首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
We compare three previously independently studied crater morphologies - excess ejecta craters, perched craters, and pedestal craters - each of which has been proposed to form from impacts into an ice-rich surface layer. Our analysis identifies the specific similarities and differences between the crater types; the commonalities provide significant evidence for a genetic relationship among the morphologies. We use new surveys of excess ejecta and perched craters in the southern hemisphere in conjunction with prior studies of all of the morphologies to create a comprehensive overview of their geographic distributions and physical characteristics. From these analyses, we conclude that excess ejecta craters and perched craters are likely to have formed from the same mechanism, with excess ejecta craters appearing fresh while perched craters have experienced post-impact modification and infilling. Impacts that led to these two morphologies overwhelmed the ice-rich layer, penetrating into the underlying martian regolith, resulting in the excavation of rock that formed the blocky ejecta necessary to armor the surface and preserve the ice-rich deposits. Pedestal craters, which tend to be smaller in diameter, have the same average deposit thickness as excess ejecta and perched craters, and form in the same geographic regions. They rarely have ejecta around their crater rims, instead exhibiting a smooth pedestal surface. We interpret this to mean that they form from impacts into the same type of ice-rich paleodeposit, but that they do not penetrate through the icy surface layer, and thus do not generate a blocky ejecta covering. Instead, a process related to the impact event appears to produce a thin, indurated surface lag deposit that serves to preserve the ice-rich material. These results provide a new basis to identify the presence of Amazonian non-polar ice-rich deposits, to map their distribution in space and time, and to assess Amazonian climate history. Specifically, the ages, distribution and physical attributes of the crater types suggest that tens to hundreds of meters of ice-rich material has been episodically emplaced at mid latitudes in both hemispheres throughout the Amazonian due to obliquity-driven climate variations. These deposits likely accumulated more frequently in the northern lowlands, resulting in a larger population of all three crater morphologies in the northern hemisphere.  相似文献   

2.
Abstract— The northern lowland plains, such as those found in Acidalia and Utopia Planitia, have high percentages of impact craters with fluidized ejecta. In both regions, the analysis of crater geometry from Mars Orbiter Laser Altimeter (MOLA) data has revealed large ejecta volumes, some exceeding the volume of excavation. Moreover, some of the crater cavities and fluidized ejecta blankets of these craters are topographically perched above the surrounding plains. These perched craters are concentrated between 40 and 70°N in the northern plains. The atypical high volumes of the ejecta and the perched craters suggest that the northern lowlands have experienced one or more episodes of resurfacing that involved deposition and erosion. The removal of material, most likely caused by the sublimation of ice in the materials and their subsequent erosion and transport by the wind, is more rapid on the plains than on the ejecta blankets. The thermal inertia difference between the ejecta and the surrounding plains suggests that ejecta, characterized by a lower thermal inertia, protect the underneath terrain from sublimation. This results in a decreased elevation of the plains relative to the ejecta blankets. Sublimation and eolian erosion can be particularly high during periods of high obliquity.  相似文献   

3.
Abstract— We used Mars Orbiter Laser Altimeter (MOLA), Thermal Emission Imaging System visible light (THEMIS VIS), and Mars Orbiter Camera (MOC) data to identify and characterize the morphology and geometry of the distal ramparts surrounding Martian craters. Such information is valuable for investigating the ejecta emplacement process, as well as searching for spatial variations in ejecta characteristics that may be due to target material properties and/or latitude, altitude, or temporal variations in the climate. We find no systematic trend in rampart height that would indicate regional variations in target properties for 54 ramparts at 37 different craters 5.7–35.9 km in diameter between 52.3°S to 47.6°N. Rampart heights for multi‐lobe and single‐lobe ejecta are each normally distributed with a common standard deviation, but statistically distinct mean values. Ramparts range in height from 20–180 m, are not symmetric, are typically steeper on their distal sides, and may be as much as ?4 km wide. The ejecta blanket proximal to parent crater from the rampart may be very thin (<5 m). A detailed analysis of two craters, Toconao crater (21°S, 285°E) (28 measurements), and an unnamed crater within Chryse Planitia (28.4°N, 319.6°E) (20 measurements), reveals that ejecta runout distance increases with an increase in height between the crater rim and the rampart, but that rampart height is not correlated with ejecta runout distance or the thickness of the ejecta blanket.  相似文献   

4.
Abstract— We have surveyed Martian impact craters greater than 5 km in diameter using Viking and thermal emission imaging system (THEMIS) imagery to evaluate how the planform of the rim and ejecta changes with decreasing impact angle. We infer the impact angles at which the changes occur by assuming a sin2θ dependence for the cumulative fraction of craters forming below angle θ. At impact angles less than ?40° from horizontal, the ejecta become offset downrange relative to the crater rim. As the impact angle decreases to less than ?20°, the ejecta begin to concentrate in the cross‐range direction and a “forbidden zone” that is void of ejecta develops in the uprange direction. At angles less than ?10°, a “butterfly” ejecta pattern is generated by the presence of downrange and uprange forbidden zones, and the rim planform becomes elliptical with the major axis oriented along the projectile's direction of travel. The uprange forbidden zone appears as a “V” curving outward from the rim, but the downrange forbidden zone is a straight‐edged wedge. Although fresh Martian craters greater than 5 km in diameter have ramparts indicative of surface ejecta flow, the ejecta planforms and the angles at which they occur are very similar to those for lunar craters and laboratory impacts conducted in a dry vacuum. The planforms are different from those for Venusian craters and experimental impacts in a dense atmosphere. We interpret our results to indicate that Martian ejecta are first emplaced predominantly ballistically and then experience modest surface flow.  相似文献   

5.
Abstract— An impact crater 26.8 km in diameter, located in the northern lowlands (70.32°N, 266.45°E) at the base of the flanking slopes of the shield volcano Alba Patera, is characterized by highly unusual deposits on its southeastern floor and interior walls and on its southeastern rim. These include multiple generations of distinctive arcuate ridges about 115–240 m in width and lobate deposits extending down the crater wall and across the crater floor, forming a broad, claw‐like, ridged deposit around the central peak. Unusual deposits on the eastern and southeastern crater rim include frost, dunes, and a single distal arcuate ridge. Based on their morphology and geometric relationships, and terrestrial analogs from the Mars‐like Antarctic Dry Valleys, the floor ridges are interpreted to represent drop moraines, remnants of the previous accumulation of snow and ice, and formation of cold‐based glaciers on the crater rim. The configuration and superposition of the ridges indicate that the accumulated snow and ice formed glaciers that flowed down into the crater and across the crater floor, stabilized, covering an area of about 150 km2 produced multiple individual drop moraines due to fluctuation in the position of the stable glacier front. Superposition of a thin mantle and textures attributed to a recent ice‐age period (?0.5–2 Myr ago) suggest that the glacial deposits date to at least 4–10 Myr before the present. At least five phases of advance and retreat are indicated by the stratigraphic relationships, and these may be related to obliquity excursions. These deposits are in contrast to other ice‐related modification and degradation processes typical of craters in the northern lowlands, and may be related to the distinctive position of this crater in the past atmospheric circulation pattern, leading to sufficient preferential local accumulation of snow and ice to cause glacial flow.  相似文献   

6.
Double-layered ejecta (DLE) craters are distinctive among the variety of crater morphologies observed on Mars, but the mechanism by which they form remains under debate. We assess two ejecta emplacement mechanisms: (1) atmospheric effects from ejecta curtain-induced vortices or a base surge and (2) ballistic emplacement followed by a landslide of ejecta assisted by either surface- or pore-ice. We conduct a morphological analysis of the ejecta facies for three DLE craters which impacted into irregular pre-existing topography. We find that the unique topographic environments affected the formation of grooves and the inner facies, and thus appear to be inconsistent with an atmospheric-effects origin but are supportive of the landslide hypothesis. We distinguish between the two landslide models (lubrication by either surface- or pore-ice) by assessing relationships between DLE crater ejecta and morphologic features indicative of buried ice deposits, including sublimation pits, ring-mold craters, expanded secondary craters, and excess ejecta craters. The association of DLE craters with these features suggests that surface ice was present at the time of the impacts that formed the DLE craters. We also compare the Froude numbers of DLE crater ejecta to landslides, and find that the ejecta of DLE craters are kinematically and frictionally similar to terrestrial landslides that overran glaciers. This suggests that the grooves on DLE craters may plausibly form through the same shear/splitting mechanism as the landslides. In summary, our analysis supports the hypothesis that DLE craters form through meteoroid impacts into decameters-thick surface ice deposits (emplaced during periods of higher obliquity) followed by ejecta sliding on the ice.  相似文献   

7.
Hale crater formed in the Early to Middle Amazonian and is one of the best preserved large craters on Mars. We focus on the emplacement of previously mapped distal continuous ejecta and newly recognized discontinuous distal ejecta deposits reaching up to 450 km northeast of Hale. The distal continuous ejecta deposits are typically tens of meters thick, likely water-rich, and subsequent dewatering of some resulted in flow along gradients of 10 m km-1 for distances of tens of kilometers. The discontinuous distal ejecta are typically <10 m thick with volumes generally <0.5 km3 and embay Hale secondaries, which occur up to ~600 km from Hale. Both continuous and discontinuous distal ejecta deposits are typically smooth at scales of tens to hundreds of meters, relatively dark-toned, devoid of eolian bedforms, inferred to be mostly fine-grained, and were likely emplaced within hours to 1–2 days after impact. The occurrence of well-preserved discontinuous distal ejecta at Hale is unusual compared to other large Martian craters and could be due to impact into an ice-rich substrate that enabled their formation and (or) their survival after minimal postimpact degradation relative to older craters. The pristine nature of distal continuous and discontinuous distal deposits at Hale and the preservation of associated secondaries imply (1) low erosion rates after the Hale impact, comparable to those estimated elsewhere during the Amazonian; (2) the impact did not significantly influence long-term global or regional scale geomorphic activity or climate; and (3) the Hale impact occurred after late alluvial fan activity in Margaritifer Terra.  相似文献   

8.
Cover     
Cover: This oblique view of the lunar crater Pierazzo (3.3°N, 100.2°W, D≈9km) was taken by NASA’s Lunar Reconnaissance Orbiter Camera’s Narrow Angle Camera in late 2017. The camera was pointed off-nadir to provide this oblique view which, coupled with the moon’s curvature, provides an observation angle of 74°. This young crater features many large deposits of impact melt, typically dark material that is seen strewn throughout the image not only outside the crater (and is found over 40 km from the impact site), but in numerous deposits inside the crater. An extensive analysis of the impact melt was recently published by Veronica Bray et al. (2018, Icarus 201, p. 26–36). Small, bright splotches litter the ejecta and are mostly new craters that post-date the larger Pierazzo impact, though some might be caused by ejected blocks from the crater hitting its own ejecta. The crater is named in honor of Elisabetta (“Betty“) Pierazzo (1963–2011), who studied impact craters, including the production of impact melt material. We selected this image for the cover of this special issue because we think that it presents a good overview of this issue: rather than emphasizing any one study or type of paper in this special issue, it, at a simple glance, shows the force of an impact, the intriguing complexity inherent to their structure, and that even relatively young features are prone to modifi cation by the ongoing process of impact cratering. Credit: NASA/GSFC/ASU  相似文献   

9.
We investigate the elevated crater rims of lunar craters. The two main contributors to this elevation are a structural uplift of the preimpact bedrock and the emplacement of ejecta on top of the crater rim. Here, we focus on five lunar complex mare craters with diameters ranging between 16 and 45 km: Bessel, Euler, Kepler, Harpalus, and Bürg. We performed 5281 measurements to calculate precise values for the structural rim uplift and the ejecta thickness at the elevated crater rim. The average structural rim uplift for these five craters amounts to SRU = 70.6 ± 1.8%, whereas the ejecta thickness amounts to ET = 29.4 ± 1.8% of the total crater rim elevation. Erosion is capable of modifying the ratio of ejecta thickness to structural rim uplift. However, to minimize the impact of erosion, the five investigated craters are young, pristine craters with mostly preserved ejecta blankets. To quantify how strongly craters were enlarged by crater modification processes, we reconstructed the dimensions of the transient crater. The difference between the transient crater diameter and the final crater diameter can extend up to 11 km. We propose reverse faulting and thrusting at the final crater rim to be one of the main contributing factors of forming the elevated crater rim.  相似文献   

10.
Abstract— The geometry of simple impact craters reflects the properties of the target materials, and the diverse range of fluidized morphologies observed in Martian ejecta blankets are controlled by the near‐surface composition and the climate at the time of impact. Using the Mars Orbiter Laser Altimeter (MOLA) data set, quantitative information about the strength of the upper crust and the dynamics of Martian ejecta blankets may be derived from crater geometry measurements. Here, we present the results from geometrical measurements of fresh craters 3–50 km in rim diameter in selected highland (Lunae and Solis Plana) and lowland (Acidalia, Isidis, and Utopia Planitiae) terrains. We find large, resolved differences between the geometrical properties of the freshest highland and lowland craters. Simple lowland craters are 1.5–2.0 times deeper (≥5s?o difference) with >50% larger cavities (≥2s?o) compared to highland craters of the same diameter. Rim heights and the volume of material above the preimpact surface are slightly greater in the lowlands over most of the size range studied. The different shapes of simple highland and lowland craters indicate that the upper ?6.5 km of the lowland study regions are significantly stronger than the upper crust of the highland plateaus. Lowland craters collapse to final volumes of 45–70% of their transient cavity volumes, while highland craters preserve only 25–50%. The effective yield strength of the upper crust in the lowland regions falls in the range of competent rock, approximately 9–12 MPa, and the highland plateaus may be weaker by a factor of 2 or more, consistent with heavily fractured Noachian layered deposits. The measured volumes of continuous ejecta blankets and uplifted surface materials exceed the predictions from standard crater scaling relationships and Maxwell's Z model of crater excavation by a factor of 3. The excess volume of fluidized ejecta blankets on Mars cannot be explained by concentration of ejecta through nonballistic emplacement processes and/or bulking. The observations require a modification of the scaling laws and are well fit using a scaling factor of ?1.4 between the transient crater surface diameter to the final crater rim diameter and excavation flow originating from one projectile diameter depth with Z = 2.7. The refined excavation model provides the first observationally constrained set of initial parameters for study of the formation of fluidized ejecta blankets on Mars.  相似文献   

11.
The mid- and high-latitudes of Mars are covered by a smooth young mantle that is interpreted as an atmospherically derived air-fall deposit of ice and dust related to recent climate changes. In order to determine relative and absolute ages of this surface unit within the southern hemisphere, a systematic survey of all available HiRISE and CTX images in the Malea Planum region from 55–60°S latitude and 50–70°E longitude was performed and the distribution and the morphology of small impact craters on the mantle deposit were investigated. Using crater size-frequency measurements, we derived absolute model ages of ~3–5 Ma for the surface of the mantle, immediately south of the Hellas basin rim. Morphologic observations of the mantle, its fresh appearance, very low number of craters, and superposition on older units support this very young Amazonian age. Nearly all observed craters on the smooth mantle in Malea Planum are small and show signs of erosion, evidence for the ongoing modification of the ice–dust mantle. However, this modification has not been strong enough to reset the surface age. Compared to the ice–dust mantle at higher latitudes in the northern and southern hemisphere, the surface of the mantle in Malea Planum is older and thus has been relatively stable during obliquity changes in the last ~3–5 Ma. This is consistent with the hypothesis that the ice–dust mantle is a complex surface deposit of different layers, that shows a strong latitude dependence in morphology and has been deposited and degraded at different times in martian history.  相似文献   

12.
Permafrost is ground remaining frozen (temperatures are below the freezing point of water) for more than two consecutive years. An active layer in permafrost regions is defined as a near-surface layer that undergoes freeze-thaw cycles due to day-average surface and soil temperatures oscillating about the freezing point of water. A “dry” active layer may occur in parched soils without free water or ice but significant geomorphic change through cryoturbation is not produced in these environments. A wet active layer is currently absent on Mars. We use recent calculations on the astronomical forcing of climate change to assess the conditions under which an extensive active layer could form on Mars during past climate history. Our examination of insolation patterns and surface topography predicts that an active layer should form on Mars in the geological past at high latitudes as well as on pole-facing slopes at mid-latitudes during repetitive periods of high obliquity. We examine global high-resolution MOLA topography and geological features on Mars and find that a distinctive latitudinal zonality of the occurrence of steep slopes and an asymmetry of steep slopes at mid-latitudes can be attributed to the effect of active layer processes. We conclude that the formation of an active layer during periods of enhanced obliquity throughout the most recent period of the history of Mars (the Amazonian) has led to significant degradation of impact craters, rapidly decreasing the steep slopes characterizing pristine landforms. Our analysis suggests that an active layer has not been present on Mars in the last ∼5 Ma, and that conditions favoring the formation of an active layer were reached in only about 20% of the obliquity excursions between 5 and 10 Ma ago. Conditions favoring an active layer are not predicted to be common in the next 10 Ma. The much higher obliquity excursions predicted for the earlier Amazonian appear to be responsible for the significant reduction in magnitude of crater interior slopes observed at higher latitudes on Mars. The observed slope asymmetry at mid-latitudes suggests direct insolation control, and hence low atmospheric pressure, during the high obliquity periods throughout the Amazonian. We formulate predictions on the nature and distribution of candidate active layer features that could be revealed by higher resolution imaging data.  相似文献   

13.
From an analysis of 1173 craters possessing single (Type I) and double (Type 2) concentric ejecta deposits, Type 2 craters are found to occur most frequently in areas that have also been described as possessing periglacial features. The frequency of occurence of central peaks and wall failure (terraces plus scallops) within the craters indicate that, by analogy with previous analyses, Type 1 craters form in more fragmental targets than Type 2 craters. The maximum range of the outer ejecta deposits of Type 2 craters, however, consistently extends ~0.8 crater radii further than ejecta deposits of Type 1 craters, suggesting a greater degree of ejecta fluidization for the twin-lobed Type 2 craters. Numerous characteristics of Ries Crater, West Germany, show similarities to craters on Mars, indicating that Martian fluidized ejecta craters may be closer analogs to this terrestrial crater than are lunar craters.  相似文献   

14.
We investigate the depth, variability, and history of regolith on asteroid Vesta using data from the Dawn spacecraft. High‐resolution (15–20 m pixel?1) Framing Camera images are used to assess the presence of morphologic indicators of a shallow regolith, including the presence of blocks in crater ejecta, spur‐and‐gully–type features in crater walls, and the retention of small (<300 m) impact craters. Such features reveal that the broad, regional heterogeneities observed on Vesta in terms of albedo and surface composition extend to the physical properties of the upper ~1 km of the surface. Regions of thin regolith are found within the Rheasilvia basin and at equatorial latitudes from ~0–90°E and ~260–360°E. Craters in these areas that appear to excavate material from beneath the regolith have more diogenitic (Rheasilvia, 0–90°E) and cumulate eucrite (260–360°E) compositions. A region of especially thick regolith, where depths generally exceed 1 km, is found from ~100–240°E and corresponds to heavily cratered, low‐albedo surface with a basaltic eucrite composition enriched in carbonaceous chondrite material. The presence of a thick regolith in this area supports the idea that this is an ancient terrain that has accumulated a larger component of exogenic debris. We find evidence for the gardening of crater ejecta toward more howarditic compositions, consistent with regolith mixing being the dominant form of “weathering” on Vesta.  相似文献   

15.
The high-resolution Voyager images of Ganymede show a class of fresh craters 6–89 km in diameter which is distinguished by an ejecta blanket similar to those seen for some types of Martian craters. One hundred and eighty-five were identified and studied for trends with respect to latitude, longitude, and terrain type. No correlation of the ratio of ejecta diameter to crater diameter was found as a function of latitude or longitude, and there is only a suggestion of a trend in this ratio with respect to major terrain types. Central peak frequency is greatest for the smaller crater diameters. Central pit occurrence dominates central peak occurrence at crater diameters ?35 km. We conclude that the ejecta morphology probably results from impact into an icy target. The question of whether atmospheric ejecta-particle drag contributes to ejecta blanket morphologies on planets with an atmospheric cannot be resolved entirely from the Voyager images. The image resolution is insufficient to show diagnostic flow features on the ejecta, if they exist, or to detect evidence of any other ejecta deposits which would lie beyond the pedestal, predicted by some researchers to exist only on bodies with an atmosphere.  相似文献   

16.
Rays and secondary craters of Tycho   总被引:1,自引:0,他引:1  
The large, fresh crater Tycho in the nearside lunar highlands has an extensive system of bright rays covering approximately 560,000 km2, containing dense clusters of secondary craters. Examination of crater densities in several clusters shows that Tycho produced almost 106 secondary craters larger than 63 m diameter. This is a lower limit, because small crater densities are reduced, most likely by mass wasting. We estimate a crater erasure rate of 2-6 cm/Myr, varying with crater size, and consistent with previous results. This process has removed many small craters, and it is probable that the original number of secondary craters formed by Tycho was higher. Also, we can only identify distant secondaries of Tycho where they occur in bright rays. Craters on Mars and Europa also formed large numbers of secondaries, but under possibly ideal conditions for spallation as a mechanism to produce high-velocity ejecta fragments. The results from Tycho show that large numbers of such fragments can be produced even from impact into a heavily fragmented target on which spallation is expected to be less important.  相似文献   

17.
Evidence has accumulated that non-polar portions of Mars have undergone significant periods of glaciation during the Amazonian Period. This evidence includes tropical mountain glacial deposits, lobate debris aprons, lineated valley fill, concentric crater fill, pedestal craters, and related landforms, some of which suggest that ice thicknesses exceeded a kilometer in many places. In some places, several lines of evidence suggest that ice is still preserved today in the form of relict debris-coved glaciers. The vast majority of deposit morphologies are analogous to those seen in cold-based glacial deposits on Earth, suggesting that little melting has taken place. Although these features have been broadly recognized, and their modes of ice accumulation and flow analyzed at several scales, they have not been analyzed and well-characterized globally despite their significance for understanding the evolution of the martian climate. A major outstanding question is the global extent of accumulation and flow of ice during periods of non-polar glaciation: As a mechanism to address this question, we outline two end-member scenarios to provide a framework for further discussion and analysis: (1) ice accumulation was mainly focused within individual craters and valleys and flow was largely local to regional in scale, and (2) ice accumulation was dominated by global latitudinal scale cold-based ice sheets, similar in scale to the Laurentide continental ice sheets on Earth. In order to assess these end members, we conducted a survey of ice-related features seen in Context Camera (CTX) images in each hemisphere and mapped evidence for flow directions within well-preserved craters in an effort to decipher orientation preferences that could help distinguish between these two hypotheses: regional/hemispheric glaciation or local accumulation and flow. These new crater data reveal a latitudinal-dependence on flow direction: at low latitudes in each hemisphere (<40–45°) cold, pole-facing slopes are strongly preferred sites for ice accumulation, while at higher latitudes (>40–45°), slopes of all orientations show signs of ice accumulation and ice-related flow. This latitudinal onset of concentric flow of ice within craters in each hemisphere correlates directly with the lowest latitudes at which typical pedestal craters have been mapped. Taken together, these observations demarcate an important latitudinal boundary that partitions each hemisphere into two zones: (1) poleward of ~45°, where net accumulation of ice is interpreted to have occurred on all surfaces, and (2) equatorward of ~45°, where net accumulation of ice occurred predominantly on pole-facing slopes. These results provide important constraints for deciphering the climatic conditions that characterized Mars during periods of extensive Amazonian non-polar glaciation.  相似文献   

18.
Mark Settle  James W. Head 《Icarus》1977,31(1):123-135
The variation of rim topography as a function of range from the crater rim has been determined for a group of morphologically fresh lunar craters (D = 10–140 km) using the recent series of Lunar Topographic Orthophotomaps. The rate at which exterior crater topography converges with the surrounding surface is highly variable along different radial directions at individual craters as well as between different craters. At several craters, oblique impact appears to have contributed to azimuthal elevation/range variations. The topographic expression of a crater above the surrounding surface typically decreases to one-tenth of the estimated rim height at a range of 1.3R–1.7R, well within the rough-textured ejecta deposit surrounding the crater. Comparisons with terrestrial craters suggest that the topographic crater rim is predominantly a structural feature. In most craters large portions of the hummocky facies and virtually all of the radial facies, in spite of their rough appearance and local topographic variations, provide no significant net topographic addition to the preexisting surface. The extreme variability of crater rim topography strongly suggests that ejecta thicknesses are highly variable and that a unique power-law expression cannot truly represent the radial variation of ejecta deposit thickness.  相似文献   

19.
Abstract— Mars Global Surveyor (MGS) and Mars Odyssey data are being used to revise the Catalog of Large Martian Impact Craters. Analysis of data in the revised catalog provides new details on the distribution and morphologic details of 6795 impact craters in the northern hemisphere of Mars. This report focuses on the ejecta morphologies and central pit characteristics of these craters. The results indicate that single‐layer ejecta (SLE) morphology is most consistent with impact into an ice‐rich target. Double‐layer ejecta (DLE) and multiple‐layer ejecta (MLE) craters also likely form in volatile‐rich materials, but the interaction of the ejecta curtain and target‐produced vapor with the thin Martian atmosphere may be responsible for the large runout distances of these ejecta. Pancake craters appear to be a modified form of double‐layer craters where the thin outer layer has been destroyed or is unobservable at present resolutions. Pedestal craters are proposed to form in an icerich mantle deposited during high obliquity periods from which the ice has subsequently sublimated. Central pits likely form by the release of vapor produced by impact into ice‐soil mixed targets. Therefore, results from the present study are consistent with target volatiles playing a dominant role in the formation of crater morphologies found in the Martian northern hemisphere.  相似文献   

20.
The mode of formation of gullies on Mars, very young erosional–depositional landforms consisting of an alcove, channel, and fan, is one of the most enigmatic problems in martian geomorphology. Major questions center on their ages, geographic and stratigraphic associations, relation to recent ice ages, and, if formed by flowing water, the sources of the water to cause the observed erosion/deposition. Gasa (35.72°S, 129.45°E), a very fresh 7-km diameter impact crater and its environment, offer a unique opportunity to explore these questions. We show that Gasa crater formed during the most recent glacial epoch (2.1–0.4 Ma), producing secondary crater clusters on top of the latitude-dependent mantle (LDM), interpreted to be a layered ice-dust-rich deposit emplaced during this glacial epoch. High-resolution images of a pre-Gasa impact crater ~100 km northeast of Gasa reveal that portions of the secondary-crater-covered LDM have been removed from pole-facing slopes in crater interiors near Gasa; gullies are preferentially located in these areas and channels feeding alcoves and fans can be seen to emerge from the eroding LDM layers to produce multiple generations of channel incision and fan lobes. We interpret these data to mean that these gullies formed extremely recently in the post-Gasa-impact time-period by melting of the ice-rich LDM. Stratigraphic and topographic relationships are interpreted to mean that under favorable illumination geometry (steep pole-facing slopes) and insolation conditions, melting of the debris-covered ice-rich mantle took place in multiple stages, most likely related to variations in spin-axis/orbital conditions. Closer to Gasa, in the interior of the ~18 km diameter LDM-covered host crater in which Gasa formed, the pole-facing slopes display two generations of gullies. Early, somewhat degraded gullies, have been modified by proximity to Gasa ejecta emplacement, and later, fresh appearing gullies are clearly superposed, cross-cut the earlier phase, and show multiple channels and fans, interpreted to be derived from continued melting of the LDM on steep pole-facing slopes. Thus, we conclude that melting of the ice-rich LDM is a major source of gully activity both pre-Gasa crater and post-Gasa crater formation. The lack of obscuration of Gasa secondary clusters formed on top of the LDM is interpreted to mean that the Gasa impact occurred following emplacement of the last significant LDM layers at these low latitudes, and thus near the end of the ice ages. This interpretation is corroborated by the lack of LDM within Gasa. However, Gasa crater contains a robustly developed set of gullies on its steep, pole-facing slopes, unlike other very young post-LDM craters in the region. How can the gullies inside Gasa form in the absence of an ice-rich LDM that is interpreted to be the source of water for the other adjacent and partly contemporaneous gullies? Analysis of the interior (floor and walls) of the host crater suggest that prior to the Gasa impact, the pole-facing walls and floor were occupied by remnant debris-covered glaciers formed earlier in the Amazonian, which are relatively common in crater interiors in this latitude band. We suggest that the Gasa impact cratering event penetrated into the southern portion of this debris-covered glacier, emplaced ejecta on top of the debris layer covering the ice, and caused extensive melting of the buried ice and flow of water and debris slurries on the host crater floor. Inside Gasa, the impact crater rim crest and wall intersected the debris-covered glacier deposits around the northern, pole-facing part of the Gasa interior. We interpret this exposure of ice-rich debris-covered glacial material in the crater wall to be the source of meltwater that formed the very well-developed gullies along the northern, pole-facing slopes of Gasa crater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号