首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The latitudinal distribution of sunspot groups over a solar cycle is investigated. Although individual sunspot groups of a solar cycle emerge randomly at any middle and low latitude, the whole latitudinal distribution of sunspot groups of the cycle is not stochastic and, in fact, can be represented by a probability density function of the distribution having maximum probability at about 15.5°. The maximum amplitude of a solar cycle is found to be positively correlated against the number of sunspot groups at high latitude (35°) over the cycle, as well as the mean latitude. Also, the relation between the asymmetry of sunspot groups and its latitude is investigated, and a pattern of the N-S asymmetry in solar activity is suggested.  相似文献   

2.
Statistical behavior of sunspot groups on the solar disk   总被引:1,自引:0,他引:1  
K.J. Li  H.F. Liang  H.S. Yun  X.M. Gu 《Solar physics》2002,205(2):361-370
In the present study we have produced a diagram of the latitude distribution of sunspot groups from the year 1874 through 1999 and examined statistical characteristics of the mean latitude of sunspot groups. The reliability of the observed data set prior to solar cycle 19 is found quite low as compared with that of the data set observed after cycle 19. A correlation is found between maximum latitude at which first sunspot groups of a new cycle appear and the maximum solar activity of the cycle. It is inferred that solar magnetic activity during the early part of an extended solar cycle may contain some information about the strength of forthcoming solar cycle. A formula is given to describe latitude change of sunspot groups with time during an extended solar cycle. The latitude-migration velocity is found to be largest at the beginning of solar cycle and decreases with time as the cycle progresses with a mean migration velocity of about 1.61° per year.  相似文献   

3.
We examine daily records of sunspot group areas (measured in millionths of a solar hemisphere or μHem) for the last 130 years to determine the rate of decay of sunspot group areas. We exclude observations of groups when they are more than 60° in longitude from the central meridian and only include data when at least three days of observations are available following the date of maximum area for a group’s disk passage. This leaves data for over 18 000 measurements of sunspot group decay. We find that the decay rate increases linearly from 28 μHem day−1 to about 140 μHem day−1 for groups with areas increasing from 35 μHem to 1000 μHem. The decay rate tends to level off for groups with areas larger than 1000 μHem. This behavior is very similar to the increase in the number of sunspots per group as the area of the group increases. Calculating the decay rate per individual sunspot gives a decay rate of about 3.65 μHem day−1 with little dependence upon the area of the group. This suggests that sunspots decay by a Fickian diffusion process with a diffusion coefficient of about 10 km2 s−1. Although the 18 000 decay rate measurements are lognormally distributed, this can be attributed to the lognormal distribution of sunspot group areas and the linear relationship between area and decay rate for the vast majority of groups. We find weak evidence for variations in decay rates from one solar cycle to another and for different phases of each sunspot cycle. However, the strongest evidence for variations is with latitude and the variations with cycle and phase of each cycle can be attributed to this variation. High latitude spots tend to decay faster than low latitude spots.  相似文献   

4.
S. Bravo  J. A. Otaola 《Solar physics》1989,122(2):335-343
Twenty years ago, Ohl (1966, 1968) found a correlation between geomagnetic activity around the minimum of the solar cycle and the Wolf sunspot number in the maximum of the following solar cycle. In this paper we shall show that such a relation means indeed a relation between the polar coronal holes area around the minimum of the solar cycle and the sunspot number in the maximum of the next. In fact, a very high positive correlation exists between the temporal evolution of the size of polar coronal holes and the Wolf sunspot number 6.3. years later.  相似文献   

5.
Long-Term Sunspot Number Prediction based on EMD Analysis and AR Model   总被引:2,自引:0,他引:2  
The Empirical Mode Decomposition (EMD) and Auto-Regressive model (AR) are applied to a long-term prediction of sunspot numbers. With the sample data of sunspot numbers from 1848 to 1992, the method is evaluated by examining the measured data of the solar cycle 23 with the prediction: different time scale components are obtained by the EMD method and multi-step predicted values are combined to reconstruct the sunspot number time series. The result is remarkably good in comparison to the predictions made by the solar dynamo and precursor approaches for cycle 23. Sunspot numbers of the coming solar cycle 24 are obtained with the data from 1848 to 2007, the maximum amplitude of the next solar cycle is predicted to be about 112 in 2011-2012.  相似文献   

6.
Solar long-term activity runs at high latitudes in three ways: (i) in phase with solar long-term activity at low latitudes; (ii) in antiphase with solar long-term activity at low latitudes and (iii) does not follow either (i) or (ii), and mainly occurs around the times of maxima of (i) and (ii). In the present study, we investigate the north–south asymmetry of solar activity at high latitudes and found the following. In Case (i), high-latitude filament activity, for example, is inferred to have the same dominant hemisphere as low-latitude activity in a cycle. In Case (ii), the north–south asymmetry of high-latitude activity, represented by both the polar faculae and the Sun's polar field strength, is usually different from that of low-latitude activity in a sunspot cycle, and even in a cycle of high-latitude activity (polar faculae and the Sun's polar field strength), suggesting that the north–south asymmetry of solar activity at high latitudes should have little or no connection with that of low latitudes. In Case (iii), the north–south asymmetry of solar activity at high latitudes (polar flares) should have little connection with that at low latitudes as well. The observed magnetic field at high latitudes is inferred to consist of two components: one comes from the emergence of the magnetic field from the Sun's interior and the other comes from the drift of the magnetic activity at low latitudes.  相似文献   

7.
The Carte Synoptique catalogue of solar filaments from 1919 March to 1957 July, corresponding to complete cycles 16‐18, is utilized to show the latitudinal migrations of solar filaments at low (≤50°) and high (>50°) latitudes and the latitudinal distributions of solar filaments for all solar filaments, solar filaments whose maximum lengths during solar disk passage are less than or equal to 70° and solar filaments whose maximum lengths during solar disk passage are larger than 70°. The results show the following. (1) The latitudinal migrations of all low‐latitude solar filaments and low‐latitude solar filaments whose maximum lengths during solar disk passage are less than or equal to 70° follow the Spörer sunspot law. However, the latitudinal migration of low‐latitude solar filaments whose maximum lengths during solar disk passage are larger than 70° do not follow the Spörer sunspot law: there is no equatorward and no poleward drift. The latitudinal migration of high‐latitude solar filaments whose maximum lengths during solar disk passage are larger than 70° is more significant than those of all high‐latitude solar filaments and high‐latitude solar filaments whose maximum lengths during solar disk passage are less than or equal to 70°: there is a poleward migration from the latitude of about 50° to 70° and an equatorward migration from the latitude of about 70° to 50° of all high‐latitude solar filaments and high‐latitude solar filaments whose maximum lengths during solar disk passage are less than or equal to 70° and there is a poleward migration from the latitude of about 50° to 80° and an equatorward migration from the latitude of about 80° to 50° of high‐latitude solar filaments whose maximum lengths during solar disk passage are larger than 70°. (2) The statistical characteristics of latitudinal distribution of solar filaments whose maximum lengths during solar disk passage are larger than 70° is different from those of all solar filaments and solar filaments whose maximum lengths during solar disk passage are less than or equal to 70° (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
We have obtained new consistent versions of the 400-yr time series of the Wolf sunspot number W, the sunspot group number G, and the total sunspot area S (or the total sunspot magnetic flux Φ). We show that the 11-yr cycle did not cease during the Maunder minimum of solar activity. The characteristics of the extrema of individual 11-yr cycles in 1600–2005 have been determined in terms of the total sunspot area index. We provide arguments for using alternating (“magnetic”) time series of indices in investigating the solar cyclicity.  相似文献   

9.
Long-term homogeneous observations of solar activity or many solar cycles are essential for investigating many problems in solar physics and climatology. The one key parameter used in most long-term studies is the Wolf sunspot number, which is susceptible to observer bias, particularly because it is highly sensitive to the observer's ability to see the smallest sunspots. In this paper we show how the Wolf sunspot number can be derived from the number of sunspot groups alone. We utilize this approach to obtain a Group Wolf number. This technique has advantages over the classical method of determining the Wolf number because corrections for observer differences are reduced and long-term self-consistent time series can be developed. The level of activity can be calculated to an accuracy of ± 5% using this method. Applying the technique to Christian Horrebow's observations of solar cycles 1, 2, and 3 (1761–1777), we find that the standard Wolf numbers are nearly homogeneous with sunspot numbers measured from 1875 to 1976 except the peak of solar cycle 2 is too low by 30%. This result suggests that further analyses of early sunspot observations could lead to significant improvements in the uniformity of the measurements of solar activity. Such improvements could have important impacts upon our understanding of long-term variations in solar activity, such as the Gleissberg cycle, or secular variations in the Earth's climate.  相似文献   

10.
Can Asymmetry of Solar Activity be Extended into Extended Cycle?   总被引:1,自引:0,他引:1  
With the use of the Royal Greenwich Observatory data set of sunspot groups,an attempt is made to examine the north-south asymmetry of solar activity in the “extended” solar cycles. It is inferred that the asymmetry established for individual solar cycles does not extend to the “extended” cycles.  相似文献   

11.
In this paper, the method of similar cycles is applied to predict the start time of the 24th cycle of solar activity and the sunspot numbers in the later part of the descending phase of cycle 23. According to the characteristic parameters and the morphological characters of the descending phase of cycle 23 and of cycles 9, 10, 11, 15, 17 and 20 (cycles selected as the similar cycles for the descending phase of cycle 23), the start time of cycle 24 is predicted to be in 2007 yr 5 ± 1m, the smoothed monthly mean spot number, 7.1 ± 2.6 and the length of the 23rd cycle, 11.1 yr. These results agree rather well with those stated in Refs.[11] & [12] as well as those of MSFC. Our work shows that the method of similar cycles can well be applied to the long-term prediction of solar activity.  相似文献   

12.
The relationship between the geomagnetic activity of the three years preceding a sunspot minimum and the peak of the next sunspot maximum confirms the polar origin of the solar wind during one part of the solar cycle. Pointing out that the polar holes have a very small size or disappear at the time of the polar field reversal, we suggest a low latitude origin of the solar wind at sunspot maximum and we describe the cycle variation of solar wind and geomagnetic activity. In addition we note a close relationship between the maximum level of the geomagnetic activity reached few years before a solar minimum and its level at the next sunspot maximum. Studying separately the effects of both the low latitude holes and the solar activity, we point out the possibility of predicting both the level of geomagnetic activity and the sunspot number at the next sunspot maximum. As a conclusion we specify the different categories of phenomena contributing to a solar cycle.  相似文献   

13.
Wavelet Analysis of the Schwabe Cycle Properties in Solar Activity   总被引:2,自引:0,他引:2  
Properties of the Schwabe cycles in solar activity are investigated by using wavelet transform. We study the main range of the Schwabe cycles of the solar activity recorded by relative sunspot numbers, and find that the main range of the Schwabe cycles is the periodic span from 8-year to 14-year. We make the comparison of 11-year‘s phase between relative sunspot numbers and sunspot group numbers. The results show that there is some difference between two phases for the interval from 1710 to 1810, while the two phases are almost the same for the interval from 1810 to 1990.  相似文献   

14.
The relation of the solar cycle period and its amplitude is a complex problem as there is no direct correlation between these two quantities. Nevertheless, the period of the cycle is of important influence to the Earth's climate, which has been noted by many authors. The present authors make an attempt to analyse the solar indices data taking into account recent developments of the asymptotic theory of the solar dynamo. The use of the WKB method enables us to estimate the amplitude and the period of the cycle versus dynamo wave parameters in the framework of the nonlinear development of the one-dimensional Parker migratory dynamo. These estimates link the period T and the amplitude a with dynamo number D and thickness of the generation layer of the solar convective zone h. As previous authors, we have not revealed any considerable correlation between the above quantities calculated in the usual way. However, we have found some similar dependences with good confidence using running cycle periods. We have noticed statistically significant dependences between the Wolf numbers and the running period of the magnetic cycle, as well as between maximum sunspot number and duration of the phase of growth of each sunspot cycle. The latter one supports asymptotic estimates of the nonlinear dynamo wave suggested earlier. These dependences may be useful for understanding the mechanism of the solar dynamo wave and prediction of the average maximum amplitude of solar cycles. Besides that, we have noted that the maximum amplitude of the cycle and the temporal derivative of the monthly Wolf numbers at the very beginning of the phase of growth of the cycle have high correlation coefficient of order 0.95. The link between Wolf number data and their derivative taken with a time shift enabled us to predict the dynamics of the sunspot activity. For the current cycle 23 this yields Wolf numbers of order 107±7.  相似文献   

15.
本文给出了太阳23 周开始时间的确定、从开始到现在近两年间太阳活动的状况以及23周上升期间的一些特点。分析表明,1996 年10 月是23 周的第一个月,它的月平滑值是8 .8 ;23 周的太阳活动虽然可能是高活动周,例如,国际推荐值为2000 年3 月的160 ,但它可能不会超过前两周。根据上升期太阳活动的一些特征,还给出了在23 周峰年联测和空间灾害性扰动事件预报和预报方法研究中应注意的几个问题  相似文献   

16.
利用已知的22个完整太阳活动周平滑月平均黑子数的记录,对正在进行的太阳周发展趋势给出了预测方法,并应用于第23周,同时与其他预报方法的结果进行了比较。  相似文献   

17.
We show that the Wolf sunspot numbers W and the group sunspot numbers GSN are physically different indices of solar activity and that it is improper to compare them. Based on the approach of the so-called “primary” indices from the observational series of W(t) and GSN(t), we suggest series of yearly mean sunspot areas beginning in 1610 and monthly mean sunspot areas beginning in 1749.  相似文献   

18.
Duration of the extended solar cycles is taken into the consideration. The beginning of cycles is counted from the moment of polarity reversal of large-scale magnetic field in high latitudes, occurring in the sunspot cycle n till the minimum of the cycle n + 2. The connection between cycle duration and its amplitude is established. Duration of the “latent” period of evolution of extended cycle between reversals and a minimum of the current sunspot cycle is entered. It is shown, that the latent period of cycles evolution is connected with the next sunspot cycle amplitude and can be used for the prognosis of a level and time of a sunspot maximum. The 24th activity cycle prognosis is made. The found dependences correspond to transport dynamo model of generation of solar cyclicity, it is possible with various speed of meridional circulation. Long-term behavior of extended cycle's lengths and connection with change of a climate of the Earth is considered. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Although systematic measurements of the Sun's polar magnetic field exist only from mid-1970s, other proxies can be used to infer the polar field at earlier times. The observational data indicate a strong correlation between the polar field at a sunspot minimum and the strength of the next cycle, although the strength of the cycle is not correlated well with the polar field produced at its end. This suggests that the Babcock–Leighton mechanism of poloidal field generation from decaying sunspots involves randomness, whereas the other aspects of the dynamo process must be reasonably ordered and deterministic. Only if the magnetic diffusivity within the convection zone is assumed to be high (of order  1012 cm2 s−1  ), we can explain the correlation between the polar field at a minimum and the next cycle. We give several independent arguments that the diffusivity must be of this order. In a dynamo model with diffusivity like this, the poloidal field generated at the mid-latitudes is advected toward the poles by the meridional circulation and simultaneously diffuses towards the tachocline, where the toroidal field for the next cycle is produced. To model actual solar cycles with a dynamo model having such high diffusivity, we have to feed the observational data of the poloidal field at the minimum into the theoretical model. We develop a method of doing this in a systematic way. Our model predicts that cycle 24 will be a very weak cycle. Hemispheric asymmetry of solar activity is also calculated with our model and compared with observational data.  相似文献   

20.
Wilson  Robert M. 《Solar physics》1998,182(1):217-230
Samuel Heinrich Schwabe, the discoverer of the sunspot cycle, observed the Sun routinely from Dessau, Germany during the interval of 1826–1868, averaging about 290 observing days per year. His yearly counts of ‘clusters of spots’ (or, more correctly, the yearly number of newly appearing sunspot groups) provided a simple means for describing the overt features of the sunspot cycle (i.e., the timing and relative strengths of cycle minimum and maximum). In 1848, Rudolf Wolf, a Swiss astronomer, having become aware of Schwabe's discovery, introduced his now familiar ‘relative sunspot number’ and established an international cadre of observers for monitoring the future behavior of the sunspot cycle and for reconstructing its past behavior (backwards in time to 1818, based on daily sunspot number estimates). While Wolf's reconstruction is complete (without gaps) only from 1849 (hence, the beginning of the modern era), the immediately preceding interval of 1818–1848 is incomplete, being based on an average of 260 observing days per year. In this investigation, Wolf's reconstructed record of annual sunspot number is compared against Schwabe's actual observing record of yearly counts of clusters of spots. The comparison suggests that Wolf may have misplaced (by about 1–2 yr) and underestimated (by about 16 units of sunspot number) the maximum amplitude for cycle 7. If true, then, cycle 7's ascent and descent durations should measure about 5 years each instead of 7 and 3 years, respectively, the extremes of the distributions, and its maximum amplitude should measure about 86 instead of 70. This study also indicates that cycle 9's maximum amplitude is more reliably determined than cycle 8's and that both appear to be of comparable size (about 130 units of sunspot number) rather than being significantly different. Therefore, caution is urged against the indiscriminate use of the pre-modern era sunspot numbers in long-term studies of the sunspot cycle, since such use may lead to specious results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号