首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Summary The theoretical medium period PV-magnitude calibrating curves were computed for the Earth model PREM and a wide range of focal depths. The calculated set of curves reflects the distribution of model parameters, the influence of source radiation was not taken into account. The widely used Gutenberg's empirical calibrating curves were compared with the theoretical ones. Pronounced deviations in the shape and differences in the level of isolines were found. Thus, if model PREM is considered to be representative of the Earth's structure, the empirical calibrating curves (D, h) for magnitude determination currently used in seismological practice, have to be verified.
auma mmuu au u u ¶rt; n¶rt;u aum¶rt; - n ¶rt;nu¶rt; annaam ¶rt; ¶rt;u u RE u ¶rt;uanau aa. uu maam an¶rt;u naam ¶rt;u ma uu u umua. u nu nuuu au u ma u a mmuuu uu. u a¶rt; mu auu n u u. au a, u num ¶rt; RE n¶rt;maum ¶rt; mu u, m ¶rt;u num nuuu au u (D, h) ¶rt; n¶rt;u aum¶rt;, m am unm u namu.
  相似文献   

2.
aam mam uu mn¶rt;muaamuu n¶rt; u u nua ua —aam auumu m mnam (200–1000°, 2 10–1 a). aa¶rt;u, m um na¶rt;a uu a n¶rt;u auumu mn¶rt;mu m mnam, u¶rt;m auumu ¶rt;a mn¶rt;mu mnam u n¶rt;m mu mnam uma.  相似文献   

3.
Summary The disturbances of the velocity and magnetic fields close to the Earth's core-mantle boundary, caused by sudden irregular changes in the Earth's rotation, are investigated. The problem leads to the investigation of the structure of the Ekman-Hartman hydromagnetic boundary layer, the magnetic diffusive region and the currentless region. Precise Laplacean inversions of the images of all disturbances in the Earth's core-mantle system are obtained for the limiting case of a zero magnetic Prandtl number, =0. The disturbance of the velocity in the direction of the axis of rotation (Ekman suction) in the currentless region has the nature of inertial oscillations with a frequency of 2. Additional disturbances (with respect to the case of =0) of the velocity in the azimuthal and radial directions, particularly for the EHL and MDR region, are determined for the case when 0< « 1. The disturbance in the velocity again has the character of inertial oscillations with the frequency 2, being exponentially damped in EHL asexp (–22t) and in MDR asexp (–2t).  相似文献   

4.
Summary The present paper deals with theZ-model of the nearly symmetric hydromagnetic dynamo as a generation mechanism of the Earth's magnetic field. TheZ-model of Braginsky [2] was solved for viscous core-mantle coupling [3]. It is shown that a similarZ-model can also be constructed for electromagnetic core-mantle coupling, or for both effects combined. A new part of the azimuthal velocity appears in the equations, but the character of the boundary layer is not changed too much. No numerical solution is presented.
mam auam ma aa Z-¶rt; nmu umuu¶rt;aum ¶rt;ua, ma n¶rt;mam amu au aum n. Z-¶rt; au [2] a a ¶rt; a au¶rt;mu ¶rt; ¶rt; u amu. aam, m n¶rt;a Z-¶rt; m m nma ma ¶rt; a maum au¶rt;mu ¶rt; ¶rt; u amu, uu a ma m uuam. au nm a am auma mu, aam nau m. ua u u nu¶rt;um.
  相似文献   

5.
Summary The linearization approach is used to compute the travel times in inhomogeneous slightly anisotropic media. The basic formulae are outlined and their accuracy demonstrated in comparison with the exact solution based on the zero-order ray theory and the Backus formula (1965). The linearization is extended also to complex media with curved interfaces. The computer program for calculating travel times in 2D, inhomogeneous, slightly anisotropic, complex media is briefly described. The numerical results obtained for a realistic situation and various types of waves are presented to enable the effects of anisotropy and the effects of inhomogeneity on the resulting travel times to be compared.
na uauua n¶rt;¶rt; ¶rt; ama¶rt;aa , anmau aaumn ¶rt;a. ¶rt; u n¶rt; au m u n muu nuuuu u m¶rt; aa (1965). a uauua n¶rt;¶rt; ¶rt; a ¶rt; uuuauau a¶rt;a. am nuaa uuma naa ¶rt; ama¶rt;a ¶rt; ¶rt;. u mam ¶rt; a mun ¶rt;am m um m aumnuu u m ¶rt;¶rt;mu a a anmau .
  相似文献   

6.
u¶rt;m n uu ¶rt;u m n u ma n¶rt;aa, nu m¶rt;u u ¶rt;uau. n nuu uu ¶rt;u m n ¶rt;a¶rt; nu NoNo VI, VII. u au u n m a (x, H), ¶rt;auu an¶rt;u ¶rt;u m ¶rt; m¶rt; nu, u mua m nuu (H), aamuu an¶rt;u m a mua ¶rt;¶rt; uu ¶rt;uua u a. u a ¶rt;u m (x, H) amm ¶rt;uuu (u) a m¶rt; nu. m¶rt; u, auuu aau, om aamuam muau an¶rt;u ¶rt;u m, uu , n m u m nu aamuu a nmu, am ma a¶rt;am aa uu ¶rt;u m. aa u a¶rt;u n nu NoNo VI u VII u umuu ¶rt;a. mua m nu (H) num m ¶rt;u amu aua u anam um, ¶rt;a amu ¶rt;aua u ¶rt;- nma (nu No VII). ma ¶rt; ¶rt; aua, maa numa nm m u numa nm ma¶rt;um, a unaa nuu umnmauu a¶rt;uu ¶rt;uau amu aua.  相似文献   

7.
Summary A large number of the users of the geomtrical constants of the reference ellipsoid know only the IAG resolutions and not the related special publications; consequently, the numerical values of the derived geometrical constants may be interpreted differently. Some values of possible differences (max. 32 mm) are given, and it is proposed that the GRS-80 geometrical constants be defined by the values of a and f –1 with unlimited accuracy in the next IAG resolution.
¶rt;a um nam zmuuu nmu n-unu¶rt;a am m uu ¶rt;a¶rt; auauu n z¶rt;uu, a nua nuauu; nm m num a mau u au nu¶rt; zmuu nm. mam nu¶rt;m m au am (a. 32 ) u n¶rt;azam n¶rt; uu n¶rt;m muu nm GRS-80 uuau a, f –1 zau mm.
  相似文献   

8.
Summary The effect of the IMF sector boundary crossing (IMF SBC) in the vorticity area index (VAI) — the well-known dip in the VAI after IMF SBC — is found to be independent of the IMF SBC effect in the cosmic ray flux. This finding refutes a recent suggestion by Lundstedt [1] that the IMF SBC effect in VAI is caused by a decrease in cosmic ray flux, but supports the concept of the IMF SBC effects in the ionosphere and atmosphere developed by Latovika [2–4]. Cosmic rays seem to affect the troposphere in another way.
¶rt;mu nu mau nam aum n ( ) a u¶rt; na¶rt;u aumu () — um uu n — a¶rt; auu m ma nm uu . mm mam nam ¶rt;a n¶rt;u ¶rt;m¶rt;a [1], m m a nuu nma uu , n¶rt;¶rt;uam nu m u u am, aum amu [2–4]. am m uu u m um a mn ¶rt;u a.
  相似文献   

9.
u uuuuaumau uu u m, ¶rt;u a mumau nmu a u nmu mau u nmmu. au n¶rt; nuau ¶rt;mam u u m. nua m¶rt; m u m¶rt;a aau (1960) ¶rt; uu .  相似文献   

10.
Summary The dependence of Pn-wave velocities on the heat flow, temperature at the crustmantle boundary and the thickness of the Earth's crust in Europe was investigated in relation to the problem of lateral inhomogeneities in the upper mantle. A map was constructed of the distribution of Pn-wave velocities on the territory of Europe. The relations these investigations yielded, were compared with the results of laboratory experiments and all the results are discussed from the physical point of view. The conclusion drawn is that that temperature and pressure effect provide a sufficient explanation of the observed regional changes of Pn-wave velocities for the European continent.
auum ¶rt;auu mu n¶rt; ¶rt; nmu uua (Pn) u mn nm, mnam a nmu amuu u m a mumuu n a u¶rt;aa u numa ¶rt;¶rt;m amuu. mumuu n a maa a uu m Pn- a nmu uua. u¶rt;u umam ¶rt;a mama aam u¶rt;au uuu m n¶rt; amuu u u ¶rt;au u mnam mmmm mama n¶rt;aa am. ¶rt;a ¶rt;, m ua uu m Pn- a n mum ¶rt;mam um uuu mnam u ¶rt;au a nmu uua.
  相似文献   

11.
a mmuu ¶rt; ¶rt;au nm u , a auauu ma mu au u. aamuam m¶rt; a, ma u mua mu ¶rt;au u ¶rt;aa u uma a; m a mu ¶rt;auu m ¶rt;muam 10% m ¶rt;au, a u nuuau m .  相似文献   

12.
Summary The calculation procedures for determining epicentre parameters of weak near shocks with foci in Poland are discussed and tested for explosions with known epicentres.
m m¶rt; ¶rt; n¶rt;u num a uu m num nmua n auauu, u mu a mumuu u, n muu ¶rt;au uu mau. au mam nam (a. 4) nu nuuu na 71 u m ¶rt;u n¶rt; ¶rt; a auu ¶rt;a [11].
  相似文献   

13.
Summary The convection in a rapidly rotating electrically conducting, fluid horizontal layer of non-constant stratification, permeated by an inhomogeneous magnetic field, is studied. In this connection, a temperature model of the layer is constructed, which creates a structure such that part of the layer is unstably and a part stably stratified. The results obtained are applied to the conditions in the fluid Earth's core.
¶rt;m u m aa mn¶rt; u¶rt;uma , m um nm mamuuau u a¶rt;um ¶rt;¶rt; aum n. uaa nu m mna ¶rt; nu¶rt;um uu ma mm, nu m am mamuuum mau, a am — mau. mam unm ¶rt; aaua n, nu¶rt;u u¶rt; ¶rt; u.
  相似文献   

14.
Summary Tests on the vertical vibrating table in the frequency range of70–110 Hz indicate that quartz gravity meters are10–100 times more sensitive at some frequencies than under low-frequency excitation. At high frequencies, the reading beam is at rest and deflected from the correct position. Slow fluctuations of amplitude and frequency near resonance could cause slow irregular motion of the beam with absence of low-frequency ground motion of sufficient intensity.
unmauaum a mua um¶rt; ¶rt;uana amm 70–110u mam, m a m ammaaum 10–100 a mum nu uamm au. u amm au u a¶rt;um n m mu m nu. ¶rt; auauu anum¶rt; u amm au uu aa m am uamm u ua ¶rt;a mmmm uamm au n ¶rt;mam umumu.
  相似文献   

15.
m amamu n¶rt;ma au ¶rt; nmuaa mu n ma a, ¶rt;a ¶rt;¶rt; maua mu n ¶rt; nmam ¶rt;um n¶rt; nnmmu n. u m umau n aa mau a, m m nmmu ma nu ¶rt;¶rt; n naa u umuu n. maa a¶rt;aa a u um ¶rt;uam. a u nu¶rt;m um ua u au, nu u n a auu mam, n¶rt;ma [5, 6]. m um nu num m amamu au ¶rt; nmuaa mu n, n¶rt;mau u¶rt; ¶rt;a nu a¶rt;a.  相似文献   

16.
Summary The basic formula used in the presented paper gives the relation between the P wave travel-time perturbation and the perturbation of an inhomogeneous transversely isotropic medium, expressed by four perturbations of elastic parameters and by two angles of orientation of the axis of symmetry of transverse isotropy in space. The travel time perturbation is computed along the ray in the unperturbed inhomogeneous isotropic medium. Four elastic parameters and two angles are parametrized in the model under study and a system of equations for many rays is constructed. The equations are linear in the sought elastic parameters and nonlinear in the sought angles, and the iterative Levenberg-Marquardt algorithm is thus used to solve them. The theoretical 3-D inverse problem was solved in the presented numerical example. The data, simulating teleseismic data, were computed in the direct problem and then inverted. The results indicate the applicability and limitation of the presented algorithm in real problems.
a a, unaa n¶rt;aa am, ¶rt;am mu ¶rt; uu u na u uu ¶rt;¶rt; nn umn ¶rt;, a m nuu naamau u ¶rt; au umauu u umuu nn umnuu nmam. u u na um ¶rt; a aa ¶rt;¶rt; umn ¶rt;. nu naam u ¶rt;a a naamuua ¶rt;u u nma uma au ¶rt; u . au u n um nu naama u u n um a umauu umuu, nm un m umamu aum a-aa¶rt;ma ¶rt; u u. am nu¶rt; ¶rt; m u nu. nu muu ¶rt;a aaa a na a¶rt;aa u am ¶rt;a a. mam naam auu u mu nuu nu¶rt;uma a a.
  相似文献   

17.
Summary The morphology of the Wadati-Benioff zone in the region of Southern Kuriles and Hokkaido, based on the distribution of 4015 earthquake foci, verified the existence of an intermediate depth aseismic gap and its relation to active andesitic volcanism. A paleosubduction zone activated by an intermediate depth collision with the active subduction zone was found and described.
u Wadati-Benioff amu uu - u a¶rt;, aa a an¶rt;uu 4015 a mu, nm¶rt;ua mau n¶rt; au u amu a¶rt;um au. a a¶rt;a u nuaa a na¶rt;uu, amuuuaa nmu mu amu ¶rt;uu.
  相似文献   

18.
a mam 10-mu u¶rt;au ¶rt;uauu nmu a anam. auum aam mua ¶rt;uu u nu amu uu, a , muu, u auauu n u mmu u uu umaa u ¶rt; nmu uuau.  相似文献   

19.
Summary Magnetic variations were recorded along three profiles crossing the southeastern margin of the Bohemian Massif. The data were processed in order to get induction vectors (Wiesevectors) and in-phase and out-of-phase induction vectors (Schmucker-vectors). Several events of field variations were separated into external and internal parts. The same events were also treated by a physical-statistical approach. Taking into account these results, we were able to delineate a zone of electrical inhomogeneity. It is in close relation to the Moravo-Silesian lineament. The depth of the internal anomalous field source was estimated at 20 to 25 km.
¶rt;a u uuau n uu n nu, nu — u. u¶rt;uu ( u), n u u n¶rt; u n u¶rt;uu ( ), n ¶rt;u n uau u u u n au ¶rt; uu-uuu ¶rt; u ¶rt;¶rt;u na¶rt; nu -uu . ¶rt; au uu a n a u n¶rt; 20–25 .
  相似文献   

20.
Summary A two-dimensional flow model of an incompressible fluid with constant viscosity has been used to study the changes in the large-scale flow pattern (aspect ratio 4). Implications for convection in the Earth's mantle are discussed.
a ¶rt; mn uuu ua u¶rt;mu nm m unm ¶rt; uu uu mu ama¶rt;a. ¶rt;am mam ¶rt; uu amuu u.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号