropriate to Long's model, not just the long-wave approximation. Application to fully turbulent flow or to conditions at the onset of shearing instability are not considered to be warranted, since the development only applies to conditions at the onset of convective instability.  相似文献   

11.

Thermal convection in a fluid-filled gap between the two corotating, concentric cylindrical sidewalls with sloping curved ends driven by radial buoyancy was first studied by Busse (Busse, F.H., "Thermal instabilities in rapidly rotating systems", J. Fluid Mech . 44 , 441-460 (1970)). The annulus model captures the key features of rotating convection in full spherical geometry and has been widely employed to study convection, magnetoconvection and dynamos in planetary systems, usually in connection with the small-gap approximation neglecting the effect of azimuthal curvature of the annulus. This article investigates nonlinear thermal convection in a rotating annulus with a finite gap through numerical simulations of the full set of nonlinear convection equations. Three representative cases are investigated in detail: a large-gap annulus with the ratio of the radii ( s i and s o ) of the sidewalls ξ = s i / o s = 0.1, a medium-gap annulus with ξ = 0.35 and a small-gap annulus with ξ = 0.8. Near the onset of convection, the effect of rapid rotation through the sloping ends forces the first (Hopf) bifurcation in the form of small-scale, steadily drifting rolls (thermal Rossby waves). At moderately large Rayleigh numbers, a variety of different convection patterns are found, including mixed-mode steadily drifting, quasi-periodic (vacillating) and temporally chaotic convection in association with various temporal and spatial symmetry-breaking bifurcations. Our extensive simulations suggest that competition between nonlinear and rotational effects with increasing Rayleigh number leads to an unusual sequence of bifurcation characterized by enlarging the spatial scale of convection.  相似文献   

12.
Abstract

Some new measurements are presented of the axisymmetric heat transport in a differentially heated rotating fluid annulus. Both rigid and free upper surface cases are studied, for Prandtl numbers of 7 and 45, from low to high rotation rates. The rigid lid case is extended to high rotation rates by suppressing the baroclinic waves, that would normally develop at some intermediate rotation rate, with the use of sloping endwalls.

A parameter P is defined as the square of the ratio of the (non-rotating) thermal sidewall layer thickness to the Ekman layer thickness. For small P the heat transport remains unaffected by the rotation, but as P increases to order unity the Ekman layer becomes thin enough to inhibit the radial mass transport, and hence the heat flux. No explicit Prandtl number dependence is observed. Also this scaling allows the identification of the region in which the azimuthal velocity reaches its maximum. Direct comparisons are drawn with previous experimental and numerical results, which show what can be interpreted as an inhibiting effect of increasing curvature on the heat transport.  相似文献   

13.

A linear analysis of thermally driven magnetoconvection is carried out with emphasis on its application to convection in the Earth's core. We consider a rotating and self-gravitating fluid sphere (or spherical shell) permeated by a uniform magnetic field parallel to the spin axis. In rapidly rotating cases, we find that five different convective modes appear as the uniform field is increased; namely, geostrophic, polar convective, magneto-geostrophic, fast magnetostrophic and slow magnetostrophic modes. The polar convective (P) and magneto-geostrophic (E) modes seem to be of geophysical interest. The P mode is characterized by such an axisymmetric meridional circulation that the fluid penetrates the equatorial plane, suggesting that generation of quadrapole from dipole fields could be explained by a linear process. The E mode is characterized by a few axially aligned columnar rolls which are almost two-dimensional due to a modified Proudman-Taylor theorem.  相似文献   

14.
Abstract

We study the bifurcation to steady two-dimensional convection with the heat flux prescribed on the fluid boundaries. The fluid is weakly non-Boussinesq on account of a slight temperature dependence of its material properties. Using expansions in the spirit of shallow water theory based on the preference for large horizontal scales in fixed flux convection, we derive an evolution equation for the horizontal structure of convective cells. In the steady state, this reduces to a simple nonlinear ordinary differential equation. When the horizontal scales of the cells exceed a certain critical size, the bifurcation to steady convection is subcritical and the degree of subcriticality increases with increasing cell size.  相似文献   

15.

The mechanism of nonlinear interaction in hydrodynamics is studied with dynamical systems having finite degrees of freedom. The equations are assumed to have the same integrals of motion and main features as those peculiar to hydrodynamical equations. The simplest system of this kind is a triplet (a system described by three parameters). Its equations of motion coincide with the Euler equations in the theory of the gyroscope. The forced motion of a triplet is treated theoretically. A real hydrodynamical system controlled by the equations of motion of a triplet was devised and verified in the laboratory.

The simplest theoretical model of baroclinic motion which provides a basis for studies of of forced heat convection in an ellipsoidal cavity was also constructed. Under certain conditions, the addition of rotation causes a regime of motion analogous to the Rossby regime in a rotating annulus.

More complicated models constructed from a large number of interacting triplets can simulate the cascade process of energy transformation in developed turbulence.  相似文献   

16.
Abstract

The generation of stationary Rossby waves by sources of potential vorticity in a westerly flow is examined here in the context of a two-layer, quasi-geostrophic, β-plane model. The response in each layer consists of a combination of a barotropic Rossby wave disturbance that extends far downstream of the source, and a baroclinic disturbance which is evanescent or wave-like in character, depending on the shear and degree of stratification. Contributions from each of these modes in each layer are strongly dependent on the basic flows in each layer; the degree of stratification; and the depths of the two layers. The lower layer response is dominated by an evanescent baroclinic mode when the upper layer westerlies are much larger than those in the lower layer. In this case, weak stationary Rossby waves of large wavelengths are confined to the upper layer and the disturbance in the lower layer is confined to the source region.

Increasing the upper layer flow (with the lower layer flow fixed) increases the Rossby wavelength and decreases the amplitude. Decreasing the lower layer flow (with the upper layer flow fixed) decreases the wavelength and increases the amplitude. Stratification increases the contribution from the barotropic wave-like mode and causes the response to be confined to the lower layer.

The finite amplitude response to westerly flow over two sources of potential vorticity is also considered. In this case stationary Rossby waves induced by both sources interact to reinforce or diminish the downstream wave pattern depending on the separation distance of the sources relative to the Rossby wavelength. For fixed separation distance, enhancement of the downstreatm Rossby waves will only occur for a narrow range of flow variables and stratification.  相似文献   

17.
18.
Abstract

Drift rates and amplitudes of convection columns driven by centrifugal bouyancy in a cylindrical fluid annulus rotating about a vertical axis have been measured by thermistor probes. Conical top and bottom boundaries of the annular fluid region are responsible for the prograde Rossby wave like dynamics of the convection columns. A constant positive temperature difference between the outer and the inner cylindrical boundaries is generated by the circulation of thermostatically controled water. Mercury and water have been used as converting fluids. The measurements extend the earlier visual observations of Busse and Carrigan (1974) and provide quantitative data for an eventual comparison with nonlinear theories of thermal Rossby waves. The measured drift frequencies are in general agreement with linear theory. Of particular interest is the decline of the amplitude of convection with increasing Rayleigh number in a region beyond the onset of convection.  相似文献   

19.
Abstract

Baroclinic waves in a rotating two-layer shear flow are observed by measuring fluctuations in the height of the interface using a technique which does not disturb the flow. Decomposition of the shape of the interface into azimuthal Fourier components shows that the wave spectrum is dominated by a single wave number, but other components have significant amplitudes. Nonlinear interactions between these components are isolated by comparing the results with the predictions of a linear stability theory. The observed interactions are reminiscent of those found by Hide, Mason and Plumb (1977) in a different system, thus demonstrating that they are a fundamental property of baroclinic waves.  相似文献   

20.
Abstract

We examine the role played in annulus flows by mechanisms dependent upon the Prandtl number, σ. Solutions are obtained at σ = 1 for both the real annulus system and for the hypothetical “free annulus” system (free slip lateral boundaries). These solutions are compared with previously obtained solutions at σ = 7.

In the free annulus, the solution at σ = 1 differs radically from that at σ = 7. The σ = 1 solution appears to be essentially a finite amplitude mode due to Solberg instability whereas the solution at σ = 7 manifests a flow caused by the diffusive overturning mechanism.

The variation with σ of the real annulus flow is not so fundamental but some differences in the dynamical structures are noted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号