首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Identifying generic physical mechanisms responsible for the generation of magnetic fields and turbulence in differentially rotating flows is fundamental to understand the dynamics of astrophysical objects such as accretion disks and stars. In this paper, we discuss the concept of subcritical dynamo action and its hydrodynamic analogue exemplified by the process of nonlinear transition to turbulence in non‐rotating wall‐bounded shear flows. To illustrate this idea, we describe some recent results on nonlinear hydrodynamic transition to turbulence and nonlinear dynamo action in rotating shear flows pertaining to the problem of turbulent angular momentum transport in accretion disks. We argue that this concept is very generic and should be applicable to many astrophysical problems involving a shear flow and non‐axisymmetric instabilities of shearinduced axisymmetric toroidal velocity or magnetic fields, such as Kelvin‐Helmholtz, magnetorotational, Tayler or global magnetoshear instabilities. In the light of several recent numerical results, we finally suggest that, similarly to a standard linear instability, subcritical MHD dynamo processes in high‐Reynolds number shear flows could act as a large‐scale driving mechanism of turbulent flows that would in turn generate an independent small‐scale dynamo. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
We briefly review recent developments in black hole accretion disk theory, emphasizing the vital role played by magnetohydrodynamic (MHD) stresses in transporting angular momentum. The apparent universality of accretion-related outflow phenomena is a strong indicator that large-scale MHD torques facilitate vertical transport of angular momentum. This leads to an enhanced overall rate of angular momentum transport and allows accretion of matter to proceed at an interesting rate. Furthermore, we argue that when vertical transport is important, the radial structure of the accretion disk is modified at small radii and this affects the disk emission spectrum. We present a simple model demonstrating how energetic, magnetically-driven outflows modify the emergent disk emission spectrum with respect to that predicted by standard accretion disk theory. A comparison of the predicted spectra against observations of quasar spectral energy distributions suggests that mass accretion rates inferred using the standard disk model may be severely underestimated.  相似文献   

3.
An accretion disk is an inevitable part of the star forming process. Recent years have witnessed dramatic progress in our understanding of how turbulence arises and transports angular momentum in astrophysical accretion disks. The key conceptual point is that the combination of a subthermal magnetic field and outwardly decreasing differential rotation is subject to the magnetorotational instability. This rapidly generates magnetohydrodynamical (MHD) turbulence, leading to greatly enhanced angular momentum transport. Purely hydrodynamic disks, on the other hand, are stable. Disks that are too cool to couple effectively to the magnetic field will not be turbulent. Fully global three dimensional MHD simulations are now beginning to probe the properties of accretion disks from first principles.  相似文献   

4.
5.
In spite of the large number of global three-dimensional (3-D) magnetohydrodynamic (MHD) simulations of accretion disks and astrophysical jets, which have been developed since 2000, the launching mechanisms of jets is somewhat controversial. Previous studies of jets have concentrated on the effect of the large-scale magnetic fields permeating accretion disks. However, the existence of such global magnetic fields is not evident in various astrophysical objects, and their origin is not well understood. Thus, we study the effect of small-scale magnetic fields confined within the accretion disk. We review our recent findings on the formation of jets in dynamo-active accretion disks by using 3-D MHD simulations. In our simulations, we found the emergence of accumulated azimuthal magnetic fields from the inner region of the disk (the so-called magnetic tower) and also the formation of a jet accelerated by the magnetic pressure of the tower. Our results indicate that the magnetic tower jet is one of the most promising mechanisms for launching jets from the magnetized accretion disk in various astrophysical objects. We will discuss the formation of cosmic jets in the context of the magnetic tower model.  相似文献   

6.
I present a scenario by which an accretion flow with alternating angular momentum on to a newly born neutron star in a core collapse supernova(CCSN) efficiently amplifies magnetic fields and by that launches jets. The accretion flow of a collapsing core on to the newly born neutron star suffers spiral standing accretion shock instability(SASI). This instability leads to a stochastically variable angular momentum of the accreted gas, which in turn forms an accretion flow with alternating directions of the angular momentum, and hence alternating shear, at any given time. I study the shear in this alternating-shear sub-Keplerian inflow in published simulations, and present a new comparison with Keplerian accretion disks. From that comparison I argue that it might be as efficient as Keplerian accretion disks in amplifying magnetic fields by a dynamo. I suggest that although the average specific angular momentum of the accretion flow is small,namely, sub-Keplerian, this alternating-shear accretion flow can launch jets with varying directions, namely,jittering jets. Neutrino heating is an important ingredient in further energizing the jets. The jittering jets locally revive the stalled accretion shock in the momentarily polar directions, and by that they explode the star. I repeat again my call for a paradigm shift from a neutrino-driven explosion of CCSNe to a jet-driven explosion mechanism that is aided by neutrino heating.  相似文献   

7.
Cool weakly ionized gaseous rotating disk form the basis for many models in astrophysics objects. Instabilities against perturbations in such disks play an important role in the theory of the formation of stars and planets. Traditionally, axisymmetric magnetohydrodynamic (MHD) and recently Hall‐MHD instabilities have been thoroughly studied as providers of an efficient mechanism for radial transfer of angular momentum, and of density radial stratification. In the current work, the Hall instability against axisymmetric perturbations in incompressible rotating fluid in external poloidal and toroidal magnetic field is considered. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
A suitable model for the macroscopic behavior of accretion disk-jet systems is provided by the equations of MagnetoHydroDynamics (MHD). These equations allow us to perform scale-encompassing numerical simulations of multidimensional nonlinear magnetized plasma flows. For that purpose, we continue the development and exploitation of the Versatile Advection Code (VAC) along with its recent extension which employs dynamically controlled grid adaptation. In the adaptive mesh refinement AMRVAC code, modules for simulating any-dimensional special relativistic hydro- and magnetohydrodynamic problems are currently operational. Here, we review recent 3D MHD simulations of fundamental plasma instabilities, relevant when dealing with cospatial shear flow and twisted magnetic fields. Such magnetized jet flows can be susceptible to a wide variety of hydro (e.g. Kelvin-Helmholtz) or magnetohydrodynamic (e.g. current driven kink) instabilities. Recent MHD computations of 3D jet flows have revealed how such mutually interacting instabilities can in fact aid in maintaining jet coherency. Another breakthrough from computational magnetofluid modeling is the demonstration of continuous, collimated, transmagnetosonic jet launching from magnetized accretion disks. Summarizing, MHD simulations are rapidly gaining realism and significantly advance our understanding of nonlinear astrophysical magnetofluid dynamics.  相似文献   

9.
For accretion on to neutron stars possessing weak surface magnetic fields and substantial rotation rates (corresponding to the secular instability limit), we calculate the disk and surface layer luminosities general relativistically using the Hartle & Thorne formalism, and illustrate these quantities for a set of representative neutron star equations of state. We also discuss the related problem of the angular momentum evolution of such neutron stars and give a quantitative estimate for this accretion driven change in angular momentum. Rotation always increases the disk luminosity and reduces the rate of angular momentum evolution. These effects have relevance for observations of low-mass X-ray binaries.  相似文献   

10.
The stability of the innermost disk region orbiting a Kerr black hole is investigated for geometrically thin accretion disks. The infalling matter transports mass and angular momentum into the Kerr hole. This affects the inner disk boundary and leads to runaway instabilities in some cases.  相似文献   

11.
Several classes of cosmic objects, such as Young Stellar Objects, Active Galactic Nuclei, Micro-Quasars, Pulsars and probably Gamma Ray Bursts, display powerful winds and jets; for some of them the flow is even ultrarelativistic. For all these classes of objects, the magnetic field is supposed to play a major role in launching and collimating the flow, together with the angular momentum transfer. It probably plays an important role for the turbulent transport in accretion disks also. Regarding the high energy radiation of relativistic jets and the cosmic ray generation, the magnetic field is of course the acceleration agent and could produce the Ultra High Energy Cosmic Rays in some extragalactic objects. The main growth points of these topics are presented, mostly in the case of black hole environments; the case of Young Stellar Objects is more complicated because of the interaction of the stellar magnetosphere with the accretion disk, and the models for this interaction are not yet founded on a reliable theory.  相似文献   

12.
A study is made of axisymmetric, low sonic-Mach-number flows of a viscous fluid with angular momentum outside of a black-hole. The viscosity is an eddy viscosity due to turbulence in the sheared flows. Self-similar solutions arise naturally, reducing the Navier-Stokes equations to a set of nonlinear ordinary differential equations. These equations are solved analytically for flows of constant specific angular momentum and numerically for more general flows. For flows with non-constant specific angular momentum, the momentum flux density includes a planar discontinuity which is interpreted as an accretion disc. In general, two flow regions appear on each side of the disk, corresponding to accretion onto the disk and jet-like outflows along the ±z-axes. Physical interpretations of the solutions show that these flows arise in response to point sources of axial momentum at the origin directed in the ±z-directions. The power needed to maintain this momentum input is assumed to come from the mass accretion onto the black hole.The hydrodynamic flows are generalized to include a magnetic field. In the limit of infinite electrical conductivity, the possible types of flow patterns are the same as in hydrodynamic case. The magnetic field alters the relative amounts of reversible and irreversible momentum and angular momentum transport by the flow. For a flow with turbulent viscosity, the magnetic field acts to reduce the level of the turbulence and the effective value of the eddy viscosity.  相似文献   

13.
14.
Patrick Cassen  Ann Moosman 《Icarus》1981,48(3):353-376
An analysis is presented of the hydrodynamic aspects of the growth of protostellar disks from the accretion (or collapse) of a rotating gas cloud. The size, mass, and radiative properties of protostellar disks are determined by the distribution of mass and angular momentum in the clouds from which they are formed, as well as from the dissipative processes within the disks themselves. The angular momentum of the infalling cloud is redistributed by the action of turbulent viscosity on a shear layer near the surface of the disk (downstream of the accretion shock) and on the radial shear across cylindrical surfaces parallel to the rotation axis. The fraction of gas that is fed into a central core (protostar) during accretion depends on the ratio of the rate of viscous diffusion of angular momentum to the accretion rate; rapid viscous diffusion (or a low accretion rate) promotes a large core-to-disk mass ratio. The continuum radiation spectrum of a highly viscous disk is similar to that of a steady-state accretion disk without mass addition. It is possible to construct models of the primitive solar nebula as an accretion disk, formed by the collapse of a slowly rotating protostellar cloud, and containing the minimum mass required to account for the planets. Other models with more massive disks are also possible.  相似文献   

15.
The stability of turbulent accretion discs is considered, in which a magnetically influenced wind plays a major role in driving the inflow. The magnetic field is generated by a dynamo operating in the disc, involving radial shear and turbulence. The steady angular momentum balance is found to be linearly stable for a range of radial boundary conditions, and an expression is derived for the adjustment time-scale as a function of the equilibrium ratio of the magnetic and viscous disc torques.  相似文献   

16.
粘滞性问题一直是吸积盘理论中十分重要而又难以解决的一个基本理论问题.最近,Balbus和Hawley建议在磁化吸积盘中存在一种局域的磁流体剪切不稳定性机制,它能导致磁化吸积盘中有效的角动量转移,从而可以部分地解决磁化吸积盘中的粘滞性问题.但是Balbus-Hawley机制对非磁化吸积盘仍然是无效的.在本文中,我们研究了一种非磁化吸积盘模型,其中粘滞性机制起源于等离子体朗缪尔波湍动应力,并与标准a吸积盘模型中起源于流体或磁流体湍流的雷诺应力的粘滞性机制进行了比较.结果表明等离子体朗缪尔波湍动应力不仅对非磁化吸积盘中粘滞性的起源有重要的贡献,而且有可能是比流体湍流或磁流体湍流的雷诺应力更加有效的粘滞性起源的物理机制.  相似文献   

17.
Observations and numerical magnetohydrodynamic (MHD) simulations indicate the existence of outflows and ordered large-scale magnetic fields in the inner region of hot accretion flows. In this paper, we present the self-similar solutions for advection-dominated accretion flows (ADAFs) with outflows and ordered magnetic fields. Stimulated by numerical simulations, we assume that the magnetic field has a strong toroidal component and a vertical component in addition to a stochastic component. We obtain the self-similar solutions to the equations describing the magnetized ADAFs, taking into account the dynamical effects of the outflow. We compare the results with the canonical ADAFs and find that the dynamical properties of ADAFs such as radial velocity, angular velocity and temperature can be significantly changed in the presence of ordered magnetic fields and outflows. The stronger the magnetic field is, the lower the temperature of the accretion flow will be and the faster the flow rotates. The relevance to observations is briefly discussed.  相似文献   

18.
Both fast and slow magnetohydrodynamic (MHD) density waves propagating in a thin rotating magnetized gas disc are investigated. In the tight-winding or WKBJ regime, the radial variation of MHD density-wave amplitude during wave propagation is governed by the conservation of wave action surface density which travels at a relevant radial group speed C g. The wave energy surface density and the wave angular momentum surface density are related to by = and = m respectively, where is the angular frequency in an inertial frame of reference and the integer m , proportional to the azimuthal wavenumber, corresponds to the number of spiral arms. Consequently, both wave energy and angular momentum are conserved for spiral MHD density waves. For both fast and slow MHD density waves, net wave energy and angular momentum are carried outward or inward for trailing or leading spirals, respectively. The wave angular momentum flux contains separate contributions from gravity torque, advective transport and magnetic torque. While the gravity torque plays an important role, the latter two can be of comparable magnitudes to the former. Similar to the role of gravity torque, the part of MHD wave angular momentum flux by magnetic torque (in the case of either fast or slow MHD density waves) propagates outward or inward for trailing or leading spirals, respectively. From the perspective of global energetics in a magnetized gas sheet in rotation, trailing spiral structures of MHD density waves are preferred over leading ones. With proper qualifications, the generation and maintenance as well as transport properties of MHD density waves in magnetized spiral galaxies are discussed.  相似文献   

19.
20.
Magnetically mediated disk outflows are a leading paradigm to explain winds and jets in a variety of astrophysical sources, but where do the fields come from? Since accretion of mean magnetic flux may be disfavored in a thin turbulent disk, and only fields generated with sufficiently large scale can escape before being shredded by turbulence, in situ field production is desirable. Nonlinear helical inverse dynamo theory can provide the desired fields for coronae and outflows. We discuss the implications for contemporary protostellar disks, where the (magneto-rotational instability (MRI)) can drive turbulence in the inner regions, and primordial protostellar disks, where gravitational instability drives the turbulence. We emphasize that helical dynamos are compatible with the magneto-rotational instability, and clarify the relationship between the two.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号