首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We construct a new class of locally conservative numerical methods for two-phase immiscible flow in heterogeneous poroelastic media. Within the framework of the so-called iteratively coupled methods and fixed-stress split algorithm we develop mixed finite element methods for the flow and geomechanics subsystems which furnish locally conservative Darcy velocity and transient porosity input fields for the transport problem for the water saturation. Such hyperbolic equation is decomposed within an operator splitting technique based on a predictor–corrector scheme with the predictor step discretized by a higher-order non-oscillatory finite volume central scheme. The proposed scheme adopts an inhomogeneous dual mesh with variable cell size ruled by the local wave speed of propagation to compute numerical fluxes at cell edges. In the limit of small time steps the central scheme gives rise to a semidiscrete formulation for the water saturation capable of incorporating heterogeneous porosity fields and generalized flux functions including the water transport due to the solid phase velocity. Numerical simulations of a water-flooding problem in secondary oil recovery are presented for different realizations of the input random fields (permeability, Young modulus and initial porosity). Comparison between the accuracies of the proposed approach and the traditional one-way coupled hydro-geomechanical formulation are presented. The effects of the cross-correlation between the input random fields and compaction drive mechanism upon finger growth and breakthrough curves are also analyzed. A notable feature of the formulation proposed herein is the accurate prediction of the influence of geomechanical effects upon the unstable movement of the water front, whose evolution is dictated by rock heterogeneity and unfavorable viscosity ratio, without deteriorating the local conservative character of the numerical schemes.  相似文献   

2.
This paper presents a numerical model for the elasto‐plastic electro‐osmosis consolidation of unsaturated clays experiencing large strains, by considering electro‐osmosis and hydro‐mechanical flows in a deformable multiphase porous medium. The coupled governing equations involving the pore water flow, pore gas flow, electric flow and mechanical deformation in unsaturated clays are derived within the framework of averaging theory and solved numerically using finite elements. The displacements of the solid phase, the pressure of the water phase, the pressure of the gas phase and the electric potential are taken as the primary unknowns in the proposed model. The nonlinear variation of transport parameters during electro‐osmosis consolidation are incorporated into the model using empirical expressions that strongly depend on the degree of water saturation, whereas the Barcelona Basic Model is employed to simulate the elasto‐plastic mechanical behaviour of unsaturated clays. The accuracy of the proposed model is evaluated by validating it against two well‐known numerical examples, involving electro‐osmosis and unsaturated soil behaviour respectively. Two further examples are then investigated to study the capability of the computational algorithm in modelling multiphase flow in electro‐osmosis consolidation. Finally, the effects of gas generation at the anode, the deformation characteristics, the degree of saturation and the time dependent evolution of the excess pore pressure are discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Safety assessment of geosequestration of CO2 into deep saline aquifers requires a precise understanding of the study of hydro‐chemo‐mechanical couplings occurring in the rocks and the cement well. To this aim, a coupled chemo‐poromechanical model has been developed and implemented into a research code well‐suited to the resolution of fully coupled problems. This code is based on the finite volume methods. In a 1D axisymmetrical configuration, this study aims to simulate the chemo‐poromechanical behaviour of a system composed by the cement well and the caprock during CO2 injection. Major chemical reactions of carbonation occurring into cement paste and rocks are considered in order to evaluate the consequences of the presence of CO2 on the amount of dissolved matrix and precipitated calcium carbonates. The dissolution of the solid matrix is taken into account through the use of a chemical porosity. Matrix leaching and carbonation lead, as expected, to important variations of porosity, permeability and to alterations of transport properties and mechanical stiffness. These results justify the importance of considering a coupled analysis accounting for the main chemical reactions. It is worth noting that the modelling framework proposed in the present study could be extended to model the chemo‐poromechanical behaviour of the reservoir rock and the caprock when subjected to the presence of an acidic pore fluid (CO2‐rich brine). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
5.
Accurate prediction of the interactions between the nonlinear soil skeleton and the pore fluid under loading plays a vital role in many geotechnical applications. It is therefore important to develop a numerical method that can effectively capture this nonlinear soil‐pore fluid coupling effect. This paper presents the implementation of a new finite volume method code of poro‐elasto‐plasticity soil model. The model is formulated on the basis of Biot's consolidation theory and combined with a perfect plasticity Mohr‐Coulomb constitutive relation. The governing equation system is discretized in a segregated manner, namely, those conventional linear and uncoupled terms are treated implicitly, while those nonlinear and coupled terms are treated explicitly by using any available values from previous time or iteration step. The implicit–explicit discretization leads to a linearized and decoupled algebraic system, which is solved using the fixed‐point iteration method. Upon the convergence of the iterative method, fully nonlinear coupled solutions are obtained. Also explored in this paper is the special way of treating traction boundary in finite volume method compared with FEM. Finally, three numerical test cases are simulated to verify the implementation procedure. It is shown in the simulation results that the implemented solver is capable of and efficient at predicting reasonable soil responses with pore pressure coupling under different loading situations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Chemoporoelastic theory is an extension of classical Biot poroelasticity that accounts for coupling with the presence and the transport of ions in the pore fluid. The impact of this extra level of coupling can be both substantial and complex. This paper relies on the two variations of Mandel's classical problem, which has become a canonical illustration of the complexity that poromechanical coupling can bring to an otherwise straightforward system. To this end, solutions for a chemoporoelastic shale cylinder and a spherical shale ball are derived. These solutions are then used to demonstrate that chemoporoelastic coupling leads to a coupled pore pressure response that is not only non‐monotonic, as in Mandel's classical case, but also demonstrates the consequences of the semi‐permeable membrane‐like nature of the shale and of the problem's two diffusion‐related timescales. This paper concludes with a discussion of the implications of these results for experimentation and modeling of so‐called reactive shales using chemoporoelastic theory. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, a numerical model is developed for the fully coupled hydro‐mechanical analysis of deformable, progressively fracturing porous media interacting with the flow of two immiscible, compressible wetting and non‐wetting pore fluids, in which the coupling between various processes is taken into account. The governing equations involving the coupled solid skeleton deformation and two‐phase fluid flow in partially saturated porous media including cohesive cracks are derived within the framework of the generalized Biot theory. The fluid flow within the crack is simulated using the Darcy law in which the permeability variation with porosity because of the cracking of the solid skeleton is accounted. The cohesive crack model is integrated into the numerical modeling by means of which the nonlinear fracture processes occurring along the fracture process zone are simulated. The solid phase displacement, the wetting phase pressure and the capillary pressure are taken as the primary variables of the three‐phase formulation. The other variables are incorporated into the model via the experimentally determined functions, which specify the relationship between the hydraulic properties of the fracturing porous medium, that is saturation, permeability and capillary pressure. The spatial discretization is implemented by employing the extended finite element method, and the time domain discretization is performed using the generalized Newmark scheme to derive the final system of fully coupled nonlinear equations of the hydro‐mechanical problem. It is illustrated that by allowing for the interaction between various processes, that is the solid skeleton deformation, the wetting and the non‐wetting pore fluid flow and the cohesive crack propagation, the effect of the presence of the geomechanical discontinuity can be completely captured. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Knowledge of shale poromechanical behavior is proven to be essential for various environmental issues such as deep geological storage of CO2, high level radioactive waste storage, oil field abandonment and so forth… This paper sets out the key points of shale experimental characterization within the framework of Biot's mechanics of fluid saturated porous solids. Shales are well known to present a more or less transverse isotropy. This paper describes a full methodology for ?dometric tests on such sensitive and weakly permeable material. To illustrate this methodology, measurements carried out on Tournemire argillite are proposed. A transverse isotropic poroelastic model is also used to give a more in depth understanding of the hydromechanical coupling. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The pulse test is usually considered as an efficient test for measuring the permeability of weakly permeable porous media. It is generally interpreted by comparison of experimental and theoretical curves obtained by a simplified 1D analytical solution. In a previous work, we proposed an improvement for test interpretation, through fully coupled numerical modeling in 2D axisymmetric configurations. The numerical modeling took into account the poromechanical coupling and exhibited 2D effects that cannot be assessed with classical interpretation. The modeling was coupled with an inverse method permitting the assessment of intrinsic permeability, mechanical parameters such as Young??s modulus, and poromechanical coupling parameters such as Biot coefficient. The interpretation of the tests on argillites showed anisotropy of the material and revealed the fundamental importance of this anisotropy for further works. The present paper aims at taking into account the transverse isotropy of the rock samples in the poromechanical back analysis of the test. A transverse isotropic poroelastic constitutive law has been developed and implemented in Code_Aster (Edf), and 3D modeling is required to account for all possible orientations of the samples. The poromechanical modeling is still coupled with an inverse method, also implemented in the finite element code. The method was applied to laboratory tests on Meuse/Haute-Marne argillites, on cylindrical samples with axis either parallel or perpendicular to the isotropy planes, and the results were compared with isotropic interpretation. The 3D transverse isotropic modeling provides more consistent values of the parameters than the 2D modeling, particularly for the mechanical parameters.  相似文献   

10.
A parallelizable, semi‐implicit numerical method is proposed for the study of naturally‐fractured reservoir systems. It has proved to be computationally efficient in producing accurate numerical solutions for the dual‐porosity model for immiscible, two‐phase flow in such reservoirs. The method combines hybridized mixed finite elements, a new version of the modified method of characteristics, a sophisticated operator‐splitting procedure for separating the pressure calculation in the fractures from that of the saturation, another operator splitting to handle the interaction of the matrix blocks and the fractures, and domain decomposition iterative procedures for both the pressure and the saturation. It permits moderately long time steps for the pressure and the saturation in the fractures and matrix blocks by using short, inexpensive microsteps to treat the transport portion of the saturation equation in the fractures. This paper is devoted to the formulation of the method and a discussion of numerical results for five‐spot and vertical cross‐section examples.  相似文献   

11.
This paper presents a general coupling extended multiscale FEM (GCEMs) for solving the coupling problem of elasto‐plastic consolidation of heterogeneous saturated porous media. In the GCEMs, the numerical multiscale base functions for the solid skeleton and fluid phase of the coupling system are all constructed on the basis of the equivalent stiffness matrix of the unit cell, which not only contain the interaction between the solid and fluid phases but also consider the time effect. Furthermore, in order to improve the computational accuracy for two‐dimensional problems, a multi‐node coarse element strategy for the GCEMs is proposed, and a two‐scale iteration algorithm for the elasto‐plastic consolidation analysis is developed. Some one‐dimensional and two‐dimensional homogeneous and heterogeneous numerical examples are carried out to validate the proposed method through the comparison with the coupling multiscale FEM and standard FEM. Numerical results show that the newly developed GCEMs can almost preserve the same convergent property as the standard FEM and also possesses the advantages of high computational efficiency. In addition, the GCEMs can be easily applied to other coupling multifield and multiphase transient problems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
一维-二维耦合的河湖系统整体水动力模型   总被引:2,自引:0,他引:2       下载免费PDF全文
为对自然界中的复杂水流系统进行整体水动力数值模拟,建立了适用于河湖系统的一维-二维耦合模型.将河网计算中用于处理河段间耦合的汊点水位预测校正法应用到一维-二维耦合边界的处理中,即耦合边界水位预测校正法.该方法具有一维、二维模型计算完全独立,可有效利用现有模型的优点.与传统一维-二维耦合处理方法相比,耦合连接条件的满足程度较高且可通过对计算容差的调整进行有效控制.利用理想及实际例子进行了计算验证,结果表明该方法具有较好的实用性.  相似文献   

13.
This paper discusses a series of stress point algorithms for a breakage model for unsaturated granular soils. Such model is characterized by highly nonlinear coupling terms introduced by breakage‐dependent hydro‐mechanical energy potentials. To integrate accurately and efficiently its constitutive equations, specific algorithms have been formulated using a backward Euler scheme. In particular, because implementation and verification of unsaturated soil models often require the use of mixed controls, the incorporation of various hydro‐mechanical conditions has been tackled. First, it is shown that the degree of saturation can be replaced with suction in the constitutive equations through a partial Legendre transformation of the energy potentials, thus changing the thermomechanical state variables and enabling a straightforward implementation of a different control mode. Then, to accommodate more complex control scenarios without redefining the energy potentials, a hybrid strategy has been used, combining the return mapping scheme with linearized constraints. It is shown that this linearization strategy guarantees similar levels of accuracy compared with a conventional strain–suction‐controlled implicit integration. In addition, it is shown that the use of linearized constraints offers the possibility to use the same framework to integrate a variety of control conditions (e.g., net stress and/or water‐content control). The convergence profiles indicate that both schemes preserve the advantages of implicit integration, that is, asymptotic quadratic convergence and unconditional stability. Finally, the performance of the two implicit schemes has been compared with that of an explicit algorithm with automatic sub‐stepping and error control, showing that for the selected breakage model, implicit integration leads to a significant reduction of the computational cost. Such features support the use of the proposed hybrid scheme also in other modeling contexts, especially when strongly nonlinear models have to be implemented and/or validated by using non‐standard hydro‐mechanical control conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
A micro‐hydromechanical model for granular materials is presented. It combines the discrete element method for the modeling of the solid phase and a pore‐scale finite volume formulation for the flow of an incompressible pore fluid. The coupling equations are derived and contrasted against the equations of conventional poroelasticity. An analogy is found between the discrete element method pore‐scale finite volume coupling and Biot's theory in the limit case of incompressible phases. The simulation of an oedometer test validates the coupling scheme and demonstrates the ability of the model to capture strong poromechanical effects. A detailed analysis of microscale strain and stress confirms the analogy with poroelasticity. An immersed deposition problem is finally simulated and shows the potential of the method to handle phase transitions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
This work proposes an iterative procedure to analyze dynamic linear/nonlinear fully saturated porous media considering time‐domain finite element discretization. In this iterative approach, each phase of the coupled problem is treated separately, uncoupling the governing equations of the model. Thus, simpler, smaller, and better conditioned systems of equations are obtained, rendering more attractive techniques. A relaxation parameter is introduced in order to improve the efficiency and robustness of the iterative solution, and an expression to compute optimal values for the relaxation parameter is discussed. At the end of the paper, numerical examples are presented, illustrating the effectiveness and potentialities of the proposed methodology. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
This paper presents a coupled hydro‐mechanical formulation for the simulation of non‐planar three‐dimensional hydraulic fractures. Deformation in the rock is modeled using linear elasticity, and the lubrication theory is adopted for the fluid flow in the fracture. The governing equations of the fluid flow and elasticity and the subsequent discretization are fully coupled. A Generalized/eXtended Finite Element Method (G/XFEM) is adopted for the discretization of the coupled system of equations. A Newton–Raphson method is used to solve the resulting system of nonlinear equations. A discretization strategy for the fluid flow problem on non‐planar three‐dimensional surfaces and a computationally efficient strategy for handling time integration combined with mesh adaptivity are also presented. Several three‐dimensional numerical verification examples are solved. The examples illustrate the generality and accuracy of the proposed coupled formulation and discretization strategies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Oligo–Miocene carbonates associated with the Padthaway Ridge form the southern margin of the Murray Basin, South Australia. The carbonates are a thin, somewhat condensed succession of echinoid and bryozoan‐rich limestones that record accumulation in the complex of islands and seaways and progressive burial of the Ridge through time. The rocks are grainy to muddy bioclastic packstones, grainstones and floatstones, composed of infaunal echinoderms, bryozoans, coralline algae and benthic foraminifera, with lesser contributions from molluscs and serpulid worms. Locally as much as half of these skeletal components are Fe‐stained, relict grains that imbue the lithologies with a conspicuous yellow to orange hue. This variably lithified succession is partitioned into metre‐scale, firmground‐bounded and hardground‐bounded beds textured by extensive Thalassinoides burrows. Dominant lithologies are interpreted as temperate seagrass facies. Limestones contain attributes indicative of both seagrass‐dominated palaeoenvironments and carbonate production and accumulation on unconsolidated, barren sandflat palaeoenvironments. Together these two depositional systems are thought to have generated a single multigenerational, amalgamated facies recording sedimentation within a complex temperate seagrass environment. Limestones overlying the Padthaway Ridge reflect a gradually warming climate, increasing water temperature and decreasing nutrient content, within the framework of a ridge gradually being buried in sediment. This succession from cool–temperate to warm–temperate to subtropical through time permits recognition of the relative influence of changing oceanography on a seagrass‐dominated shallow inter‐island sea floor. Criteria are proposed herein to enable future recognition of similar temperate seagrass facies in Cenozoic limestones elsewhere.  相似文献   

18.
The capability of a bounding surface plasticity model with a vanishing elastic region to capture the multiaxial dynamic hysteretic responses of soil deposits under broadband (eg, earthquake) excitations is explored by using data from centrifuge tests. The said model was proposed by Borja and Amies in 1994 (J. Geotech. Eng., 120, 6, 1051‐1070), which is theoretically capable of representing nonlinear soil behavior in a multiaxial setting. This is an important capability that is required for exploring and quantifying site topography, soil stratigraphy, and kinematic effects in ground motion and soil‐structure interaction analyses. Results obtained herein indicate that the model can accurately predict key response data recorded during centrifuge tests on embedded specimens—including soil pressures and bending strains for structural walls, structures' racking displacements, and surface settlements—under both low‐ and high‐amplitude seismic input motions, which was achieved after performing only a basic material parameter calibration procedure. Comparisons are also made with results obtained using equivalent linear models and a well‐known pressure‐dependent multisurface plasticity model, which suggested that the present model is generally more accurate. The numerical convergence behavior of the model in nonlinear equilibrium iterations is also explored for a variety of numerical implementation and model parameter options. To facilitate broader use by researchers and practicing engineers alike, the model is implemented as a “user material” in ABAQUS Standard for implicit time stepping.  相似文献   

19.
An elasto‐viscoplastic constitutive model for asphaltic materials is presented within the context of bounding surface plasticity theory, taking into account the effects of the stress state, void binder degree of saturation, temperature and strain rate on the material behaviour. A stress state dependent non‐linear elasticity model is introduced to represent time‐independent recoverable portion of the deformation. The consistent visco‐plasticity framework is utilised to capture the rate‐dependent, non‐recoverable strain components. The material parameters introduced in the model are identified, and their determination from conventional laboratory tests is discussed. The capability of the model to reproduce experimentally observed response of asphaltic materials is demonstrated through numerical simulations of several laboratory test data from the literature. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Most practical reservoir simulation studies are performed using the so-called black oil model, in which the phase behavior is represented using solubilities and formation volume factors. We extend the multiscale finite-volume (MSFV) method to deal with nonlinear immiscible three-phase compressible flow in the presence of gravity and capillary forces (i.e., black oil model). Consistent with the MSFV framework, flow and transport are treated separately and differently using a sequential implicit algorithm. A multiscale operator splitting strategy is used to solve the overall mass balance (i.e., the pressure equation). The black-oil pressure equation, which is nonlinear and parabolic, is decomposed into three parts. The first is a homo geneous elliptic equation, for which the original MSFV method is used to compute the dual basis functions and the coarse-scale transmissibilities. The second equation accounts for gravity and capillary effects; the third equation accounts for mass accumulation and sources/ sinks (wells). With the basis functions of the elliptic part, the coarse-scale operator can be assembled. The gravity/capillary pressure part is made up of an elliptic part and a correction term, which is computed using solutions of gravity-driven local problems. A particular solution represents accumulation and wells. The reconstructed fine-scale pressure is used to compute the fine-scale phase fluxes, which are then used to solve the nonlinear saturation equations. For this purpose, a Schwarz iterative scheme is used on the primal coarse grid. The framework is demonstrated using challenging black-oil examples of nonlinear compressible multiphase flow in strongly heterogeneous formations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号