首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low-frequency radio observations of neutral hydrogen during and before the epoch of cosmic re-ionization will provide ∼1000 quasi-independent source planes, each of precisely known redshift, if a resolution of ∼1 arcmin or better can be attained. These planes can be used to reconstruct the projected mass distribution of foreground material. Structure in these source planes is linear and Gaussian at high redshift  (30 < z < 300)  but is non-linear and non-Gaussian during re-ionization. At both epochs, significant power is expected down to subarcsecond scales. We demonstrate that this structure can, in principle, be used to make mass images with a formal signal-to-noise ratio (S/N) per pixel exceeding 10, even for pixels as small as an arcsecond. With an ideal telescope, both resolution and S/N can exceed those of even the most optimistic idealized mass maps from galaxy lensing by more than an order of magnitude. Individual dark haloes similar in mass to that of the Milky Way could be imaged with high S/N out to   z ∼ 10  . Even with a much less ambitious telescope, a wide-area survey of 21-cm lensing would provide very sensitive constraints on cosmological parameters, in particular on dark energy. These are up to 20 times tighter than the constraints obtainable from comparably sized, very deep surveys of galaxy lensing, although the best constraints come from combining data of the two types. Any radio telescope capable of mapping the 21-cm brightness temperature with good frequency resolution (∼0.05 MHz) over a band of width ≳10 MHz should be able to make mass maps of high quality. The planned Square Kilometre Array may be able to map the mass with moderate S/N down to arcminute scales, depending on the re-ionization history of the universe and the ability to subtract foreground sources.  相似文献   

2.
We compare the probability density function (PDF) and its low-order moments (variance and skewness) of the smoothed IRAS Point Source Catalogue Redshift Survey (PSC z ) galaxy density field and of the corresponding simulated PSC z look-alikes, generated from N -body simulations of six different dark matter models: four structure-normalized with     and     , one COBE -normalized, and the old standard cold dark matter model. The galaxy distributions are smoothed with a Gaussian window at three different smoothing scales,     , 10 and 15  h −1 Mpc. We find that the simulation PSC z look-alike PDFs are sensitive only to the normalization of the power spectrum, probably owing to the shape similarity of the simulated galaxy power spectrum on the relevant scales. We find that the only models that are consistent, at a high significance level, with the observed PSC z PDF are models with a relatively low power spectrum normalization     . From the phenomenologically derived σ 8–moments relation, fitted from the simulation data, we find that the PSC z moments suggest     .  相似文献   

3.
We study in detail the photometric redshift requirements needed for tomographic weak gravitational lensing in order to measure accurately the dark energy equation of state. In particular, we examine how ground-based photometry  ( u , g , r , i , z , y )  can be complemented by space-based near-infrared (near-IR) photometry  ( J , H )  , e.g. onboard the planned DUNE satellite. Using realistic photometric redshift simulations and an artificial neural network photo- z method we evaluate the figure of merit for the dark energy parameters  ( w 0, w a )  . We consider a DUNE -like broad optical filter supplemented with ground-based multiband optical data from surveys like the Dark Energy Survey, Pan-STARRS and LSST. We show that the dark energy figure of merit would be improved by a factor of 1.3–1.7 if IR filters are added onboard DUNE . Furthermore we show that with IR data catastrophic photo- z outliers can be removed effectively. There is an interplay between the choice of filters, the magnitude limits and the removal of outliers. We draw attention to the dependence of the results on the galaxy formation scenarios encoded into the mock galaxies, e.g. the galaxy reddening. For example, very deep u -band data could be as effective as the IR. We also find that about  105–106  spectroscopic redshifts are needed for calibration of the full survey.  相似文献   

4.
The colour–magnitude relation (CMR) of cluster elliptical galaxies has been widely used to constrain their star formation histories (SFHs) and to discriminate between the monolithic collapse and merger paradigms of elliptical galaxy formation. We use a Λ cold dark matter hierarchical merger model of galaxy formation to investigate the existence and redshift evolution of the elliptical galaxy CMR in the merger paradigm. We show that the SFH of cluster ellipticals predicted by the model is quasi-monolithic , with only ∼10 per cent of the total stellar mass forming after   z ∼ 1  . The quasi-monolithic SFH results in a predicted CMR that agrees well with its observed counterpart in the redshift range  0 < z < 1.27  . We use our analysis to argue that the elliptical-only CMR can be used to constrain the SFHs of present-day cluster ellipticals only if we believe a priori in the monolithic collapse model. It is not a meaningful tool for constraining the SFH in the merger paradigm, since a progressively larger fraction of the progenitor set of present-day cluster ellipticals is contained in late-type star-forming systems at higher redshift, which cannot be ignored when deriving the SFHs. Hence, the elliptical-only CMR is not a useful discriminant between the two competing theories of elliptical galaxy evolution.  相似文献   

5.
An interesting probe of the nature of dark energy is the measure of its sound speed, c s. We review the significance for constraining sound speed models of dark energy using large neutral hydrogen (H  i ) surveys with the square kilometre array (SKA). Our analysis considers the effect on the sound speed measurement that arises from the covariance of c s with the dark energy density, Ωde, and a time-varying equation of state,   w ( a ) = w 0+ (1 − a ) w a   . We find that the approximate degeneracy between dark energy parameters that arises in power spectrum observations is lifted through redshift tomography of the H  i -galaxy angular power spectrum, resulting in sound speed constraints that are not severely degraded. The cross-correlation of the galaxy and the integrated Sachs Wolfe (ISW) effect spectra contributes approximately 10 per cent of the information that is needed to distinguish variations in the dark energy parameters, and most of the discriminating signal comes from the galaxy auto-correlation spectrum. We also find that the sound speed constraints are weakly sensitive to the H  i bias model. These constraints do not improve substantially for a significantly deeper H  i survey since most of the clustering sensitivity to sound speed variations arises from   z ≲ 1.5  . A detection of models with sound speeds close to zero,   c s≲ 0.01,  is possible for dark energy models with   w ≳−0.9  .  相似文献   

6.
We present the first optimal power spectrum estimation and three-dimensional deprojections for the dark and luminous matter and their cross-correlations. The results are obtained using a new optimal fast estimator, deprojected using minimum variance and Singular Value Decomposition (SVD) techniques. We show the resulting 3D power spectra for dark matter and galaxies, and their covariance for the VIRMOS-DESCART weak lensing shear and galaxy data. The survey is most sensitive to non-linear scales   k NL∼ 1 h Mpc−1  . On these scales, our 3D power spectrum of dark matter is in good agreement with the RCS 3D power spectrum found by Tegmark & Zaldarriaga. Our galaxy power is similar to that found by the 2MASS survey, and larger than that of SDSS, APM and RCS, consistent with the expected difference in galaxy population.
We find an average bias   b = 1.24 ± 0.18  for the I -selected galaxies, and a cross-correlation coefficient   r = 0.75 ± 0.23  . Together with the power spectra, these results optimally encode the entire two point information about dark matter and galaxies, including galaxy–galaxy lensing. We address some of the implications regarding galaxy haloes and mass-to-light ratios. The best-fitting 'halo' parameter   h ≡ r / b = 0.57 ± 0.16  , suggesting that dynamical masses estimated using galaxies systematically underestimate total mass.
Ongoing surveys, such as the Canada–France–Hawaii Telescope Legacy Survey, will significantly improve on the dynamic range, and future photometric redshift catalogues will allow tomography along the same principles.  相似文献   

7.
We discuss the constraints that future photometric and spectroscopic redshift surveys can put on dark energy through the baryon oscillations of the power spectrum. We model the dark energy either with a perfect fluid or a scalar field and take into account the information contained in the linear growth function. We show that the growth function helps to break the degeneracy in the dark energy parameters and reduce the errors on   w 0, w 1  roughly by 30 per cent, making more appealing multicolour surveys based on photometric redshifts. We find that a 200-deg2 spectroscopic survey reaching   z ≈ 3  can constrain   w 0, w 1  to within  Δ w 0= 0.21, Δ w 1= 0.26  , to  Δ w 0= 0.39, Δ w 1= 0.54  using photometric redshifts with an absolute uncertainty of 0.02, and to  Δ w 0= 0.43, Δ w 1= 0.66  with an uncertainty of 0.04. In the scalar field case, we show that the slope n of the inverse power-law potential for dark energy can be constrained to  Δ n = 0.26  (spectroscopic redshifts) or  Δ n = 0.40  (photometric redshifts), i.e. better than with future ground-based supernovae surveys or cosmic microwave background data.  相似文献   

8.
Cosmic rays produced in cluster accretion and merger shocks provide pressure to the intracluster medium (ICM) and affect the mass estimates of galaxy clusters. Although direct evidence for cosmic ray ions in the ICM is still lacking, they produce γ-ray emission through the decay of neutral pions produced in their collisions with ICM nucleons. We investigate the capability of the Gamma-ray Large Area Space Telescope ( GLAST ) and imaging atmospheric Čerenkov telescopes (IACTs) for constraining the cosmic ray pressure contribution to the ICM. We show that GLAST can be used to place stringent upper limits, a few per cent for individual nearby rich clusters, on the ratio of pressures of the cosmic rays and thermal gas. We further show that it is possible to place tight (≲10 per cent) constraints for distant  ( z ≲ 0.25)  clusters in the case of hard spectrum, by stacking signals from samples of known clusters. The GLAST limits could be made more precise with the constraint on the cosmic ray spectrum potentially provided by IACTs. Future γ-ray observations of clusters can constrain the evolution of cosmic ray energy density, which would have important implications for cosmological tests with upcoming X-ray and Sunyaev–Zel'dovich effect cluster surveys.  相似文献   

9.
The influence of ultra-high energy cosmic rays (UHECRs) and decaying dark matter particles on the emission and absorption characteristics of neutral hydrogen in 21 cm at redshifts   z = 10–50  is considered. In the presence of UHECRs, 21 cm can be seen in absorption with the brightness temperature   T b=−(5–10) mK  in the range   z = 10–30  . Decaying particles can stimulate a 21-cm signal in emission with   T b∼ 50–60 mK  at   z = 50  and   T b≃ 10 mK  at   z ∼ 20  . Characteristics of the fluctuations of the brightness temperature, in particular its power spectrum, are also calculated. The maps of the power spectrum of the brightness temperature on the plane wavenumber redshift are shown to be sensitive to the parameters of UHECRs and decaying dark matter. Observational possibilities to detect manifestations of UHECRs and/or decaying particles in 21 cm with the future radio telescopes (LOFAR, 21CMA and SKA), and to distinguish contributions from them, are briefly discussed.  相似文献   

10.
Low-frequency observatories are currently being constructed with the goal of detecting redshifted 21-cm emission from the epoch of reionization. These observatories will also be able to detect intensity fluctuations in the cumulative 21-cm emission after reionization, from hydrogen in unresolved damped Lyα absorbers (such as gas-rich galaxies) down to a redshift z ∼ 3.5. The inferred power spectrum of 21-cm fluctuations at all redshifts will show acoustic oscillations, whose comoving scale can be used as a standard ruler to infer the evolution of the equation of state for the dark energy. We find that the first generation of low-frequency experiments (such as MWA or LOFAR) will be able to constrain the acoustic scale to within a few per cent in a redshift window just prior to the end of the reionization era, provided that foregrounds can be removed over frequency bandpasses of ≳8 MHz. This sensitivity to the acoustic scale is comparable to the best current measurements from galaxy redshift surveys, but at much higher redshifts. Future extensions of the first-generation experiments (involving an order of magnitude increase in the antennae number of the MWA) could reach sensitivities below 1 per cent in several redshift windows and could be used to study the dark energy in the unexplored redshift regime of 3.5 ≲ z ≲ 12. Moreover, new experiments with antennae designed to operate at higher frequencies would allow precision measurements (≲1 per cent) of the acoustic peak to be made at more moderate redshifts (1.5 ≲ z ≲ 3.5), where they would be competitive with ambitious spectroscopic galaxy surveys covering more than 1000 deg2. Together with other data sets, observations of 21-cm fluctuations will allow full coverage of the acoustic scale from the present time out to z ∼ 12.  相似文献   

11.
In this paper, we show that if a single sterile neutrino exists such that     , it can serendipitously solve all outstanding issues of the Modified Newtonian Dynamics. We focus on fitting the angular power spectrum of the cosmic microwave background (CMB) in detail which is possible using a flat Universe with     and the usual baryonic and dark energy components. One cannot match the CMB if there is more than one massive sterile neutrino, nor with three active neutrinos of 2 eV. This model has the same expansion history as the Λ cold dark matter  (ΛCDM)  model and only differs at the galactic scale, where the modified dynamics outperform  ΛCDM  comprehensively. We discuss how an 11 eV sterile neutrino can explain the dark matter of galaxy clusters without influencing individual galaxies and potentially match the matter power spectrum.  相似文献   

12.
Galaxies are believed to be in one-to-one correspondence with simulated dark matter subhaloes. We use high-resolution N -body simulations of cosmological volumes to calculate the statistical properties of subhalo (galaxy) major mergers at high redshift ( z = 0.6–5). We measure the evolution of the galaxy merger rate, finding that it is much shallower than the merger rate of dark matter host haloes at   z > 2.5  , but roughly parallels that of haloes at   z < 1.6  . We also track the detailed merger histories of individual galaxies and measure the likelihood of multiple mergers per halo or subhalo. We examine satellite merger statistics in detail: 15–35 per cent of all recently merged galaxies are satellites, and satellites are twice as likely as centrals to have had a recent major merger. Finally, we show how the differing evolution of the merger rates of haloes and galaxies leads to the evolution of the average satellite occupation per halo, noting that for a fixed halo mass, the satellite halo occupation peaks at   z ∼ 2.5  .  相似文献   

13.
We assess the detectability of baryonic acoustic oscillation (BAO) in the power spectrum of galaxies using ultralarge volume N -body simulations of the hierarchical clustering of dark matter and semi-analytical modelling of galaxy formation. A step-by-step illustration is given of the various effects (non-linear fluctuation growth, peculiar motions, non-linear and scale-dependent bias) which systematically change the form of the galaxy power spectrum on large scales from the simple prediction of linear perturbation theory. Using a new method to extract the scale of the oscillations, we nevertheless find that the BAO approach gives an unbiased estimate of the sound horizon scale. Sampling variance remains the dominant source of error despite the huge volume of our simulation box  (=2.41  h −3 Gpc3)  . We use our results to forecast the accuracy with which forthcoming surveys will be able to measure the sound horizon scale, s , and, hence constrain the dark energy equation of state parameter, w (with simplifying assumptions and without marginalizing over the other cosmological parameters). Pan-STARRS could potentially yield a measurement with an accuracy of  Δ s / s = 0.5–0.7  per cent (corresponding to Δ w ≈ 2–3 per cent), which is competitive with the proposed WFMOS survey (  Δ s / s = 1  per cent Δ w ≈ 4 per cent). Achieving Δ w ≤ 1 per cent using BAO alone is beyond any currently commissioned project and will require an all-sky spectroscopic survey, such as would be undertaken by the SPACE mission concept under proposal to ESA.  相似文献   

14.
We study the stellar mass assembly of the Spiderweb galaxy  (MRC 1138−262)  , a massive   z = 2.2  radio galaxy in a protocluster and the probable progenitor of a brightest cluster galaxy. Nearby protocluster galaxies are identified and their properties are determined by fitting stellar population models to their rest-frame ultraviolet to optical spectral energy distributions. We find that within 150 kpc of the radio galaxy the stellar mass is centrally concentrated in the radio galaxy, yet most of the dust-uncorrected, instantaneous star formation occurs in the surrounding low-mass satellite galaxies. We predict that most of the galaxies within 150 kpc of the radio galaxy will merge with the central radio galaxy by   z = 0  , increasing its stellar mass by up to a factor of ≃2. However, it will take several hundred Myr for the first mergers to occur, by which time the large star formation rates are likely to have exhausted the gas reservoirs in the satellite galaxies. The tidal radii of the satellite galaxies are small, suggesting that stars and gas are being stripped and deposited at distances of tens of kpc from the central radio galaxy. These stripped stars may become intracluster stars or form an extended stellar halo around the radio galaxy, such as those observed around cD galaxies in cluster cores.  相似文献   

15.
The real-space optical-depth distribution along the line of sight to the QSO Q1422+231 is recovered from two HIRES spectra using a modified version of the inversion method proposed by Nusser & Haehnelt. The first two moments of the truncated optical-depth distribution are used to constrain the density-fluctuation amplitude of the intergalactic medium (IGM) assuming that the IGM is photoionized by a metagalactic UV background and obeys a temperaturedensity relation. The fluctuation amplitude and the power-law index of the relation between gas and neutral hydrogen (H  i ) density are degenerate. The rms of the IGM density at z 3.25 estimated from the first spectrum is with 1.56< <2 for plausible reionization histories. This corresponds to 0.9 2.1 with ( =1.7)=1.44±0.3. The values obtained from the second spectrum are higher by 20 per cent. If the IGM density traces the dark matter (DM) as suggested by numerical simulations we have measured the fluctuation amplitude of the DM density at an effective Jeans scale of a few 100 kpc. For cold dark matter (CDM)-like power spectra the amplitude of dark matter fluctuations on these small scales depends on the cosmological density parameter . For power spectra normalized to reproduce the space density of present-day clusters and with a slope parameter of =0.21 consistent with the observed galaxy power spectrum, the inferred can be expressed as: =0.61( /1.7)1.3( x J/0.62)0.6 for a flat universe, and =0.91( /1.7)1.3( x J/0.62)0.7 for a =0 universe. x J is the effective Jeans scale in (comoving) h 1 Mpc. Based on a suite of detailed mock spectra the 1 error is 25 per cent. The estimates increase with increasing . For the second spectrum we obtain 15 per cent lower values.  相似文献   

16.
We consider the distortion in the cosmic microwave background (CMB) resulting from galactic winds at high redshift. Winds outflowing from galaxies have been hypothesized to be possible sources of metals in the intergalactic medium, which is known to have been enriched to 10−2.5 Z at z ∼3. We model these winds as functions of mass of the parent galaxy and redshift, assuming that they activate at a common initial redshift, z in, and calculate the mean y -distortion and the angular power spectrum of the distortion in the CMB. We find that the thermal Sunyaev–Zel'dovich (SZ) effect resulting from the winds is consistent with previous estimates. The distortion arising from the kinetic SZ (kSZ) effect is, however, found to be more important than the thermal SZ (tSZ) effect. We find that the distortion resulting from galactic winds is an important contribution to the power spectrum of distortion at very small angular scales ( l ∼104). We also find that the power spectrum resulting from clustering dominates the Poisson power spectrum for l ≤(4–5)×105. We show explicitly how the combined power spectrum from wind dominates over that of clusters at 217 GHz, relevant for PLANCK . We also show how these constraints change when the efficiency of the winds is varied.  相似文献   

17.
We investigate the number density of maxima in the cosmological galaxy density field smoothed with a filter as a probe of clustering. In previous work it has been shown that this statistic is closely related to the slope of the linear power spectrum, even when the directly measured power spectrum is non-linear. In the present paper we investigate the sensitivity of the peak number density to various models with differing power spectra, including rolling index models, cosmologies with massive neutrinos and different baryon densities. We find that rolling index models which have given an improved fit to CMB/LSS (cosmic microwave background/large scale structure) data yield a ∼10 per cent difference in peak density compared to the scale invariant case. Models with 0.3 eV neutrinos have effects of similar magnitude and it should be possible to constrain them with data from current galaxy redshift surveys. Baryon oscillations in the power spectrum also give rise to distinctive features in the peak density. These are preserved without modification when measured from the peak density in fully non-linear N -body simulations. Using the simulations, we also investigate how the peak density is modified in the presence of redshift distortions. Redshift distortions cause a suppression of the number of peaks, largely due to fingers of God overlapping in redshift space. We find that this effect can be modelled by using a modification of the input power spectrum. We also study the results when the simulation density field is traced by galaxies obtained by populating haloes with a halo occupation distribution consistent with observations. The peak number density is consistent with that in the dark matter for filter scales  >4  h −1 Mpc  , for which we find good agreement with the linear theory predictions. In a companion paper we analyse data from the 2dF Galaxy Redshift Survey.  相似文献   

18.
We use semi-analytic models of galaxy formation combined with high-resolution N -body simulations to make predictions for galaxy–dark matter correlations and apply them to galaxy–galaxy lensing. We analyse cross-power spectra between the dark matter and different galaxy samples selected by luminosity, colour or star formation rate. We compare the predictions with the recent detection by the Sloan Digital Sky Survey (SDSS). We show that the correlation amplitude and the mean tangential shear depend strongly on the luminosity of the sample on scales below 1  h −1 Mpc, reflecting the correlation between the galaxy luminosity and the halo mass. The cross-correlation cannot, however, be used to infer the halo profile directly because different halo masses dominate on different scales and because not all galaxies are at the centres of the corresponding haloes. We compute the redshift evolution of the cross-correlation amplitude and compare it with those of galaxies and dark matter. We also compute the galaxy–dark matter correlation coefficient and show that it is close to unity on scales above 1  h −1 Mpc for all considered galaxy types. This would allow one to extract the bias and the dark matter power spectrum on large scales from the galaxy and galaxy–dark matter correlations.  相似文献   

19.
We estimate the two- and three-dimensional power spectra, P 2( K ) and P 3( k ), of the galaxy distribution by applying a maximum likelihood estimator to pixel maps of the APM Galaxy Survey. The analysis provides optimal estimates of the power spectra and of their covariance matrices if the fluctuations are assumed to be Gaussian. Our estimates of P 2( K ) and P 3( k ) are in good agreement with previous work, but we find that the errors at low wavenumbers have been underestimated in some earlier studies. If the galaxy power spectrum is assumed to have the same shape as the mass power spectrum, then the APM maximum likelihood P 3( k ) estimates at k ≤0.19  h  Mpc−1 constrain the amplitude and shape parameter of a scale-invariant CDM model to lie within the 2 σ ranges 0.74≤( σ 8)g≤1.28 and 0.06≤Γ≤0.46 . Using the Galactic extinction estimates of Schlegel, Finkbeiner & Davis, we show that Galactic obscuration has a negligible effect on galaxy clustering over most of the area of the APM Galaxy Survey.  相似文献   

20.
We examine the possibility of the decay of the vacuum energy into a homogeneous distribution of a thermalized cosmic microwave background (CMB), which is characteristic of an adiabatic vacuum energy decay into photons. It is shown that observations of the primordial density fluctuation spectrum, obtained from CMB and galaxy distribution data, restrict the possible decay rate. When photon creation due to an adiabatic vacuum energy decay takes place, the standard linear temperature dependence   T ( z ) = T 0(1 + z )  is modified, where T 0 is the present CMB temperature, and can be parametrized by a modified CMB temperature dependence     . From the observed CMB and galaxy distribution data, a strong limit on the maximum value of the decay rate is obtained by placing a maximum value  βmax≃ 3.4 × 10−3  on the β parameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号