首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
In this paper, the novel concept of probabilistic yielding is used for 1‐D cyclic simulation of the constitutive behavior of geomaterials. Fokker–Planck–Kolmogorov equation‐based probabilistic elastic–plastic constitutive framework is applied for obtaining the complete probabilistic (probability density function) material response. Both perfectly plastic and hardening‐type material models are considered. It is shown that when uncertainties in material parameters are taken into consideration, even the simple, elastic‐perfectly plastic model captures some of the important features of geomaterial behavior, for example, modulus reduction with cyclic strain, which, deterministically, is only possible with more advanced constitutive models. Furthermore, it is also shown that the use of isotropic and kinematic hardening rules does not significantly improve the probabilistic material response. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Stress–dilatancy relations have played a crucial role in the understanding of the mechanical behaviour of soils and in the development of realistic constitutive models for their response. Recent investigations on the mechanical behaviour of materials with crushable grains have called into question the validity of classical relations such as those used in critical state soil mechanics. In this paper, a method to construct thermodynamically consistent (isotropic, three‐invariant) elasto‐plastic models based on a given stress–dilatancy relation is discussed. Extensions to cover the case of granular materials with crushable grains are also presented, based on the interpretation of some classical model parameters (e.g. the stress ratio at critical state) as internal variables that evolve according to suitable hardening laws. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper a constitutive model for soils incorporating small strain stiffness formulated in the multilaminate framework is presented. In the multilaminate framework, the stress–strain behaviour of a material is obtained by integrating the mechanical response of an infinite number of randomly oriented planes passing through a material point. Such a procedure leads to a number of advantages in describing soil behaviour, the most significant being capture of initial and induced anisotropy due to plastic flow in a physically meaningful manner. In the past, many soil models of varying degree of refinement in the multilaminate framework have been presented by various authors. However, the issue of high initial soil stiffness in the range of very small strains and its degradation with straining, commonly referred to as ‘small strain stiffness’, has not been addressed within the multilaminate framework. In this paper, we adopt a micromechanics‐based approach to derive small strain elastic stiffness of the soil mass. Comparison of laboratory test data with results obtained from numerical simulations based on the proposed constitutive model incorporating small strain stiffness is performed to demonstrate its predictive capabilities. The model is implemented in a finite element code and numerical simulations of a deep excavation are presented with and without incorporation of small strain stiffness to demonstrate its importance in predicting profiles of deformation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
A non-linear seismic response analysis method for 2-D saturated soil–structure system with an absorbing boundary is presented. According to the 3-D strain space multimechanism model for the cyclic mobility of sandy soil, a constitutive expression for the plane strain condition is first given. Next, based on Biot's two-phase mixture theory, the finite element equations of motion for a saturated soil–structure system with an absorbing boundary during earthquake loadings are derived. A simulation of the shaking table test is performed by applying the proposed constitutive model. The effectiveness of the absorbing boundary is examined for the 2-D non-linear finite element models subjected to random inputs. Finally, a numerical seismic response analysis for a typical saturated soil–structure system is performed as an application of the proposed method.  相似文献   

5.
A new computer program (CONBAL-2) is developed for 2D numerical simulations of granular soil by random arrays of spheres. CONBAL-2 uses the discrete-element method and is based on 3D program TRUBAL, previously presented by Cundall. As in TRUBAL, the new program models a random array of elastic spheres in a periodic space. The main modification of TRUBAL is the implementation by the authors of a rigorous solution for the force–displacement relation at the interparticle contacts. This force-displacement relation is a function of the elastic constants, friction coefficient and sizes of the spheres, with the properties of quartz used to simulate sand. Other specific features of CONBAL-2 include its 2D character, the lack of particle rotation and its capability to simulate shear loading on any plane. Simulated laboratory test results are presented using CONBAL-2 and several random arrays of 531 spheres having two particle sizes. These simulations include monotonic loading drained and undrained (constant volume) ‘triaxial’ experiments, as well as a cyclic-loading, constant-volume ‘torsional shear’ test. The stress–strain curves, effective stress paths, volume changes, as well as the ‘pore water pressure’ build-up behaviour obtained in the simulations compare favourably—qualitatively and in some aspects quantitatively—with similar laboratory results on sands. However, the simulated soil is somewhat stiffer and stronger due to the perfectly rounded particles, limited range of grain sizes, lack of particle rotation and 2D character of the model.  相似文献   

6.
According to Litwiniszyn's theory, subsidence over a yielding underground geo‐structure is seen as a stochastic (Markov) process. This theory leads to a single, linear parabolic differential equation of diffusion–convection type (D–C equation) in the plane‐field of displacements. If the boundary conditions for the governing D–C equation are prescribed along the shear bands, i.e. at ‘moving’ boundaries—it has been observed from small‐scale model experiments that the subsiding process is always confined between a set of inclined shear bands—then the resulting equation is nonlinear. The inverse problem for this nonlinear equation, i.e. the problem of determining the base displacement using the surface subsidence as ‘initial’ condition, is ill‐posed and estimation of the base displacement from a given surface subsidence profile is not possible. In the present paper the domain of integration of the governing D–C equation is fixed (and bounded)—the boundaries are not evolving. Hence, the governing equation remains linear parabolic. The advantage is that this linear differential equation admits an analytical solution, under the trap‐door mechanism assumption, that enables a direct solution to the inverse problem. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Deep geological repository involving a multibarrier system constitutes one of the most promising options for isolating high‐level radioactive waste from the human environment. To certify the efficiency of waste isolation, it is essential to understand the behaviour of confining geomaterial under a variety of environmental conditions. To this end, results from a near‐to‐real experiment, the full‐scale engineered barriers in situ experiment, are studied by means of a thermo–hydro–mechanical finite element approach, including a consistent thermoplastic constitutive model for unsaturated soils. Laboratory tests are simulated to calibrate model parameters. The results of the numerical simulations are compared with sensor measurements and show the ability of the model to reproduce the main behavioural features of the system. The influence of the hysteretic and temperature‐dependent retention of water on the mechanical response is exhibited. Finally, those results are interpreted in the light of thermoplasticity of unsaturated soils, which reveals the highly coupled and non‐linear characters of the processes encountered. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents a non‐linear soil–structure interaction (SSI) macro‐element for shallow foundation on cohesive soil. The element describes the behaviour in the near field of the foundation under cyclic loading, reproducing the material non‐linearities of the soil under the foundation (yielding) as well as the geometrical non‐linearities (uplift) at the soil–structure interface. The overall behaviour in the soil and at the interface is reduced to its action on the foundation. The macro‐element consists of a non‐linear joint element, expressed in generalised variables, i.e. in forces applied to the foundation and in the corresponding displacements. Failure is described by the interaction diagram of the ultimate bearing capacity of the foundation under combined loads. Mechanisms of yielding and uplift are modelled through a global, coupled plasticity–uplift model. The cyclic model is dedicated to modelling the dynamic response of structures subjected to seismic action. Thus, it is especially suited to combined loading developed during this kind of motion. Comparisons of cyclic results obtained from the macro‐element and from a FE modelization are shown in order to demonstrate the relevance of the proposed model and its predictive ability. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
Advanced material constitutive models are used to describe complex soil behaviour. These models are often used in the solution of boundary value problems under general loading conditions. Users and developers of constitutive models need to methodically investigate the represented soil response under a wide range of loading conditions. This paper presents a systematic procedure for probing constitutive models. A general incremental strain probe, 6D hyperspherical strain probe (HSP), is introduced to examine rate‐independent model response under all possible strain loading conditions. Two special cases of HSP, the true triaxial strain probe (TTSP) and the plane‐strain strain probe (PSSP), are used to generate 3‐D objects that represent model stress response to probing. The TTSP, PSSP and general HSP procedures are demonstrated using elasto‐plastic models. The objects resulting from the probing procedure readily highlight important model characteristics including anisotropy, yielding, hardening, softening and failure. The PSSP procedure is applied to a Neural Network (NN) based constitutive model. It shows that this probing is especially useful in understanding NN constitutive models, which do not contain explicit functions for yield surface, hardening, or anisotropy. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.

The design of earthquake-resistant structures depends greatly on the soil–foundation–structure interaction. This interaction is more complex in the presence of liquefiable soils. Pile and rigid inclusion systems represent a useful practice to support structures in the presence of liquefiable soils in seismic zones. Both systems increase the bearing capacity of soil and allow reducing the settlements in the structure. Numerical models with a 3-storey reinforced concrete frame founded on inclusions systems (soil–inclusion–platform–structure) and pile systems (soil–pile–structure) were analyzed. Finite difference numerical models were developed using Flac 3D. Two different soil profiles were considered. A simple constitutive model for liquefaction analysis that relates the volumetric strain increment to the cyclic shear strain amplitude was utilized to represent the behavior of the sand, and the linear elastic perfectly plastic constitutive model with a Mohr–Coulomb failure criterion was used to represent the behavior of the earth platform. Two earthquakes were used to study the influence of the different frequency of excitation in the systems. The results were presented in terms of maximum shear forces distribution in the superstructure and spectrum response of each system. The efforts and displacements in the rigid elements (piles or rigid inclusions) were compared for the different systems. The bending and buckling failure modes of the pile were examined. The results show that the pile system, the soil profile and the frequency of excitation have a great influence on the magnitude and location of efforts and displacements in the rigid elements.

  相似文献   

11.
The ground response to tunnel excavation is usually described in terms of the characteristic line of the ground (also called ‘ground response curve’, GRC), which relates the support pressure to the displacement of the tunnel wall. Under heavily squeezing conditions, very large convergences may take place, sometimes exceeding 10–20% of the excavated tunnel radius, whereas most of the existing formulations for the GRC are based on the infinitesimal deformation theory. This paper presents an exact closed‐form analytical solution for the ground response around cylindrical and spherical openings unloaded from isotropic and uniform stress states, incorporating finite deformations and linearly elastic‐perfectly plastic rock behaviour obeying the Mohr–Coulomb failure criterion with a non‐associated flow rule. Additionally, the influence of out‐of‐plane stress in the case of cylindrical cavities under plane‐strain conditions is examined. The solution is presented in the form of dimensionless design charts covering the practically relevant parameter range. Finally, an application example is included with reference to a section of the Gotthard Base tunnel crossing heavily squeezing ground. The expressions derived can be used for preliminary convergence assessments and as valuable benchmarks for finite strain numerical analyses. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
This paper evaluates the performance of a generalized effective stress soil model for predicting the rate independent behaviour of freshly deposited sands, while a companion paper describes model capabilities for clays and silts. Most material parameters can be obtained from standard laboratory data, including hydrostatic or one‐dimensional compression, drained and undrained triaxial shear testing. A compilation of data on compression behaviour allows for estimation of compression parameters when this type of data is not available. Extensive comparisons of model predictions with measured data from undrained triaxial shear tests shows that the model gives excellent predictions of the transition from dilative to contractive shear response as the confining pressure and/or the initial formation void ratio increases. A parametric study of drained response shows that the model describes realistically the variation of peak friction angle and dilation rate as a function of confining pressure and density when compared with an empirical correlation valid for many sands. The proposed formulation predicts a unique critical state locus for both drained and undrained triaxial testing which is non‐linear over the entire range of stresses and is in excellent agreement with recent experimental data. Overall, the model provides excellent predictions of the stress–strain–strength relationships over a wide range of confining pressures and formation densities. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
Successful numerical simulation of geosynthetic-reinforced earth structures depends on selecting proper constitutive models for soils, geosynthetics and soil–geosynthetic interfaces. Many constitutive models are available for modelling soils and geosynthetics. However, constitutive models for soil–geosynthetic interfaces which can capture most of the important characteristics of interface response are not readily available. In this paper, an elasto-plastic constitutive model based on the disturbed state concept (DSC) for geosynthetic–soil interfaces has been presented. The proposed model is capable of capturing most of the important characteristics of interface response, such as dilation, hardening and softening. The behaviour of interfaces under the direct shear test has been predicted by the model. The present model has been implemented in the finite element procedure in association with the thin-layer element. Five pull-out tests with two different geogrids have been simulated numerically using FEM. For the calibration of the constitutive models used in FEM, the standard laboratory tests used are: (1) triaxial tests for the sand, (2) direct shear tests for the interfaces and (3) axial tension tests for the geogrids. The results of the finite element simulations of pull-out tests agree well with the test data. The proposed model can be used for the stress-deformation study of geosynthetic-reinforced embankments through numerical simulation. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents a finite element procedure for the analysis of consolidation of layered soils with vertical drain using general one‐dimensional (1‐D) constitutive models. In formulating the finite element procedure, a Newton–Cotes‐type integration formula is used to avoid the unsymmetry of the stiffness matrix for a Newton (Modified Newton) iteration scheme. The proposed procedure is then applied for the consolidation analysis of a number of typical problems using both linear and non‐linear soil models. Results from this simplified method are compared with those from a fully coupled consolidation analysis using a well‐known finite element package. The average degree of consolidation, excess porewater pressure and average vertical effective stress are almost the same as those from the fully coupled analysis for both the linear and non‐linear cases studied. The differences in vertical effective stresses are tolerable except for the values near the vertical drain boundaries. The consolidation behaviour of soils below a certain depth of the bottom of vertical drain is actually one‐dimensional for the partially penetrating case. Therefore, there are not much differences in whether one uses a one‐dimensional model or a three‐dimensional model in this region. The average degree of consolidation has good normalized feature with respect to the ratio of well radius to external drainage boundary for the cases of fully penetrating vertical drain using a normalized time even in the non‐linear case. Numerical results clearly demonstrate that the proposed simplified finite element procedure is efficient for the consolidation analysis of soils with vertical drain and it has better numerical stability characteristics. This simplified method can easily account for layered systems, time‐dependent loading, well‐resistance, smear effects and inelastic stress–strain behaviour. This method is also very suitable for the design of vertical drain, since it greatly reduces the unknown variables in the calculation and the 1‐D soil model parameters can be more easily determined. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
The Barcelona basic model cannot predict the mechanical behaviour of unsaturated expansive soils, whereas the Barcelona expansive model (BExM) can only predict the stress–strain behaviour of unsaturated expansive soils without the water‐retention behaviour being incorporated. Moreover, the micro‐parameters and the coupling function between micro‐structural and macro‐structural strains in the BExM are difficult to determine. Experimental data show that the compression curves for non‐expansive soils under constant suctions are shifted towards higher void ratios with increasing suction, whereas the opposite is true for expansive soils. According to the observed water‐retention behaviour of unsaturated expansive soils, the air‐entry value increases with density, and the relationship between the degree of saturation and void ratio is linear at constant suction. According to the above observation, an elastoplastic constitutive model is developed for predicting the hydraulic and mechanical behaviour of unsaturated expansive soils, based on the existing hydro‐mechanical model for non‐expansive unsaturated soil. The model takes into consideration the effect of degree of saturation on the mechanical behaviour and that of void ratio on the water‐retention behaviour. The concept of equivalent void ratio curve is introduced to distinguish the plastic potential curve from the yield curve. The model predictions are compared with the test results of an unsaturated expansive soil, including swelling tests under constant net stress, isotropic compression tests and triaxial shear tests under constant suction. The comparison indicates that the model offers great potential for quantitatively predicting the hydraulic and mechanical behaviour of unsaturated expansive soils. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
A multiphase model is proposed to describe the mechanical behaviour of geomaterials reinforced by linear inclusions. This macroscopic approach considers the reinforced soil or rock mass as the superposition of continuous media. Equations of motion and constitutive laws of the model are first derived. Its implementation in a finite element computer code is then detailed. A modified implicit algorithm for elastoplastic problems is proposed. The model and its implementation are fully validated for rock‐bolted tunnels (comparison with scale model experiments) and piled raft foundations (comparison with the classical ‘hybrid method’). The Messeturm case history is finally presented to assess the handiness of the approach for real structures. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents a non‐linear coupled finite element–boundary element approach for the prediction of free field vibrations due to vibratory and impact pile driving. Both the non‐linear constitutive behavior of the soil in the vicinity of the pile and the dynamic interaction between the pile and the soil are accounted for. A subdomain approach is used, defining a generalized structure consisting of the pile and a bounded region of soil around the pile, and an unbounded exterior linear soil domain. The soil around the pile may exhibit non‐linear constitutive behavior and is modelled with a time‐domain finite element method. The dynamic stiffness matrix of the exterior unbounded soil domain is calculated using a boundary element formulation in the frequency domain based on a limited number of modes defined on the interface between the generalized structure and the unbounded soil. The soil–structure interaction forces are evaluated as a convolution of the displacement history and the soil flexibility matrices, which are obtained by an inverse Fourier transformation from the frequency to the time domain. This results in a hybrid frequency–time domain formulation of the non‐linear dynamic soil–structure interaction problem, which is solved in the time domain using Newmark's time integration method; the interaction force time history is evaluated using the θ‐scheme in order to obtain stable solutions. The proposed hybrid formulation is validated for linear problems of vibratory and impact pile driving, showing very good agreement with the results obtained with a frequency‐domain solution. Linear predictions, however, overestimate the free field peak particle velocities as observed in reported field experiments during vibratory and impact pile driving at comparable levels of the transferred energy. This is mainly due to energy dissipation related to plastic deformations in the soil around the pile. Ground vibrations due to vibratory and impact pile driving are, therefore, also computed with a non‐linear model where the soil is modelled as an isotropic elastic, perfectly plastic solid, which yields according to the Drucker–Prager failure criterion. This results in lower predicted free field vibrations with respect to linear predictions, which are also in much better agreement with experimental results recorded during vibratory and impact pile driving. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
The paper presents a strainhardening constitutive model for unsaturated soil behaviour based on energy conjugated stress variables in the framework of superposed continua. The proposed constitutive law deals with hydro‐mechanical coupling phenomena. The main purpose is to develop within a consistent framework a model that can deal with possible mechanical instabilities occurring in partially saturated materials. The loss of capillary effects during wetting processes can, in fact, play a central role in unstable processes. Therefore, it will be shown that the bonding effects due to surface tensions can be described in a mathematical framework similar to that employed for bonded geomaterials to model weathering or diagenesis effects, either mechanically or chemically induced. The results of several simulations of common laboratory tests on partially saturated soil specimens are shown. The calculated behaviour appears to be in good qualitative agreement with that observed in the laboratory. In particular it is shown that volumetric collapse phenomena due to hydraulic debonding effects can be successfully described by the model. Finally, it will be highlighted the ability of the model to naturally capture the transition to a fully saturated condition and to deal with possible mechanical instabilities in the unsaturated regime. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Monitoring of the progressive convergence of a tunnel shows that deformations occurring in the soil surrounding a tunnel exhibit a strong evolution with time. This time‐dependent behaviour can be linked to three essential factors: the distance from the point of interest to the working face over time, the distance of unsupported tunnel to the working face and the viscous properties of the soil. The objective of this paper is to propose a constitutive model of the time‐dependent behaviour of soil which has been developed within the framework of elastoplasticity–viscoplasticity and critical state soil mechanics. The consideration of viscoplastic characteristic sets the current model apart from the CJS (Cambou, Jafari and Sidoroff) model as the basic elastoplastic model, and introduces an additional viscous mechanism. The evolution of the viscous yield surface is governed by a particular hardening called ‘viscous hardening’ with a bounding surface. The proposed constitutive model has been applied in the analysis of tunnelling. Two kinds of numerical calculations have been used in the analysis, axisymmetric analysis and plane strain analysis. Monitoring of the progressive convergence of a tunnel conducted in the railway tunnel of Tartaiguille (France), has been used to describe the calculation procedure proposed and the capability of the model. The finite difference software, fast Lagrangian analysis of continua (FLAC), has been used for the numerical simulation of the problems. The comparison of results shows that the observed deformations could have been reasonably predicted by using the constitutive model and calculation strategy proposed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
A cavity expansion procedure for the simulation of pile driving is presented and assessed in this paper. The analysis uses a non-linear finite-element model and the penetration of the pile into the soil is simulated by a radial opening of the soil around the pile. The case of a pile advanced by expansion will be compared to a similar pile subjected to computational driving (referred to, respectively, as ‘expanded’ and ‘driven’ piles for convenience). The state of stress and deformation, and the evolution of pore-water pressure in the soil will be monitored for the expanded and driven piles. Further computational driving will be applied to both cases and the pile response and soil resistance will be compared. The computational cost of advancing the pile by expansion will finally be investigated. Copyright © John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号