首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Abstract

The generation of stationary Rossby waves by sources of potential vorticity in a westerly flow is examined here in the context of a two-layer, quasi-geostrophic, β-plane model. The response in each layer consists of a combination of a barotropic Rossby wave disturbance that extends far downstream of the source, and a baroclinic disturbance which is evanescent or wave-like in character, depending on the shear and degree of stratification. Contributions from each of these modes in each layer are strongly dependent on the basic flows in each layer; the degree of stratification; and the depths of the two layers. The lower layer response is dominated by an evanescent baroclinic mode when the upper layer westerlies are much larger than those in the lower layer. In this case, weak stationary Rossby waves of large wavelengths are confined to the upper layer and the disturbance in the lower layer is confined to the source region.

Increasing the upper layer flow (with the lower layer flow fixed) increases the Rossby wavelength and decreases the amplitude. Decreasing the lower layer flow (with the upper layer flow fixed) decreases the wavelength and increases the amplitude. Stratification increases the contribution from the barotropic wave-like mode and causes the response to be confined to the lower layer.

The finite amplitude response to westerly flow over two sources of potential vorticity is also considered. In this case stationary Rossby waves induced by both sources interact to reinforce or diminish the downstream wave pattern depending on the separation distance of the sources relative to the Rossby wavelength. For fixed separation distance, enhancement of the downstreatm Rossby waves will only occur for a narrow range of flow variables and stratification.  相似文献   

2.
Abstract

The behavior of Rossby waves on a shear flow in the presence of a nonlinear critical layer is studied, with particular emphasis on the role played by the critical layer in a Rossby wave resonance mechanism. Previous steady analyses are extended to the resonant case and it is found that the forced wave dominates the solution, provided the flow configuration is not resonant for the higher harmonics induced by the critical layer. Numerical simulations for the forced initial value problem show that the solution evolves towards the analysed steady state when conditions are resonant for the forced wave, and demonstrate some of the complications that arise when they are resonant for higher harmonics. In relating the initial value and steady problems, it is argued that the time dependent solution does not require the large mean flow distortion that Haberman (1972) found to be necessary outside the critical layer in the steady case.  相似文献   

3.
Seasonal variations of the Hawaiian Lee Countercurrent (HLCC) are investigated using satellite observations of sea surface height and wind stress as well as eddy-resolving ocean model simulations. The HLCC is strong from summer to winter and weak in spring between the dateline and the Hawaiian Islands. In response to the seasonal migration of the northeast trade winds in the meridional direction, the wind curl dipole lee of Hawaii varies in strength, exciting westward-propagating Rossby waves. The analyses of both observations and simulations show that the propagation of Rossby waves south of the HLCC, driven by the southern pole of the wind curl dipole in the lee of the islands, contributes the most to the seasonal variations of the HLCC. Unlike the wind-driven seasonal variations, our analysis suggests that other mechanisms such as mode water intrusion or air–sea interaction may cause the interannual variations of the HLCC.  相似文献   

4.
Abstract

The response or a depth independent two layer flow to an underlying topographic irregularity is studied for flows in which the square of the internal Froude number exceeds the Rossby number. Irrespective of the magnitude of the Rossby number, rotation is important for such flows. The flow generally adjusts so that the thickness of the lower layer is nearly constant. However small anomalies from the constant thickness are found to extend to very large distances from the topography when the Rossby number exceeds unity.  相似文献   

5.
Abstract

Drift rates and amplitudes of convection columns driven by centrifugal bouyancy in a cylindrical fluid annulus rotating about a vertical axis have been measured by thermistor probes. Conical top and bottom boundaries of the annular fluid region are responsible for the prograde Rossby wave like dynamics of the convection columns. A constant positive temperature difference between the outer and the inner cylindrical boundaries is generated by the circulation of thermostatically controled water. Mercury and water have been used as converting fluids. The measurements extend the earlier visual observations of Busse and Carrigan (1974) and provide quantitative data for an eventual comparison with nonlinear theories of thermal Rossby waves. The measured drift frequencies are in general agreement with linear theory. Of particular interest is the decline of the amplitude of convection with increasing Rayleigh number in a region beyond the onset of convection.  相似文献   

6.
Abstract

The low Rossby number flow in a rotating cylinder with an inclined bottom, of small slope, is examined when part of the lid of the container is rotating at a slightly different rate. The resulting flow is calculated numerically by solving the governing equations for the two-dimensional geostrophic motion which approximates the flow in most of the fluid including the inertially-modified E ¼ -layers. The presence of ageostrophic regions, on the container walls and beneath the velocity discontinuity on the lid, is accounted for in the governing equations and their boundary conditions. This study supplements previous work on this configuration, in which the zero Rossby number flow was calculated and experimental results were presented, by enabling a direct comparison to be made between the results of the low Rossby number theory and the experiments. The numerical results for a range of Rossby and Ekman numbers compare well with those from the experiments despite a severe limitation on the size of the Rossby number arising from the analysis in the ageostrophic part of the detached shear layer.  相似文献   

7.
Abstract

Merilees and Warn's (1975) nonlinear interaction analysis of two-dimensional nondivergent flow is extended to examine the quasi-geostrophic two-layer model. Two sets of triads exist in this model (Salmon, 1978). The purely barotropic triads are the same as the triads examined by Merilees and Warn. Baroclinic-barotropic triads are found to exchange more energy or potential enstrophy with smaller or larger scales depending on the scale of motion as compared with the internal Rossby deformation radius and the relative wavenumber position of baroclinic and barotropic components.  相似文献   

8.
Abstract

A spectral low-order model is proposed in order to investigate some effects of bottom corrugation on the dynamics of forced and free Rossby waves. The analysis of the interaction between the waves and the topographic modes in the linear version of the model shows that the natural frequencies lie between the corresponding Rossby wave frequencies for a flat bottom and those applying in the “topographic limit” when the beta-effect is zero. There is a possibility of standing or eastward-travelling free waves when the integrated topograhic effect exceeds the planetary beta-effect.

The nonlinear interactions between forced waves in the presence of topography and the beta-effect give rise to a steady dynamical mode correlated to the topographic mode. The periodic solution that includes this steady wave is stable when the forcing field moves to the West with relatively large phase speed. The energy of this solution may be transferred to the steady zonal shear flow if the spatial scale of this zonal mode exceeds the scale of the directly forced large-scale dynamical mode.  相似文献   

9.
Abstract

The flow in a mechanically driven thin barotropic rotating fluid system is analysed. The linear theory of Baker and Robinson (1969) is modified and extended into the non-linear regime.

An internal parameter, the “local Rossby number”, is indicative of the onset of nonlinear effects. If this parameter is 0(1) then inertial effects are as important as Coriolis accelerations in the interior of the transport-turning western boundary layer and both of its Ekman layers. The inertial effects in the Ekman layers, ignored in previous explorations of non-linear wind driven oceanic circulation, are retained here and calculated using an approximation of the Oseen type. The circulation problem is reduced to a system of scalar equations in only two independent variables; the system is valid for non-small local Rossby number provided only that the approximate total vorticity is positive.

To complete the solution for small Rossby number a boundary condition for the inertially induced transport is needed. It is found by examining the dynamics controlling this additional transport from the western boundary layer as the transport recirculates through the rest of the ocean basin. The strong constraint of total recirculation within the western boundary layer (zero net inertial transport) is derived.

The calculated primary inertial effects are in agreement with the observations of the laboratory model of Baker and Robinson (1969).

The analysis indicates the extent to which three-dimensional non-linear circulation can be reduced to a two dimensional problem.  相似文献   

10.
Abstract

The effect of an axial magnetic field on the linear stability of shear flows in rotating systems is examined by extending Busse's analysis of the nonmagnetic case to fluids of high magnetic diffusivity in the presence of a magnetic field. The shear is caused by differential rotation which creates slight deviations from a state of rigid rotation, corresponding to a small Rossby number. It is found that the Rossby number for the onset of instability is larger when a magnetic field is present than when it is absent.  相似文献   

11.
Abstract

An analytical model is constructed for the generation of baroclinic Rossby waves by a vorticity source in the presence of a semi-circular boundary. The vorticity source is used to represent the effect of the Agulhas retroflection to the south of Southern Africa. The displacement of the interface between the two layers of the model ocean consists of quantized waves near the coast and a train of Rossby waves drifting westward further offshore.  相似文献   

12.
Abstract

This paper investigates the generation of linear baroclinic Rossby waves by meridional oscillations of a climatological zonal wind stress in a reduced gravity ocean bounded by an eastern coastline. Using a power series technique an analytical solution is derived for the interfacial displacement. It is found that for a given period of oscillation of the zonal winds, a finite number of propagating Rossby waves will be generated with frequencies equal to a harmonic of the forcing frequency. The number of propagating modes increases with increasing period of the wind stress. In addition to the propagating waves the complete solution for the interfacial displacement consists of a rapidly convergent infinite sum of evanescent terms. The displacement field is calculated for atmospheric forcing parameters typical of those found at mid-latitudes. Further, it is shown that a near resonant response can be generated using atmospheric parameter values typical of those found over the North Pacific.  相似文献   

13.
Abstract

Barotropic Rossby waves are studied in a homogeneous fluid contained in a rotating cylindrical annulus with a radially sloping bottom boundary. The waves are forced by a simple source-sink distribution which can be rotated differentially relative to the annulus. When the speed of the source-sink distribution is close to the phase speed for a free Rossby wave of a given mode, resonant amplification occurs. The experimental results are in qualitative agreement with the predictions of a simple linear theory, but certain systematic differences between theory and experiment were observed.  相似文献   

14.
Generation of cyclonic vortices in the middle layer of flow around a large mountain like Tibet and Rocky was investigated by means of a 3-D nonhydrostatic meteorological prognostic model. Special attention was paid to the effects of the earth’s rotation and stratification on the vortices detached successively from the slope of a high and large horizontal scale mountain. It was found the successive formation and detachment of such ‘von Karman-like vortices’ occurred in the flow regime at high Rossby numbers Ro and low Froude numbers Fr. It was successfully divided by the criterion of baroclinic instability. This means that if the condition is unstable baroclinically, a lee vortex is destabilized into a three-dimensional one, while under baroclinically stable conditions the lee vortex with vertical axis retains its standing structure and remains long lasting in the middle layer.  相似文献   

15.
Abstract

This paper describes the linear response of an inviscid two‐layer model of a deep ocean on an f‐plane to a hurricane translating across the surface at constant speed. The forcing is a localized, radially‐symmetric pattern of positive wind stress curl and negative pressure anomaly. Only the steady state response is considered. The principal result is the identification of an internal wake in the lee of the storm, present when the translation speed of the storm exceeds the baroclinic long wave speed. The amplitude of the wake depends on the length of time over which the stress is experienced at a given point. The angle of the wedge filled by the wake is small, an effect due to the fact that the scale of a hurricane is typically larger than the baroclinic radius of deformation. After the wake disperses, a geostrophically balanced baroclinic ridge remains along the storm track.  相似文献   

16.

The mechanism of nonlinear interaction in hydrodynamics is studied with dynamical systems having finite degrees of freedom. The equations are assumed to have the same integrals of motion and main features as those peculiar to hydrodynamical equations. The simplest system of this kind is a triplet (a system described by three parameters). Its equations of motion coincide with the Euler equations in the theory of the gyroscope. The forced motion of a triplet is treated theoretically. A real hydrodynamical system controlled by the equations of motion of a triplet was devised and verified in the laboratory.

The simplest theoretical model of baroclinic motion which provides a basis for studies of of forced heat convection in an ellipsoidal cavity was also constructed. Under certain conditions, the addition of rotation causes a regime of motion analogous to the Rossby regime in a rotating annulus.

More complicated models constructed from a large number of interacting triplets can simulate the cascade process of energy transformation in developed turbulence.  相似文献   

17.
Abstract

In a laboratory model ocean, fluid in a rotating tank of varying depth is subjected to “wind-stress”, For a certain range of the parameters, Ekman number E and Rossby number R, a homogeneous fluid displays steady, westward intensified flow. For the same range of E and R, a two-layer fluid can have baroclinic instabilities. The parameter range for the various kinds of instabilities is mapped in a regime diagram. The northward transport in the western boundary current is measured as it varies with Rossby number for both homogeneous and two-layer fluid.  相似文献   

18.
19.
Abstract

Supercritically unstable density fronts near a vertical wall in a rotating, two-layer fluid were created on a laboratory turntable by withdrawing the outer wall of an annulus with a narrow gap, and allowing buoyant fluid from within the annulus to collapse toward a state of quasi-geostrophic balance. The resulting “coastal” current has a nearly uniform potential vorticity and is bounded by a front on which ageostrophic, wave-like disturbances grow. If the current width is comparable to the Rossby radius of deformation, the dominant length scale of disturbances is proportional to the width of the current. On the other hand, if the upper layer is much wider than the Rossby radius, then the observed length scale is a constant multiple of the Rossby radius. If the vertical boundary is omitted in the experiments, so that we are left with a circular anticyclonic vortex, the observed length scales and large-amplitude behaviour of disturbances are identical to those for the boundary currents, indicating that the wall has no significant influence on the flow.

At very large amplitude the growing waves lead to the formation of cyclone-anticyclone vortex pairs. For very wide currents, both the mean flow and the disturbances are first confined to a region within a few Rossby radii of the front. However, both the mean flow and the turbulent eddy motions slowly propagate into the previously stationary upper layer until, eventually, the whole of the upper layer is turbulent.  相似文献   

20.
切变基本纬向流中非线性赤道Rossby长波   总被引:5,自引:1,他引:4  
为了解决观测和理论研究中的一些问题以及更好地了解热带大气动力学 ,有必要进一步研究基本气流的变化对大气中赤道Rossby波动的影响 .本文研究分析基本气流对赤道Rossby长波的影响 ,利用一个简单赤道 β平面浅水模式和摄动法 ,研究纬向基本气流切变中非线性赤道Rossby波 ,推导出在切变基本纬向流中赤道Rossby长波振幅演变所满足的非线性KdV方程并得到其孤立波解 .分析表明 ,孤立波存在的必要条件是基本气流有切变 ,而且基流切变不能太强 ,否则将产生正压不稳定 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号