首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Abstract

We investigate the influence of differential rotation on magnetic instabilities for an electrically conducting fluid in the presence of a toroidal basic state of magnetic field B 0 = BMB0(r, θ)1 φ and flow U0 = UMU0 (r, θ)1φ, [(r, θ, φ) are spherical polar coordinates]. The fluid is confined in a rapidly rotating, electrically insulating, rigid spherical container. In the first instance the influence of differential rotation on established magnetic instabilities is studied. These can belong to either the ideal or the resistive class, both of which have been the subject of extensive research in parts I and II of this series. It was found there, that in the absence of differential rotation, ideal modes (driven by gradients of B 0) become unstable for Ac ? 200 whereas resistive instabilities (generated by magnetic reconnection processes near critical levels, i.e. zeros of B0) require Ac ? 50. Here, Λ is the Elsasser number, a measure of the magnetic field strength and Λc is its critical value at marginal stability. Both types of instability can be stabilised by adding differential rotation into the system. For the resistive modes the exact form of the differential rotation is not important whereas for the ideal modes only a rotation rate which increases outward from the rotation axis has a stabilising effect. We found that in all cases which we investigated Λc increased rapidly and the modes disappeared when Rm ≈ O(ΛC), where the magnetic Reynolds number Rm is a measure of the strength of differential rotation. The main emphasis, however, is on instabilities which are driven by unstable gradients of the differential rotation itself, i.e. an otherwise stable fluid system is destabilised by a suitable differential rotation once the magnetic Reynolds number exceeds a certain critical value (Rm )c. Earlier work in the cylindrical geometry has shown that the differential rotation can generate an instability if Rm ) ?O(Λ). Those results, obtained for a fixed value of Λ = 100 are extended in two ways: to a spherical geometry and to an analysis of the effect of the magnetic field strength Λ on these modes of instability. Calculations confirm that modes driven by unstable gradients of the differential rotation can exist in a sphere and they are in good agreement with the local analysis and the predictions inferred from the cylindrical geometry. For Λ = O(100), the critical value of the magnetic Reynolds number (Rm )c Λ 100, depending on the choice of flow U0 . Modes corresponding to azimuthal wavenumber m = 1 are the most unstable ones. Although the magnetic field B 0 is itself a stable one, the field strength plays an important role for this instability. For all modes investigated, both for cylindrical and spherical geometries, (Rm )c reaches a minimum value for 50 ≈ Λ ≈ 100. If Λ is increased, (Rm )c ∝ Λ, whereas a decrease of Λ leads to a rapid increase of (Rm )c, i.e. a stabilisation of the system. No instability was found for Λ ≈ 10 — 30. Optimum conditions for instability driven by unstable gradients of the differential rotation are therefore achieved for ≈ Λ 50 — 100, Rm ? 100. These values lead to the conclusion that the instabilities can play an important role in the dynamics of the Earth's core.  相似文献   

2.
Abstract

The solution of the full nonlinear hydromagnetic dynamo problem is a major numerical undertaking. While efforts continue, supplementary studies into various aspects of the dynamo process can greatly improve our understanding of the mechanisms involved. In the present study, the linear stability of an electrically conducting fluid in a rigid, electrically insulating spherical container in the presence of a toroidal magnetic field Bo(r,θ)lø and toroidal velocity field Uo(r,θ)lø, [where (r,θ,ø) are polar coordinates] is investigated. The system, a model for the Earth's fluid core, is rapidly rotating, the magnetostrophic approximation is used and thermal effects are excluded. Earlier studies have adopted a cylindrical geometry in order to simplify the numerical analysis. Although the cylindrical geometry retains the fundamental physics, a spherical geometry is a more appropriate model for the Earth. Here, we use the results which have been found for cylindrical systems as guidelines for the more realistic spherical case. This is achieved by restricting attention to basic states depending only on the distance from the rotation axis and by concentrating on the field gradient instability. We then find that our calculations for the sphere are in very good qualitative agreement both with a local analysis and with the predictions from the results of the cylindrical geometry. We have thus established the existence of field gradient modes in a realistic (spherical) model and found a sound basis for the study of various other, more complicated, classes of magnetically driven instabilities which will be comprehensively investigated in future work.  相似文献   

3.
Abstract

In part I of this study (Fearn, 1983b), instabilities of a conducting fluid driven by a toroidal magnetic field B were investigated. As well as confirming the results of a local stability analysis by Acheson (1983), a new resistive mode of instability was found. Here we investigate this mode in more detail and show that instability exists when B(s) has a zero at some radius s=s c. Then (in the limit of small resistivity) the instability is concentrated in a critical layer centered on s c . The importance of the region where B is small casts some doubt on the validity of the simplifications made to the momentum equation in I. Calculations were therefore repeated using the full momentum equation. These demonstrate that the neglect of viscous and inertial terms when the mean field is strong does not lead to spurious results even when there are regions where B is small.  相似文献   

4.
Abstract

A linear analysis is used to study the stability of a rapidly rotating, electrically-conducting, self-gravitating fluid sphere of radius r 0, containing a uniform distribution of heat sources and under the influence of an azimuthal magnetic field whose strength is proportional to the distance from the rotation axis. The Lorentz force is of a magnitude comparable with that of the Coriolis force and so convective motions are fully three-dimensional, filling the entire sphere. We are primarily interested in the limit where the ratio q of the thermal diffusivity κ to the magnetic diffusivity η is much smaller than unity since this is possibly of the greatest geophysical relevance.

Thermal convection sets in when the temperature gradient exceeds some critical value as measured by the modified Rayleigh number Rc. The critical temperature gradient is smallest (Rc reaches a minimum) when the magnetic field strength parameter Λ ? 1. [Rc and Λ are defined in (2.3).] The instability takes the form of a very slow wave with frequency of order κ/r 2 0 and its direction of propagation changes from eastward to westward as Λ increases through Λ c ? 4.

When the fluid is sufficiently stably stratified and when Λ > Λm ? 22 a new mode of instability sets in. It is magnetically driven but requires some stratification before the energy stored in the magnetic field can be released. The instability takes the form of an eastward propagating wave with azimuthal wavenumber m = 1.  相似文献   

5.
Abstract

A cylindrical annulus containing a conducting fluid and rapidly rotating about its axis is a useful model for the Earth's core. With a shear flow U 0(s)∮, magnetic field B 0(s)∮, and temperature distribution T o(s) (where (s, ∮, z) are cylindrical polar coordinates), many important properties of the core can be modelled while a certain degree of mathematical simplicity is maintained. In the limit of rapid rotation and at geophysically interesting field strengths, the effects of viscous diffusion and fluid inertia are neglected. In this paper, the linear stability of the above basic state to instabilities driven by gradients of B 0 and U 0 is investigated. The global numerical results show both instabilities predicted by a local analysis due to Acheson (1972, 1973, 1984) as well as a new resistive magnetic instability. For the non-diffusive field gradient instability we looked at both monotonic fields [for which the local stability parameter Δ, defined in (1.4), is a constant] and non-monotonic fields (for which Δ is a function of s). For both cases we found excellent qualitative agreement between the numerical and local results but found the local criterion (1.6) for instability to be slightly too stringent. For the non-monotonic fields, instability is confined approximately to the region which is locally unstable. We also investigated the diffusive buoyancy catalysed instability for monotonic fields and found good quantitative agreement between the numerical results and the local condition (1.9). The new resistive instability was found for fields vanishing (or small) at the outer boundary and it is concentrated in the region of that boundary. The resistive boundary layer plays an important part in this instability so it is not of a type which could be predicted using a local stability analysis (which takes no account of the presence of boundaries).  相似文献   

6.
Abstract

The first three papers in this series (Fearn, 1983b, 1984, 1985) have investigated the stability of a strong toroidal magnetic field Bo =Bo(s?)Φ [where (s?. Φ, z?) are cylindrical polars] in a rapidly rotating system. The application is to the cores of the Earth and the planets but a simpler cylindrical geometry was chosen to permit a detailed study of the instabilities present. A further simplification was the use of electrically perfectly conducting boundary conditions. Here, we replace these with the boundary conditions appropriate to an insulating container. As expected, we find the same instabilities as for a perfectly conducting container, with quantitative changes in the critical parameters but no qualitative differences except for some interesting mixing between the ideal (“field gradient”) and resistive modes for azimuthal wavenumber m=1. In addition to these modes, we have also found the “exceptional” slow mode of Roberts and Loper (1979) and we investigate the conditions required for its instability for a variety of fields Bo(s?) Roberts and Loper's analysis was restricted to the case Bo∝s? and they found instability only for m=1 and ?1 <ω<0 [where ω is the frequency non-dimensionalised on the slow timescale τx, see (1.5)]. For other fields we found the necessary conditions to be less “exceptional”. One surprising feature of this instability is the importance of inertia for its existence. We show that viscosity is an alternative destabilising agent. The standard (magnetostrophic) approximation of neglecting inertial (and viscous) terms in the equation of motion has the effect of filtering out this instability. The field strength required for this “exceptional” mode to become unstable is found to be very much larger than that thought to be present in the Earth's core, so we conclude that this mode is unlikely to play an important role in the dynamics of the core.  相似文献   

7.
Hiroki Oue 《水文研究》2005,19(8):1567-1583
Observations made in a paddy field were analysed to show the influences of meteorological and vegetational factors on the crop's energy budget. Energy budget in the paddy field was characterized by the major partitioning to latent heat flux LE and by the negative Bowen ratio B mostly in the afternoon. Canopy resistance rc, estimated with the Penman–Monteith equation, was related to the influences of solar radiation SR, vapour pressure deficit VPD and plant height. The results demonstrated that rc could not directly account for B but that critical canopy resistance rcc, defined as the canopy resistance when B = 0, could be used to standardize rc, and that rcrcc proved to be a good parameter to account for B. Influences of bulk stomatal response on energy partitioning were assessed as follows: the Bowen ratio dropped below zero, while the bulk stomatal aperture dwindled with the increase of VPD. In addition, stomata of a big leaf acted to promote the partitioning to LE against the rise of SR in the condition of higher VPD. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
Unsaturated flow in coarse granular media must pass through hydraulic bridges (e.g., pendular water, porous connections) that form a physical connection between adjoining clasts. Previous studies suggest that volumetric flow through a porous clast (Q) will be linearly dependent on the cross-sectional area of the hydraulic bridges, and understate the importance of bridge conductivity. Numerical simulations were performed to explore steady-state flow through a spherical clast with identical bridges located at the top and bottom. The cross-sectional area of the bridges relative to that of the clast (Ar) was varied across six orders of magnitude. The ratio of hydraulic conductivity between bridges and clasts (Kb/Kc) was varied across 12 orders of magnitude to consider resistive, neutral, and conductive bridges. Results show that hydraulic bridges place a primary control on both Q and flux distribution within the clast. For neutral and conductive bridges (Kb/Kc ≥1), Ar is the dominant factor in determining Q, while Kb/Kc is the primary control for resistive bridges (Kb/Kc < 1). For all bridges, Q shows a non-linear dependency on both Ar and Kb/Kc. The intra-clast flow distribution shifts outwards as Ar increases. Conductive bridges promote this process and resistive bridges impede it.  相似文献   

9.
The objective of this study is to generate the separation-distance-domain (r-domain) transformation of the theoretically calculated wave number domain (m-domain) electromagnetic induction field component Bz(m, ω) of a stratified medium and to search for interpretive information which has been absent in the previously achieved numerical solutions of the problem. The r-domain kernel R?(r, ω) function defining the induction field appears to adequately reflect the layering and electrical properties of the medium if it is expressed as a function of the frequency if the source-receiver separation r is small with respect to the thickness of the first layer. However, exact values of the conductivity cannot be distinguished from those of the neighboring values unless a resistive basement layer is present. This feature is the result of the truncation in series representation of the kernel function R?(m, ω). However, this truncation is regarded as significant in the case of a conductive first layer. In m-domain static-zone studies, a conductive first layer slightly influences its r-domain correspondent. Although the computational cost of obtaining the kernel B(r, ω) by evaluation of the convolution in a cylindrical coordinate system is high, this semi-analytic solution is still superior to those based on the asymptotic assumptions.  相似文献   

10.
Abstract

This paper analyzes the linear stability of a rapidly-rotating, stratified sheet pinch in a gravitational field, g, perpendicular to the sheet. The sheet pinch is a layer (O ? z ? d) of inviscid, Boussinesq fluid of electrical conductivity σ, magnetic permeability μ, and almost uniform density ρ o; z is height. The prevailing magnetic field. B o(z), is horizontal at each z level, but varies in direction with z. The angular velocity, Ω, is vertical and large (Ω ? VA/d, where VA = B0√(μρ0) is the Alfvén velocity). The Elsasser number, Λ = σB2 0/2Ωρ0, measures σ. A (modified) Rayleigh number, R = gβd20V2 A, measures the buoyancy force, where β is the imposed density gradient, antiparallel to g. A Prandtl number, PK = μσK, measures the diffusivity, k, of density differences.  相似文献   

11.
Abstract

In this paper we analyse the stationary mean energy density tensor Tij = BiBj for the x 2-sphere. This model is one of the simplest possible turbulent dynamos, originally due to Krause and Steenbeck (1967): a conducting sphere of radius R with homogeneous, isotropic and stationary turbulent convection, no differential rotation and negligible resistivity. The stationary solution of the (linear) equation for Tij is found analytically. Only Trr , T θθ and T φφ are unequal to zero, and we present their dependence on the radial distance r.

The stationary solution depends on two coefficients describing the turbulent state: the diffusion coefficient β≈?u2c/3 and the vorticity coefficient γ ≈ ?|?×u|2c/3 where u(r, t) is the turbulent velocity and c its correlation time. But the solution is independent of the dynamo coefficient α≈??u·?×u?τc/3 although α does occur in the equation for Tij . This result confirms earlier conclusions that helicity is not required for magnetic field generation. In the stationary state, magnetic energy is generated by the vorticity and transported to the boundary, where it escapes at the same rate. The solution presented contains one free parameter that is connected with the distribution of B over spatial scales at the boundary, about which Tij gives no information. We regard this investigation as a first step towards the analysis of more complicated, solar-type dynamos.  相似文献   

12.
Abstract

We consider the growth of disturbances to large-scale zonally-asymmetric steady states in a truncated spectral model for forced and dissipated barotropic flow. A variant of the energy method is developed to optimize the instantaneous disturbance energy growth rate. The method involves solving a matrix eigenvalue problem amenable to standard numerical techniques. Two applications are discussed. (1) The global stability of a family of steady states is assessed in terms of the Ekman damping coefficient r. It is shown that monotonic global stability (i.e., every disturbances energy monotonically decays to zero) prevails when rrc . (2) Initially fastest-growing disturbances are constructed in the r<rc regime. Particular attention is paid to a subregion of the r<rc regime where initially-growing disturbances exist despite stability with respect to normal modes. Nonlinear time-dependent simulations are performed in order to appraise the time evolution of various disturbances.  相似文献   

13.
In geostatistical applications, the terms correlation length and range are often used interchangeably and refer to a characteristic covariance length ξ that normalizes the lag distance in the variogram or the covariance model. We present equations that strictly define the correlation length (r c ) and integral range (ℓ c ). We derive analytical expressions for r c and ℓ c of the Whittle–Matérn, fluctuation gradient curvature and rational quadratic covariances. For these covariances, we show that the correlation length and integral range for a given model are not fully determined by ξ. We define non-trivial covariance functions, and we formulate an ergodicity index based on ℓ c . We propose using the ergodicity index to compare coarse-grained measures corresponding to non-trivial covariance functions with different parameters. Finally, we discuss potential applications of the proposed covariance models in stochastic subsurface hydrology.  相似文献   

14.
Abstract

The linear hydromagnetic stability of a non-constantly stratified horizontal fluid layer permeated by an azimuthal non-homogeneous magnetic field is investigated for various widths of the stably stratified part of the layer in the geophysical limit q→0 (q is the ratio of thermal and magnetic diffusivities). The choice of the strength of the magnetic field Bo is as in Soward (1979) (see also Soward and Skinner, 1988) and the equations for the disturbances are treated as in Fearn and Proctor (1983). It was found that convection is developed in the whole layer regardless of the width of its stably stratified part. The thermal instability penetrates essentially from the unstably stratified part of the layer into the stably stratified part for A ~ 1 (A characterises the ratio of the Lorentz and Coriolis forces). When the magnetic field is strong (A>1) the thermal convection is suppressed in the stably stratified part of the layer. However, in this case, it is replaced by the magnetically driven instability; which is fully developed in the whole layer. The thermal instabilities always propagate westward and exist for all the modes m. The magnetically driven instabilities propagate either westward or eastward according to the width of the stably and unstably stratified parts and exist only for the mode m=1.  相似文献   

15.
Direct atmospheric greenhouse gas emissions can be greatly reduced by CO2 sequestration in deep saline aquifers. One of the most secure and important mechanisms of CO2 trapping over large time scales is solubility trapping. In addition, the CO2 dissolution rate is greatly enhanced if density-driven convective mixing occurs. We present a systematic analysis of the prerequisites for density-driven instability and convective mixing over the broad temperature, pressure, salinity and permeability conditions that are found in geological CO2 storage. The onset of instability (Rayleigh–Darcy number, Ra), the onset time of instability and the steady convective flux are comprehensively calculated using a newly developed analysis tool that accounts for the thermodynamic and salinity dependence on solutally and thermally induced density change, viscosity, molecular and thermal diffusivity. Additionally, the relative influences of field characteristics are analysed through local and global sensitivity analyses. The results help to elucidate the trends of the Ra, onset time of instability and steady convective flux under field conditions. The impacts of storage depth and basin type (geothermal gradient) are also explored and the conditions that favour or hinder enhanced solubility trapping are identified. Contrary to previous studies, we conclude that the geothermal gradient has a non-negligible effect on density-driven instability and convective mixing when considering both direct and indirect thermal effects because cold basin conditions, for instance, render higher Ra compared to warm basin conditions. We also show that the largest Ra is obtained for conditions that correspond to relatively shallow depths, measuring approximately 800 m, indicating that CO2 storage at such depths favours the onset of density-driven instability and reduces onset times. However, shallow depths do not necessarily provide conditions that generate the largest steady convective fluxes; the salinity determines the storage depth at which the largest steady convective fluxes occur. Furthermore, we present a straight-forward and efficient procedure to estimate site-specific solutal Ra that accounts for thermodynamic and salinity dependence.  相似文献   

16.
The dynamics of the Earth's core are dominated by a balance between Lorentz and Coriolis forces. Previous studies of possible (magnetostrophic) hydromagnetic instabilities in this regime have been confined to geophysically unrealistic flows and fields. In recent papers we have treated rather general fields and flows in a spherical geometry and in a computationally simple plane-layer model. These studies have highlighted the importance of differential rotation in determining the spatial structure of the instability. Here we have proceeded to use these results to construct a self-consistent dynamo model of the geomagnetic field. An iterative procedure is employed in which an α-effect is calculated from the form of the instability and is then used in a mean field dynamo model. The mean zonal field calculated there is then input back into the hydromagnetic stability problem and a new α-effect calculated. The whole procedure is repeated until the input and output zonal fields are the same to some tolerance.  相似文献   

17.
This paper examines a model for estimating canopy resistance rc and reference evapotranspiration ETo on an hourly basis. The experimental data refer to grass at two sites in Spain with semiarid and windy conditions in a typical Mediterranean climate. Measured hourly ETo values were obtained over grass during a 4 year period between 1997 and 2000 using a weighing lysimeter (Zaragoza, northeastern Spain) and an eddy covariance system (Córdoba, southern Spain). The present model is based on the Penman–Monteith (PM) approach, but incorporates a variable canopy resistance rc as an empirical function of the square root of a climatic resistance r* that depends on climatic variables. Values for the variable rc were also computed according to two other approaches: with the rc variable as a straight‐line function of r* (Katerji and Perrier, 1983, Agronomie 3 (6): 513–521) and as a mechanistic function of weather variables as proposed by Todorovic (1999, Journal of Irrigation and Drainage Engineering, ASCE 125 (5): 235–245). In the proposed model, the results show that rc/ra (where ra is the aerodynamic resistance) presents a dependence on the square root of r*/ra, as the best approach with empirically derived global parameters. When estimating hourly ETo values, we compared the performance of the PM equation using those estimated variable rc values with the PM equation as proposed by the Food and Agriculture Organization, with a constant rc = 70 s m?1. The results confirmed the relative robustness of the PM method with constant rc, but also revealed a tendency to underestimate the measured values when ETo is high. Under the semiarid conditions of the two experimental sites, slightly better estimates of ETo were obtained when an estimated variable rc was used. Although the improvement was limited, the best estimates were provided by the Todorovic and the proposed methods. The proposed approach for rc as a function of the square root of r* may be considered as an alternative for modelling rc, since the results suggest that the global coefficients of this locally calibrated relationship might be generalized to other climatic regions. It may also be useful to incorporate the effects of variable canopy resistances into other climatic and hydrological models. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
A simple new method is described for extracting, from magnetic observations taken at Earth's surface, the vertical growth rate of vertical motion, ?u/?r, at special isolated points on the top surface of Earth's liquid core. The technique utilizes only the radial component of the frozen-flux induction equation and it requires information only on the radial magnetic field, Br, its horizontal gradient, and its secular variations, ?Br/?t, at the core-mantle boundary.  相似文献   

19.
20.
Abstract

In a rapidly rotating, electrically conducting fluid we investigate the thermal stability of the fluid in the presence of an imposed toroidal magnetic field and an imposed toroidal differential rotation. We choose a magnetic field profile that is stable. The familiar role of differential rotation is a stabilising one. We wish to examine the less well known destabilising effect that it can have. In a plane layer model (for which we are restricted to Roberts number q = 0) with differential rotation, U = sΩ(z)1 ?, no choice of Ω(z) led to a destabilising effect. However, in a cylindrical geometry (for which our model permits all values of q) we found that differential rotations U = sΩ(s)1 ? which include a substantial proportion of negative gradient (dΩ/ds ≤ 0) give a destabilising effect which is largest when the magnetic Reynolds number R m = O(10); the critical Rayleigh number, Ra c, is about 7% smaller at minimum than at Rm = 0 for q = 106. We also find that as q is reduced, the destabilising effect is diminished and at q = 10?6, which may be more appropriate to the Earth's core, the effect causes a dip in the critical Rayleigh number of only about 0.001%. This suggests that we see no dip in the plane layer results because of the q = 0 condition. In the above results, the Elsasser number A = 1 but the effect of differential rotation is also dependent on A. Earlier work has shown a smooth transition from thermal to differential rotation driven instability at high A [A = O(100)]. We find, at intermediate A [A = O(10)], a dip in the Rac vs. Rm curve similar to the A = 1 case. However, it has Rac ≤ 0 at its minimum and unlike the results for high A, larger values of Rm result in a restabilisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号