首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Observations of the first major active regions and large-scale magnetic field patterns of Cycle 22 are presented. These show that, following the emergence of a trans-equatorial pattern, or cell, of positive flux related to old cycle activity, the first new cycle active regions of the longitude range emerged across the neutral lines of this cell, which continued to grow and expand across the equator for several rotations. The development of a parallel trans-equatorial band of flux of opposite (negative) polarity and the emergence of both new and old cycle active regions across a neutral line of this cell are also described.Simulations using the flux transport equation, and based on synoptic magnetic data provided by the Mount Wilson Observatory, show that, while the growth of the positive region could, in part, be explained by the decay of flux from these new regions, there were significant differences between synoptic contour charts based on the simulations and those constructed from the observed fields. They also show that the development of the negative region cannot reasonably be explained by the decay of the observed active regions.A further example of the counter rotation of decaying active region fields is reported. Here the initial tilt of the negative-positive magnetic axes of two adjacent regions is normal, and simulations based on these data show their combined follower flux moving preferentially polewards. However, the observations show that, after three rotations, the decaying leader flux is entirely poleward of the follower flux.On leave from the School of Mathematics, University of Sydney.  相似文献   

2.
Schrijver  C. J. 《Solar physics》1989,122(2):193-208
This paper studies how the properties of large-scale convection affect the decay of plages. The plage decay, caused by the random-walk dispersion of flux tubes, is suggested to be severely affected by differences between the mean size of cellular openings within and around plages. The smaller cell size within a plage largely explains the smaller diffusion coefficient within plages as compared to that of the surrounding regions. Moreover, the exchange of flux tubes between the inner regions of the plage and the surrounding network is suggested to be modified by this difference in cell size, and the concept of a partially transmitting plage periphery is introduced: this periphery preferentially turns back flux parcels that are moving out of the plage and preferentially lets through flux parcels that are moving into the plage, thus confining the flux tubes to within the plage. This semi-permeability of the plage periphery, together with the dependence of the diffusion coefficient on the flux-tube density, can explain the observed slow decay of plages (predicting a typical life time of about a month for a medium-sized plage), the existence of a well-defined plage periphery, and the observed characteristic mean magnetic flux density of about 100 G. One effect of the slowed decay of the plage by the semi-permeability of the plage periphery is the increase of the fraction of the magnetic flux that can cancel with flux of the opposite polarity along the neutral line to as much as 80%, as compared to at most 50% in the case of non-uniform diffusion. This may explain why only a small fraction of the magnetic flux is observed to escape from the plage into the surrounding network.  相似文献   

3.
Obridko  V.N.  Shelting  B.D. 《Solar physics》1999,187(1):185-205
The structure and variations of open field regions (OFRs) are analyzed against the solar cycle for the time interval of 1970–1996. The cycle of the large-scale magnetic field (LSMF) begins in the vicinity of maximum Wolf numbers, i.e. during the polar field reversal. At the beginning of the LSMF cycle, the polar and mid-latitude magnetic field systems are connected by a narrow bridge, but later they evolve independently. The polar field at the latitudes above 60° has a completely open configuration and fills the whole area of the polar caps near the cycle minimum of local fields. At this time, essentially all of the open solar flux is from the polar caps. The mid-latitude open field regions (OFRs) occur at a latitude of 30–40° away from solar minimum and drift slowly towards the equator to form a typical 'butterfly diagram' at the periphery of the local field zone. This supports the concept of a single complex – 'large-scale magnetic field – active region – coronal hole'. The rotation characteristics of OFRs have been analyzed to reveal a near solid-body rotation, much more rigid than in the case of sunspots. The rotation characteristics are shown to depend on the phase of the solar cycle.  相似文献   

4.
Using NSO/Kitt Peak synoptic charts from 1975 to 2003, we group the main solar magnetic fields into two categories: one for active regions (ARs) and the other for extended bipolar regions (EBRs). Comparing them, we find that there exist three typical characteristics in the variability of EBRs: First, there exists a correlation between ARs and EBRs. The phase of EBR flux has a delay nearly two CRs. Second, we find that the EBR flux has two prominent periods at 1.79 years and 3.21 years. The 1.79-year period seems to only belong to large-scale magnetic features. Lastly, the North – South asymmetry of EBR flux is not very significant on a time scale of one solar cycle. However, during solar maxima, its dominance is found to shift from one hemisphere to the other.  相似文献   

5.
High-resolution photographs of the photospheric network taken in the Caii K 3933 Å line and at 4308 Å are analysed in order to study the variation, in latitude and over the sunspot cycle, of its density (the density is defined as the number of network elements - also called facular points - per surface unity). It appears that the density of the photospheric network is not distributed uniformly at the surface of the Sun: on September 1983, during the declining phase of the current activity cycle, it was weakened at both the low (equatorial) and high (polar) active latitudes, while it was tremendously enhanced toward the pole. The density at the equator is varying in antiphase to the sunspot number: it increases by a factor 3 or more from maximum to minimum of activity. As a quantum of magnetic flux is associated to each network element, density variations of the photospheric network express in fact variations of the quiet Sun magnetic flux. It thus results that the quiet Sun magnetic flux is not uniformly distributed in latitude and not constant over the solar cycle: it probably varies in antiphase to the flux in active regions.The variation over the solar cycle and the latitude distribution of photospheric network density are compared to those of X-ray bright points and ephemeral active regions: there are no clear correlations between these three kinds of magnetic features.  相似文献   

6.
The powerful flare 4B/X17.2 of October 28, 2003 in the NOAA 10486 active region is studied by using Hα filtergrams. This active region had a complicated βγδ magnetic configuration and a sigmoidal pattern of the polarity inversion line, it had the largest AR area in the cycle 23. Local filaments, loops, and systems of loops were also observed in the AR. The light curves obtained for all flare knots clearly reveal two stages in their evolution. The first stage is the pre-flare one, when the accumulation of the nonpotential magnetic energy (the energy of electric currents) comes to an end and the situation becomes favorable for the realization of the second period. The intensity of flare knots (except one knot) changed slightly and slowly, and some structure features (twists and connections) became more active. By the end of the first stage a new magnetic flux emerged and a system of interrelated filaments and loops (IFL) was formed at the center of the AR as well as at its periphery. New flare knots appeared about the main S-like filament. The second flare stage began at about 11:02 UT with a dramatic increase of the intensity and area of all flare knots and the formation of new knots. In a space of 8 min the major part of the AR around the main filament was covered with flare emission which fluctuated at its maximum period. The intensity of all knots was observed to drop slowly after the maximum, at the decay phase. As the IFL system extended over the entire AR, the magnetic field energy accumulated in it was released in the form of powerful electromagnetic and corpuscular emission by way of magnetic reconnection.  相似文献   

7.
Observations of the first large-scale patterns of magnetic fields near the sunspot minimum of 1986 (the start of cycle 22) are presented using synoptic magnetic data provided by the National Solar Observatory and contour maps constructed from data provided by the Mount Wilson Solar Observatory. The latter are compared with simulated contour maps derived from numerical solutions of the flux transport equation using data from particular Carrington rotations as initial conditions.The simulated evolutions of the large-scale magnetic fields are qualitatively consistent with observed evolutions, but differ in several significant respects. Some of the differences can be removed by varying the diffusivity and the parameters of the large-scale velocity fields. The remaining differences include: (i) the complexity of fine structure, (ii) the response to differential rotation, (iii) the evolution of decaying active regions, and (iv) the emergence of new elements in the weak, large-scale fields independent of the evolution of the observed active regions.It is concluded that the patterns of weak magnetic fields which comprise the large-scale features cannot be formed entirely by the diffusive decay of active regions. There must be a significant contribution to these patterns by non-random flux eruptions within the network structure, independent of active regions.  相似文献   

8.
A. Khlystova 《Solar physics》2013,284(2):329-341
A statistical study has been carried out of the relationship between plasma flow Doppler velocities and magnetic field parameters during the emergence of active regions at the solar photospheric level with data acquired by the Michelson Doppler Imager (MDI) onboard the Solar and Heliospheric Observatory (SOHO). We have investigated 224 emerging active regions with different spatial scales and positions on the solar disc. The following relationships for the first hours of the emergence of active regions have been analysed: i) of peak negative Doppler velocities with the position of the emerging active regions on the solar disc; ii) of peak plasma upflow and downflow Doppler velocities with the magnetic flux growth rate and magnetic field strength for the active regions emerging near the solar disc centre (the vertical component of plasma flows); iii) of peak positive and negative Doppler velocities with the magnetic flux growth rate and magnetic field strength for the active regions emerging near the limb (the horizontal component of plasma flows); iv) of the magnetic flux growth rate with the density of emerging magnetic flux; v) of the Doppler velocities and magnetic field parameters for the first hours of the appearance of active regions with the total unsigned magnetic flux at the maximum of their development.  相似文献   

9.
The active region NOAA 8032 of April 15, 1997 was observed to evolve rapidly. The GOES X-ray data showed a number of sub-flares and two C-class flares during the 8–9 hours of its evolution. The magnetic evolution of this region is studied to ascertain its role in flare production. Large changes were observed in magnetic field configuration due to the emergence of new magnetic flux regions (EFR). Most of the new emergence occured very close to the existing magnetic regions, which resulted in strong magnetic field gradients in this region. EFR driven reconnection of the field lines and subsequent flux cancellation might be the reason for the continuous occurrence of sub-flares and other related activities.  相似文献   

10.
Polar Coronal Holes During Cycles 22 and 23   总被引:3,自引:0,他引:3  
Harvey  Karen L.  Recely  Frank 《Solar physics》2002,211(1-2):31-52
The National Solar Observatory/Kitt Peak synoptic rotation maps of the magnetic field and of the equivalent width of the He i 1083 nm line are used to identify and measure polar coronal holes from September 1989 to the present. This period covers the entire lifetime of the northern and southern polar holes present during cycles 22 and 23 and includes the disappearance of the previous southern polar coronal hole in 1990 and and formation of the new northern polar hole in 2001. From this sample of polar hole observations, we found that polar coronal holes evolve from high-latitude (60° ) isolated holes. The isolated pre-polar holes form in the follower of the remnants of old active region fields just before the polar magnetic fields complete their reversal during the maximum phase of a cycle, and expand to cover the poles within 3 solar rotations after the reversal of the polar fields. During the initial 1.2–1.4 years, the polar holes are asymmetric about the pole and frequently have lobes extending into the active region latitudes. During this period, the area and magnetic flux of the polar holes increase rapidly. The surface areas, and in one case the net magnetic flux, reach an initial brief maximum within a few months. Following this initial phase, the areas (and in one case magnetic flux) decrease and then increase more slowly reaching their maxima during the cycle minimum. Over much of the lifetime of the measured polar holes, the area of the southern polar hole was smaller than the northern hole and had a significantly higher magnetic flux density. Both polar holes had essentially the same amount of magnetic flux at the time of cycle minimum. The decline in area and magnetic flux begins with the first new cycle regions with the holes disappearing about 1.1–1.8 years before the polar fields complete their reversal. The lifetime of the two polar coronal holes observed in their entirety during cycles 22 and 23 was 8.7 years for the northern polar hole and 8.3 years for the southern polar hole.  相似文献   

11.
This paper reviews the studies of solar photospheric magnetic field evolution in active regions and its relationship to solar flares. It is divided into two topics, the magnetic structure and evolution leading to solar eruptions and rapid changes in the photospheric magnetic field associated with eruptions. For the first topic, we describe the magnetic complexity, new flux emergence, flux cancelation, shear motions, sunspot rotation and magnetic helicity injection, which may all contribute to the storage and buildup of energy that trigger solar eruptions. For the second topic, we concentrate on the observations of rapid and irreversible changes of the photospheric magnetic field associated with flares, and the implication on the restructuring of the three-dimensional magnetic field. In particular, we emphasize the recent advances in observations of the photospheric magnetic field, as state-of-the-art observing facilities(such as Hinode and Solar Dynamics Observatory) have become available. The linkages between observations, theories and future prospectives in this research area are also discussed.  相似文献   

12.
Bumba  V.  Garcia  A.  Klvaňa  M. 《Solar physics》2000,196(2):403-419
Studying the appearance of active regions during periods of solar activity minima, we observed that the magnetic fields of active regions belonging to the old and new cycle were mutually related. This was the reason we decided to investigate the relation of the old and new cycle activity during the two last minima in more detail. We examined the distribution of both activities in heliographic longitude, because the patterns of such distribution change substantially during the time of the minimum, and we studied their relation to the distribution and development of the global (background) magnetic field. We observed that the active regions of the old and new cycles tended to concentrate in the same active longitudes. The sources of their magnetic fluxes seem to have the same heliographic longitude. The beginning of the new cycle activity, occurring at the very beginning to a very weak degree in the equatorial zone, and then proceeding to higher latitudes, occurs in the magnetic field remnants of the old cycle activity. During the transition phase, a relatively large number of small active regions is produced by both cycles.  相似文献   

13.
The aim of this paper is to look at the magnetic helicity structure of an emerging active region and show that both emergence and flaring signatures are consistent with a same sign for magnetic helicity. We present a multiwavelength analysis of an M1.6 flare occurring in the NOAA active region 10365 on 27 May 2003, in which a large new bipole emerges in a decaying active region. The diverging flow pattern and the “tongue” shape of the magnetic field in the photosphere with elongated polarities are highly suggestive of the emergence of a twisted flux tube. The orientation of these tongues indicates the emergence of a flux tube with a right-hand twist (i.e., positive magnetic helicity). The flare signatures in the chromosphere are ribbons observed in Hα by the MSDP spectrograph in the Meudon solar tower and in 1600 Å by TRACE. These ribbons have a J shape and are shifted along the inversion line. The pattern of these ribbons suggests that the flare was triggered by magnetic reconnection at coronal heights below a twisted flux tube of positive helicity, corresponding to that of the observed emergence. It is the first time that such a consistency between the signatures of the emerging flux through the photosphere and flare ribbons has been clearly identified in observations. Another type of ribbons observed during the flare at the periphery of the active region by the MSDP and SOHO/EIT is related to the existence of a null point, which is found high in the corona in a potential field extrapolation. We discuss the interpretation of these secondary brightenings in terms of the “breakout” model and in terms of plasma compression/heating within large-scale separatrices.  相似文献   

14.
It is well known that the polar magnetic field is at its maximum during solar minima, and that the behaviour during this time acts as a strong predictor of the strength of the following solar cycle. This relationship relies on the action of differential rotation (the Omega effect) on the poloidal field, which generates the toroidal flux observed in sunspots and active regions. We measure the helicity flux into both the northern and the southern hemispheres using a model that takes account of the Omega effect, which we apply to data sets covering a total of 60 years. We find that the helicity flux offers a strong prediction of solar activity up to five years in advance of the next solar cycle. We also hazard an early guess as to the strength of Solar Cycle 25, which we believe will be of similar amplitude and strength to Cycle 24.  相似文献   

15.
Parnell  C.E. 《Solar physics》2001,200(1-2):23-45
There are four key processes that dictate the behaviorof the magnetic flux concentrations that form the so-called `magnetic carpet' of the quiet photosphere. These processes are emergence, cancellation, coalescence, and fragmentation. Rates of emergence have been estimated from observations, but the rates of cancellation, coalescence, and fragmentation are much more difficult to determine observationally. A model is set up to simulate an area of magnetic carpet in the quiet Sun. In the model there are three imposed parameters: the rate of emergence of new flux, the distribution of emerged flux and the rate of fragmentation of flux concentrations. The rate of cancellation and the rate of coalescence are deduced from the model. From the simulations it is estimated that the average emergence rate of new flux in the quiet Sun must be between 6×10–6 and 10– 5 Mx cm–2 s–1 to maintain an absolute flux density of between 2.5 and 3 G. For this rate of emergence a fragmentation rate of more than 12×10–5 s–1 is required to produce the observed exponential index for the number density of flux concentrations. This is equivalent to each fragment canceling more than once every 200 minutes. The rate of cancellation is calculated from the model and is found naturally to be equivalent to the rate of emergence. However, it is found that the frequency of cancellation is much greater than the frequency of emergence. In fact, it is likely that there are several orders of magnitude more cancellation events than emergence events. This implies that flux is injected in relatively large concentrations whereas cancellation occurs though the disappearance of many small concentrations.  相似文献   

16.
For large eruptions on the Sun, it is often a problem that the core dimming region cannot be observed due to the bright emission from the flare itself. However, spectroscopic data can provide the missing information through the measurement of Doppler velocities. In this paper we analyse the well-studied flare and coronal mass ejection that erupted on the Sun on 13 December 2006 and reached the Earth on 14 December 2006. In this example, although the imaging data were saturated at the flare site itself, by using velocity measurements we could extract information on the core dimming region, as well as on remote dimmings. The purpose of this paper is to determine more accurately the magnetic flux of the solar source region, potentially involved in the ejection, through a new technique. The results of its application are compared to the flux in the magnetic cloud observed at 1 AU, as a way to check the reliability of this technique. We analysed data from the Hinode EUV Imaging Spectrometer to estimate the Doppler velocity in the active region and its surroundings before and after the event. This allowed us to determine a Doppler velocity ‘difference’ image. We used the velocity difference image overlayed on a Michelson Doppler Imager magnetogram to identify the regions in which the blue shifts were more prominent after the event; the magnetic flux in these regions was used as a proxy for the ejected flux and compared to the magnetic cloud flux. This new method provides a more accurate flux determination in the solar source region.  相似文献   

17.
Existing models for the evolution of sunspots and sunspot groups, describing the subsurface structure of the magnetic fields and their interactions with the convective motions, are briefly reviewed. It is shown that they are generally unable to account for the most recent data concerning the relationship between the large-scale solar magnetic field structures and the magnetic fields of active regions. In particular, it is shown that the former do not arise directly from the decay of the latter, as required by the Babcock model and all other models based on it. Other observations which are not adequately explained by current models are also cited.A new model is put forward based on the expulsion of toroidal magnetic flux by the dominant (i.e. giant) cells of the convection zone. The flux expelled above these cells forms the large-scale field and thus the configuration of this field provides a clue to the structure of the giant cell patterns. The flux expelled below the cells becomes twisted into a rope as in the Babcock model but a loop or stitch forms only in the region of upflow of the giant cells. The interaction of this loop with intermediate-sized cells as it rises to the surface determines the configuration and extent of the active region which appears at the surface. The compatibility of the model with other observations is discussed and its implications for theories of the solar cycle are noted.  相似文献   

18.
We present an analysis of 2634 Ca II K‐line full‐disk filtergrams obtained with the 15‐cm aperture photometric full‐disk telescope at Big Bear Solar Observatory during the period from 1996 January 1 to 2005 October 24. Using limb darkening corrected and contrast enhanced filtergrams, solar activity indices were derived, which are sensitive to the 11‐year solar activity cycle and 27‐day rotational period of plages around active regions and the bright chromospheric network. The present work extends an earlier study (solar cycle 22), which was based on video data. The current digital data are of much improved quality with higher spatial resolution and a narrower passband ameliorating photometric accuracy. The time series of chromospheric activity indices cover most of solar cycle 23. One of the most conspicuous features of the Ca II K indices is the secondary maximum in late 2001/early 2002 after an initial decline of chromospheric activity during the first half of 2001. We conclude that a secular trend exists in the Ca II K indices, which has its origin in the bright chromospheric network and brightenings related to decaying active regions. Superposed on this secular trend are the signatures of recurring, long‐lived active regions, which are clusters of persistent and continuously emerging magnetic flux. Such features are less visible, when the activity belts on both side of the equator are devoid of the brightenings related to decaying active regions as was the case in October/November 2003 at a time when a superactivity complex including several naked‐eye sunspots emerged (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Tian  Lirong  Zhang  Hongqi  Tong  Yi  Jing  Hairong 《Solar physics》1999,189(2):305-313
In this paper, 203 bipolar active regions, in which bipolar magnetic fields are dominant, were chosen from the data set of photospheric vector magnetograms observed at Huairou Solar Observing Station in Beijing during 1988–1996. We calculated the tilts of the magnetic polarity axis in these active regions and investigated the dependence of the tilt on physical quantities such as polarity separation, total flux and the relationship between total flux and polarity separation, total area of active regions.The results are as follows:(1) The active regions with large tilt angle have smaller magnetic polarity separations.(2) The active regions with large tilt angle have smaller fluxes.(3) The active regions with large flux have larger polarity separations.(4) The active regions with large area have larger fluxes.These results will possibly provide new information about the nature and dynamic behavior of magnetic flux tubes forming active regions beneath the photosphere.  相似文献   

20.
The structure of electric current and magnetic helicity in the solar corona is closely linked to solar activity over the 11-year cycle, yet is poorly understood. As an alternative to traditional current-free “potential-field” extrapolations, we investigate a model for the global coronal magnetic field which is non-potential and time-dependent, following the build-up and transport of magnetic helicity due to flux emergence and large-scale photospheric motions. This helicity concentrates into twisted magnetic flux ropes, which may lose equilibrium and be ejected. Here, we consider how the magnetic structure predicted by this model – in particular the flux ropes – varies over the solar activity cycle, based on photospheric input data from six periods of cycle 23. The number of flux ropes doubles from minimum to maximum, following the total length of photospheric polarity inversion lines. However, the number of flux rope ejections increases by a factor of eight, following the emergence rate of active regions. This is broadly consistent with the observed cycle modulation of coronal mass ejections, although the actual rate of ejections in the simulation is about a fifth of the rate of observed events. The model predicts that, even at minimum, differential rotation will produce sheared, non-potential, magnetic structure at all latitudes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号