首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Queen Alexandra Range (QUE) 94281, a lunar meteorite recently discovered in Antarctica, is a glassy-matrix, clast-rich regolith breccia containing a mixture of mafic, volcanic-glass and gabbroic constituents and a diverse set of highland constituents. In thin section, the clast assemblage is dominated by coarse mineral debris from a shallow intrusive or hypabyssal setting, or from deep within a thick mare flow. Abundant coarse-grained pyroxene clasts have fine-scale exsolution lamellae and compositions similar to pyroxenes of known lunar very-low-Ti (VLT) basalts and other lunar meteorites of basaltic composition. Pyroxene compositions follow Fe-enrichment extending to hedenbergite, which is associated with fayalite and cristobalite, indicating slow cooling. We refer to the protolith of the crystalline VLT component as VLT gabbro. Fragments of pyroclastic glasses that have high Fe and low Ti concentrations, similar to the pyroclastic green glasses known from Apollo samples, are common. Lithic clasts include abundant subrounded, glassy to cryptocrystalline, aluminous (~17–30 wt% Al2O3) KREEP-poor melt breccias of highland origin and a variety of other feldspathic impactites. On the basis of composition of our subsamples, QUE 94281 consists of ~54 wt% mafic or “mare” components and 46 wt% feldspathic or “highland” components. The bulk composition of QUE 94281 is similar to that of Yamato (Y) 793274, but QUE 94281 has slightly greater concentrations of some siderophile elements and slightly lower concentrations of those elements contributed mainly by mafic constituents. Differences in siderophile element concentrations are consistent with longer surface exposure of QUE 94281. Minor differences in trace element variations of subsamples of the two meteorites suggest subtle differences in the composition of their highland constituents. Nonetheless, the overall similarity of compositions supports the possibility that they were ejected from the same source region on the Moon. The crystalline VLT component of QUE 94281 differs from those known from Apollo 17 and Luna 24 VLT lithologies and from that of basaltic breccia Elephant Moraine (EET) 87521. The VLT-gabbro component and the ferroan VLT volcanic glasses in QUE 94281 have compositions that may be petrogenetically related by derivation from a common picritic parent composition, represented by an ultramafic glass found in QUE 94281.  相似文献   

2.
The principal rock types in the highlands are highland basalt (gabbroic anorthosite) with 28% Al2O3 and low K Fra Mauro basalt with 18% Al2O3. The chemistry of the highland soils and breccias can be represented by simple mixing models involving these rock types as major constituents. The mixing occurred during the intense highland cratering. Layering observed at the Apennine Front is interpreted as produced the Serenitatis basin collision. The plains-forming Cayley Formation and the Descartes Formation are not volcanic, but are derived from pre-existing highland crust.Although the overall chemical composition of the Moon has been affected by pre-accretion processes (e.g. loss of volatile elements), the composition of the highlands is mainly the result of postaccretion melting and element fractionation. Thus the individual rock types show involatile element distribution patterns, relative to primitive abundances, indicative of solid-liquid equilibria, evidence of post-accretion lunar igneous activity.The chemistry of the primitive green glass component (15426) indicates that the abundance of the involatile elements (REE, Ba, Zr, Hf, Th and U) in the source regions is at most only 2–3 times the abundances in chondrites.Paper dedicated to Professor Harold C. Urey on the occasion of his 80th birthday on 29 April, 1973.  相似文献   

3.
Abstract— We report the results of an extensive study of the Fountain Hills chondritic meteorite. This meteorite is closely related to the CBa class. Mineral compositions and O‐isotopic ratios are indistinguishable from other members of this group. However, many features of Fountain Hills are distinct from the other CB chondrites. Fountain Hills contains 23 volume percent metal, significantly lower than other members of this class. In addition, Fountain Hills contains porphyritic chondrules, which are extremely rare in other CBa chondrites. Fountain Hills does not appear to have experienced the extensive shock seen in other CB chondrites. The chondrule textures and lack of fine‐grained matrix suggests that Fountain Hills formed in a dust‐poor region of the early solar system by melting of solid precursors. Refractory siderophiles and lithophile elements are present in near‐CI abundances (within a factor of two, related to the enhancement of metal). Moderately volatile and highly volatile elements are significantly depleted in Fountain Hills. The abundances of refractory siderophile trace elements in metal grains are consistent with condensation from a gas that is reduced relative to solar composition and at relatively high pressures (10?3bars). Fountain Hills experienced significant thermal metamorphism on its parent asteroid. Combining results from the chemical gradients in an isolated spinel grain with olivine‐spinel geothermometry suggests a peak temperature of metamorphism between 535 °C and 878 °C, similar to type‐4 ordinary chondrites.  相似文献   

4.
The Oro Grande, New Mexico, U.S.A., chondrite was found in 1971. Electron microprobe analyses and microscopic examination show the following mineralogy: olivine (Fa 19.3 mole percent), orthopyroxene (Fs 16.2 mole percent), diopside, feldspar (An 13.6 mole percent), chlorapatite, whitlockite, kamacite, taenite, troilite, chromite, and an iron-bearing terrestrial weathering product. A bulk chemical analysis of the meteorite shows the following results (weight percent): Fe 0.84, Ni 1.46, Co 0.07, FeS 3.62, SiO2 34.18, TiO2 0.14, Al2O3 1.83, Cr2O3 0.55, Fe2O3 21.25, FeO 9.13, MnO 0.31, MgO 21.52, CaO 1.72, Na2O 0.70, K2O 0.08, P2O5 0.25, H2O+ 2.14, H2O- 0.40, C 0.22, Sum 100.41. On the basis of composition and texture, the Oro Grande meteorite is classified as an H5 chondrite. A large lithic fragment (~5 mm long) with a very fine-grained texture different from that of the host meteorite was analyzed for bulk composition using the broad beam of an electron microprobe, and was found to be enriched in Ca, Al, Na, and K, and depleted in Mg and Fe relative to the bulk composition of the host meteorite. Its mineral compositions, however, are very similar to those of the host. It is suggested that the fragment is not a xenolith of a previously undescribed type of achondrite, but is probably an impact-produced partial melt of the host chondrite or a fragment of an unusually large chondrule.  相似文献   

5.
Abstract— We have analyzed nine highland lunar meteorites (lunaites) using mainly INAA. Several of these rocks are difficult to classify. Dhofar 081 is basically a fragmental breccia, but much of its groundmass features a glassy‐fluidized texture that is indicative of localized shock melting. Also, much of the matrix glass is swirly‐brown, suggesting a possible regolith derivation. We interpret Dar al Gani (DaG) 400 as an extremely immature regolith breccia consisting mainly of impact‐melt breccia clasts; we interpret Dhofar 026 as an unusually complex anorthositic impact‐melt breccia with scattered ovoid globules that formed as clasts of mafic, subophitic impact melt. The presence of mafic crystalline globules in a lunar material, even one so clearly impact‐heated, suggests that it may have originated as a regolith. Our new data and a synthesis of literature data suggest a contrast in Al2O3‐incompatible element systematics between impact melts from the central nearside highlands, where Apollo sampling occurred, and those from the general highland surface of the Moon. Impact melts from the general highland surface tend to have systematically lower incompatible element concentration at any given Al2O3 concentration than those from Apollo 16. In the case of Dhofar 026, both the bulk rock and a comparatively Al‐poor composition (14 wt% Al2O3, 7 μg/g Sm) extrapolated for the globules, manifest incompatible element contents well below the Apollo 16 trend. Impact melts from Luna 20 (57°E) distribute more along the general highland trend than along the Apollo 16 trend. Siderophile elements also show a distinctive composition for Apollo 16 impact melts: Ni/Ir averaging ?1.8x chondritic. In contrast, lunaite impact‐melt breccias have consistently chondritic Ni/Ir. Impact melts from Luna 20 and other Apollo sites show average Ni/Ir almost as high as those from Apollo 16. The prevalence of this distinctive Ni/Ir ratio at such widely separated nearside sites suggests that debris from one extraordinarily large impact may dominate the megaregolith siderophile component of a nearside region 2300 km or more across. Highland polymict breccia lunaites and other KREEP‐poor highland regolith samples manifest a strong anticorrelation between Al2O3 and mg. The magnesian component probably represents the chemical signature of the Mg‐suite of pristine nonmare rocks in its most “pure” form, unaltered by the major KREEP‐assimilation that is so common among Apollo Mg‐suite samples. The average composition of the ferroan anorthositic component is now well constrained at Al2O3 ?29–30 wt% (implying about 17–19 wt% modal mafic silicates), in good agreement with the composition predicted for flotation crust over a “ferroan” magma ocean (Warren 1990).  相似文献   

6.
Abstract— The matrices of all primitive chondrites contain presolar materials (circumstellar grains and interstellar organics) in roughly CI abundances, suggesting that all chondrites accreted matrix that is dominated by a CI‐like component. The matrix‐normalized abundances of the more volatile elements (condensation temperatures <750–800 K) in carbonaceous and ordinary chondrites are also at or slightly above CI levels. The modest excesses may be due to low levels of these elements in chondrules and associated metal. Subtraction of a CI‐like matrix component from a bulk ordinary chondrite composition closely matches the average composition of chondrules determined by instrumental neutron activation analysis (INAA) if some Fe‐metal is added to the chondrule composition. Measured matrix compositions are not CI‐like. Sampling bias and secondary redistribution of elements may have played a role, but the best explanation is that ?10–30% of refractory‐rich, volatile depleted material was added to matrix. If most of the more volatile elements are in a CI‐dominated matrix, the major and volatile element fractionations must be largely carried by chondrules. There is both direct and indirect evidence for evaporation during chondrule formation. Type IIA and type B chondrules could have formed from a mixture of CI material and material evaporated from type IA chondrules. The Mg‐Si‐Fe fractionations in the ordinary chondrites can be reproduced with the loss of type IA chondrule material and associated metal. The loss of evaporated material from the chondrules could explain the volatile element fractionations. Mechanisms for how these fractionations occurred are necessarily speculative, but two possibilities are briefly explored.  相似文献   

7.
The Tillaberi stone fell in April 1970 in Republic of Niger. In the 157 g piece sent to Paris, a centimeter wide lithic inclusion is found. Contrary to previous assumptions, the stone is an L6 chondrite in which few chondrules can be distinguished; olivine is Fa 25 ± 0.4 percent with minor amounts of Ca, Cr, Ti; orthopyroxene is Fs 21.6 ± 1.2 percent with a rather large scatter of the amounts of minor elements. The feldspar, well developed, contains 10 to 11 percent An, 84 to 85 percent Ab, five percent Or, and 0.77 ± 0.09 percent FeO. The lithic inclusion contains much feldspar which corresponds to 14 to 17 percent An, 75 to 79 percent Ab, four to five percent Or without almost any FeO. This inclusion contains also rounded grains of olivine and minute crystals of chromite. It has a frothy microdoleritic texture with a frozen border against the chondritic material. As the nickel rich grains are either martensite or acicular plessite and the silicates are undeformed, a quick cooling after a short but intense heating is postulated to account for the mineralogical characteristics.  相似文献   

8.
Abstract— Approximately 100 m of impactites were retrieved from the ICDP borehole Yaxcopoil‐1 (Yax‐1), located ~60 km south‐southwest from the center of the Chicxulub impact crater on the Yucatán Peninsula of Mexico. Here, we characterize and discuss this impact breccia interval according to its geochemical characteristics. Chemical analysis of samples from all five recognized breccia units reveals that the impactites are of heterogeneous composition with regard to both major and trace elements at the single sample (8–16 cm3) scale. This is primarily due to a strong mixing relationship between carbonate and silicate fractions. However, averaged compositions for suevitic units 1 to 3 are similar, and the silicate fraction (after removal of the carbonate component) indicates thorough mixing and homogenization. Analysis of the green melt breccia horizon, unit 4, indicates that it contains a distinct mafic component. Large brown melt particles (in units 2, 3, and 4) represent a mixture of feldspathic and mafic components, with high CaO abundances. Unit 5 shows the greatest compositional diversity, with highly variable abundances of SiO2, CaO, and MgO. Inter‐sample heterogeneity is the result of small sample size combined with inherent heterogeneous lithological compositions, highly variable particle size of melt and lithic components, and post‐depositional alteration. In contrast to samples from the Y6 borehole from closer to the center of the structure, Yax‐1 impactites have a strong carbonate component. Elevated loss on ignition, Rb, and Cs contents in the upper two impactite units indicate strong interaction with seawater. The contents of the siderophile elements, including Ni, Co, Ir, and Cr, do not indicate the presence of a significant extraterrestrial component in the Yax‐1 impactites.  相似文献   

9.
We present the results of a comprehensive study of the chemically peculiar stars HD 5797 and HD 40711. The stars have the same effective^temperature, T eff = 8900 K, and a similar chemical composition with large iron (+1.5 dex) and chromium (+3 dex) overabundances compared to the Sun. The overabundance of rare-earth elements typically reaches +3 dex. We have measured the magnetic field of HD 5797. The longitudinal field component B e has been found to vary sinusoidally between −100 and +1000 G with a period of 69 days. Our estimate of the evolutionary status of the stars suggests that HD 5797 and HD 40711, old objects with an age t ≈ 5 × 108 yr, are near the end of the core hydrogen burning phase.  相似文献   

10.
Abstract— We have performed petrologic and geochemical studies of Patuxent Range (PAT) 91501 and Lewis Cliff (LEW) 88663. PAT 91501, originally classified as an L7 chondrite, is rather a unique, near total impact melt from the L‐chondrite parent body. Lewis Cliff 88663 was originally classified as an “achondrite (?)”, but we find that it is a very weakly shocked L7 chondrite. PAT 91501 is an unshocked, homogeneous, igneous‐textured ultramafic rock composed of euhedral to subhedral olivine, low‐Ca pyroxene, augite and chrome‐rich spinels with interstitial albitic plagioclase and minor silica‐alumina‐alkali‐rich glass. Only ~10% relic chondritic material is present. Olivine grains are homogeneous (Fa25.2–26.8). Low‐Ca pyroxene (Wo1.9–7.2En71.9–78.2Fs19.9–20.9) and augite (Wo29.8–39.0En49.2–55.3Fs11.8–14.9) display a strong linear TiO2‐Al2O3 correlation resulting from igneous fractionation. Plagioclase is variable in composition; Or3.0–7.7Ab79.8–84.1An8.2–17.2.‐Chrome‐rich spinels are variable in composition and zoned from Cr‐rich cores to Ti‐Al‐rich rims. Some have evolved compositions with up to 7.9 wt% TiO2. PAT 91501 bulk silicate has an L‐chondrite lithophile element composition except for depletions in Zn and Br. Siderophile and chalcophile elements are highly depleted due to sequestration in centimeter‐size metal‐troilite nodules. The minerals in LEW 88663 are more uniform in composition than those in PAT 91501. Olivine grains have low CaO and Cr2O3 contents similar to those in L5–6 chondrites. Pyroxenes have high TiO2 contents with only a diffuse TiO2‐Al2O3 correlation. Low‐Ca pyroxenes are less calcic (Wo1.6–3.1En76.5–77.0Fs20.4–21.4), while augites (Wo39.5–45.6En46.8–51.1Fs7.6–9.4) and plagioclases (Or2.6–5.7Ab74.1–83.1An11.2–23.3) are more calcic. Spinels are homogeneous and compositionally similar to those in L6 chondrites. LEW 88663 has an L‐chondrite bulk composition for lithophile elements, and only slight depletions in siderophile and chalcophile elements that are plausibly due to weathering and/or sample heterogeneity.  相似文献   

11.
In this study complete BV light curves of the W Ursae Majoris binary V1073 Cygni obtained in 2005 are presented. We have used the spectroscopic data of V1073 Cyg obtained by Ahn et al. (1992) for analysis. The analysis of radial velocity and light curves was made with Wilson} program (1998) and the geometric and physical elements} of the system were derived. By searching the simultaneous} solutions of the system, we have determined the masses and radii of the components: 1.64M, 2.275R for the primary component and 0.55M, 1.397R for the secondary component respectively. The effective temperature of 6494 ± 53 K for the secondary component was also estimated.  相似文献   

12.
We determine the atmospheric parameters of the secondary in the close binary system FF Aqr and analyze its chemical composition. A series of high-resolution spectra are taken at different orbital phases using the coude echelle spectrometer of the 1.5-m Russian-Turkish Telescope (RTT150). We show that the absorption line intensity of heavy elements varies with phase due to the spotty nature of the cool component. We determine the abundances of heavy elements in the star’s atmosphere by modelling the synthetic spectra and performing a differential analysis of the chemical composition of FF Aqr relative to the solar composition. Our analysis of the averaged spectrum of FF Aqr yielded 539 abundance estimates for 21 chemical elements. We found the metallicity of the star ([Fe/H] = −0.11 ± 0.08) to be close solar, in agreement with the hypothesis that FF Aqr should belong to the Galactic disk. The inferred chemical composition of the objects exhibits no anomalous abundances of the α-, r-, and s-process elements like those earlier found in other systems (IN Com, LW Hya, V471 Tau). The lack of such anomalies in FF Aqr must be due to the fact that the elements heavier than 16 O cannot be synthesized in the core of the primary during the last stages of its evolution.  相似文献   

13.
Abstract Two types of texturally and compositionally similar breccias that consist largely of fragmental debris from meteorite impacts occur at the Apollo 16 lunar site: Feldspathic fragmental breccias (FFBs) and ancient regolith breccias (ARBs). Both types of breccia are composed of a suite of mostly feldspathic components derived from the early crust of the Moon and mafic impact-melt breccias produced during the time of basin formation. The ARBs also contain components, such as agglutinates and glass spherules, indicating that the material of which they are composed occurred at the surface of the Moon as fine-grained regolith prior to lithification of the breccias. These components are absent from the FFBs, suggesting that the FFBs might be the protolith of the ARBs. However, several compositional differences exist between the two types of breccia, making any simple genetic relationship implausible. First, clasts of mafic impact-melt breccia occurring in the FFBs are of a different composition than those in the ARBs. Also the feldspathic “prebasin” components of the FFBs have a lower average Mg/Fe ratio than the corresponding components of the ARBs; the average composition of the plagioclase in the FFBs is more sodic than that of the ARBs; and there are differences in relative abundances of rare earth elements. The two breccia types also have different provenances: the FFBs occur primarily in ejecta from North Ray crater and presumably derive from the Descartes Formation, while the ARBs are restricted to the Cayley plains. Together these observations suggest that although some type of fragmental breccia may have been a precursor to the ARBs, the FFBs of North Ray crater are not a significant component of the ARBs and, by inference, the Cayley plains. The average compositions of the prebasin components of the two types of fragmental breccia are generally similar to the composition of the feldspathic lunar meteorites. With 30–31% Al2O3, however, they are slightly richer in plagioclase than the most feldspathic lunar meteorites (~29% Al2O3), implying that the crust of the early central nearside of the Moon contained a higher abundance of highly feldspathic anorthosite than typical lunar highlands, as inferred from the lunar meteorites. The ancient regolith breccias, as well as the current surface regolith of the Cayley plains, are more mafic than (1) prebasin regoliths in the Central Highlands and (2) regions of highlands presently distant from nearside basins because they contain a high abundance (~30%) of mafic impact-melt breccias produced during the time of basin formation that is absent from other regoliths.  相似文献   

14.
We performed a petrologic, geochemical, and oxygen isotopic study of the lowest FeO ordinary chondrite (OC), Yamato (Y) 982717. Y 982717 shows a chondritic texture composed of chondrules and chondrule fragments, and mineral fragments set in a finer grained, clastic matrix, similar to H4 chondrites. The composition of olivine (Fa11.17 ± 0.48 (1σ)) and low‐Ca pyroxene (Fs11.07 ± 0.98 (1σ)Wo0.90 ± 0.71(1σ)) is significantly more magnesian than those of typical H chondrites (Fa16.0‐20, Fs14.5‐18.0), as well as other known low‐FeO OCs (Fa12.8‐16.7; Fs13‐16). However, the bulk chemical composition of Y 982717, in particular lithophile and moderately volatile elements, is within the range of OCs. The bulk siderophile element composition (Ni, Co) is within the range of H chondrites and distinguishable from L chondrites. The O‐isotopic composition is also within the range of H chondrites. The lack of reduction textures indicates that the low olivine Fa content and low‐Ca pyroxene Fs content are characteristics of the precursor materials, rather than the result of reduction during thermal metamorphism. We suggest that the H chondrites are more compositionally diverse than has been previously recognized.  相似文献   

15.
Abstract— The Calcalong Creek lunar meteorite is a polymict breccia that contains clasts of both highlands and mare affinity. Reported here is a compilation of major, minor, and trace element data for bulk, clast, and matrix samples determined by instrumental neutron activation analysis (INAA). Petrographic information and results of electron microprobe analyses are included. The relationship of Calcalong Creek to lunar terranes, especially the Procellarum KREEP Terrane and Feldspathic Highlands Terrane, is established by the abundance of thorium, incompatible elements and their KREEP‐like CI chondrite normalized pattern, FeO, and TiO2. The highlands component is associated with Apollo 15 KREEP basalt but represents a variant of the KREEP‐derived material widely found on the moon. Sources of Calcalong Creek's mare basalt components may be related to low‐titanium (LT) and very low‐titanium (VLT) basalts seen in other lunar meteorites but do not sample the same source. The content of some components of Calcalong Creek are found to display similarities to the composition of the South Pole‐Aitken Terrane. What appear to be VLT relationships could represent new high aluminum, low titanium basalt types.  相似文献   

16.
The eclipsing binary NN Vir is a short period system showing an EW-type light curve. Photometric observations of NN Vir were done by Gomez–Ferrellad and Garcia–Melendo (1997) at Esteve Duran Observatory. The first spectroscopic observations of this system were obtained by Rucinski and Lu (1999). The radial velocity and light curves analysis was made with the latest version of the Wilson program (1998), and the geometric and physical elements of the system are derived. From the simultaneous solutions of the system, we determined the masses and radii of the components: 1.89 M and 1.65 R for the primary component; 0.93 M and 1.23 R for the secondary component. We estimated effective temperatures of 7030 K for the primary and 6977 K for the secondary component.  相似文献   

17.
An approximate orbit of the wide visual binary star ADS 9173 A(Bb) with a period of ~6000 yr has been determined for the first time by the method of apparent motion parameters. The orbit was computed using a short (1982–2004) arc of photographic observations obtained with the 26-inch Pulkovo Observatory refractor and the Hipparcos parallax. Agreement of the new orbit with the observations from the WDS catalog beginning in 1832 serves as a check. The errors in the orbital elements are large, but the orientation elements of the orbital plane (i and Ω) were estimated reliably. Component B has an invisible spectroscopic companion with a period of 4.9 yr. An astrometric orbit of Bb consistent with radial velocity measurements was determined from the residuals to the relative orbital motion of A(Bb). The orbital planes are nearly coplanar. If the mass of component B is taken in accordance with the mass—luminosity relation, 1.5 M , and the parallax is 0.″021, then the mass of the secondary component is no less than 0.5M . Component A may also be a long-period binary system.  相似文献   

18.
At 9:20 A.M. on August 18, 1974, a stony meteorite of approximately 3200 grams struck the roof of a secondary school at Naragh, Central Iran, (51°30′E, 33°45′N). The ellipsoidal dark-gray meteorite was 17 × 15 × 13 cm (density 3.62 gr/cm3). XRF and wet chemical analysis yields the bulk composition of the meteorite as follows in weight percent: Fe 11.95, Ni 1.05, Co 0.07, FeS 5.49, SiO2 37.15, TiO2 0.15, Al2O3 2.43, Cr2O30.62, FeO 14.25, MnO 0.23, MgO 23.79, CaO 1.61, Na2O 0.92, K2O 0.08, P2O5 0.26. Modal mineral contents (in volume percent) are olivine 40, orthopyroxene 25, clinopyroxene 3, plagioclase 10.5, chromite 0.80, phosphate 0.70, troilite 6, metal phases 14. The meteorite is fine-grained, with average grain size about 0.4–0.6 mm and contains numerous recrystallized glassy chondrules. Olivine occurs as laths and radiating crystals in chondrules and as coarse-grained phenocrysts and interstitial microcrystalline grains in the matrix. These olivines have relatively uniform composition (Fo80–82Fa20–18). Fine-grained skeletal orthopyroxenes of average composition (En16Fs82Wo01) are inter-grown with olivine in both chondrules and matrix. Clinopyroxene and plagioclase of average composition (En6.5Fs48Wo45.5) and (Ab82An12Or06) respectively, are evenly distributed in the matrix, together with kamacite (Fe92–95), plessite (Fe69.6–82.2) and taenite (Fe46.7–66.1), troilite (Ni-free) and chromite grains. The high ratios of total Fe to SiO2 of 0.71, metallic Fe to total Fe of 0.54, and SiO2 to MgO of 1.56 in the bulk composition, the Fa component of olivine grains of 17.5–19.6, and the high Ca content of orthopyroxenes between 0.53 and 0.87 wt % suggest that the Naragh meteorite belongs to the H-group and petrologic type 6 of Van Schmus and Wood (1967) classification. In addition, the occurrence of fine-grained clear sodic plagioclase, the presence of numerous recrystallized chondrules with homogeneous silicate minerals, and the absence of Ni in the sulfide phase indicate that the Naragh meteorite has been metamorphosed after the initial crystallization in the parental body.  相似文献   

19.
Both Ge1−x Si x mosaic crystals and Si1−x Ge x crystals with gradient of composition could be grown using the modified Czochralski technique to produce the diffracting elements for the MAX gamma ray telescope. Although many elements cut from the mosaic crystal and used before for CLAIRE gamma ray telescope had an efficiency up to 20%, the overall efficiency of the lens was about 8.1 ± 0.7 %, which is more than twice lower than the theoretically predicted efficiency. Some causes of this behaviour are discussed. In addition to mosaic crystals, the growth of Si1−x Ge x crystals with a gradient of composition and their properties are analysed. Such composition-gradient crystals could be a promising way to improve the diffraction efficiency of Laue lens for MAX.  相似文献   

20.
Splitting of the strongest absorption lines with a lower-level excitation potential χ low < 1 eV has been detected for the first time in the optical spectra of the post-AGB star V354 Lac obtained with a spectral resolution R = 60 000 at the 6-m BTA telescope. Analysis of the kinematics shows that the short-wavelength component of the split line originates in the star’s thick gas-dust envelope. Disregarding the splitting of strong lines when the chemical composition is calculated leads to overestimated overabundances of s-process elements (Ba, La, Ce, Nd) in the stellar atmosphere. The profiles of strong absorption lines have been found to be variable. The available radial-velocity data suggest the absence of any changes in the velocity field in the atmosphere and circumstellar envelope of V354 Lac over 15 years of its observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号