首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
A solar type I noise storm was observed on 30 July, 1992 with the radio spectrometer Phoenix of ETH Zürich, the Very Large Array (VLA) and the soft X-ray (SXR) telescope on board theYohkoh satellite. The spectrogram was used to identify the type I noise storm. In the VLA images at 333 MHz a fully left circular polarized (100% LCP) continuum source and several highly polarized (70% to 100% LCP) burst sources have been located. The continuum and the bursts are spatially separated by about 100 and apparently lie on different loops as outlined by the SXR. Continuum and bursts are separated in the perpendicular direction to the magnetic field configuration. Between the periods of strong burst activities, burst-like emissions are also superimposed on the continuum source. There is no obvious correlation between the flux density of the continuum and the bursts. The burst sources have no systematic motion, whereas the the continuum source shows a small drift of 0.2 min–1 along the X-ray loop in the long-time evolution. The VLA maps at higher frequency (1446 MHz) show no source corresponding to the type I event. The soft X-ray emission measure and temperature were calculated. The type I continuum source is located (in projection) in a region with enhanced SXR emission, a loop having a mean density of n e = (1.5 ± 0.4) × 109 cm–3 and a temperature ofT = (2.1 ± 0.1) × 106 K. The centroid positions of the left and right circularly polarized components of the burst sources are separated by 15–50 and seem to be on different loops. These observations contradict the predictions of existing type I theories.Presented at the CESRA-Workshop on Coronal Magnetic Energy Release at Caputh near Potsdam in May 1994.  相似文献   

2.
Current dissipation models of coronal loop heating are studied. Turbulent current dissipation is shown to lead to a time dependent process because of an enormous mass motion induced in the current layer. A stationary heating process involves only ohmic heating, which requires a large current layer. To insure MHD stability, the loop must be composed of many elements with the oppositely directed currents. A stationary current dissipation process induces the plasma motion across the magnetic field into the loop and down the loop with the speeds v 104 cm s–1 and v 104 cm s–1, respectively. The pressure of the loop is also estimated to be proportional to the current density: p/J=6.3 × 10-8dyn/statamp.  相似文献   

3.
We have investigated spectral features of strong radio burst emission for the 21st cycle of solar activity. The maximum daily radio fluxes in 8 frequency ranges are analyzed. For every year, the classification of these daily spectra is obtained by the cluster analysis method.We have shown that strong bursts are characterized by the stable shape of the mean radio emission spectra. For these bursts the total level of radio emission does not depend on the phase of the solar 11-yr cycle and varies with the quasi-period of 4 yr.The basic features of burst spectra can be explained by the gyrosynchrotron radiation of nonthermal electrons and plasma radiation at the second harmonic of plasma frequency. We supposed that in the generation region of centimetric emission, if the strength of the magnetic field B 100 G, the number of microbursts can amount to (6–7) × 103. In the generation region of decimetric emission, the energy of Langmuir waves changes as W l n e 0.4.  相似文献   

4.
B. Vršnak  S. Lulić 《Solar physics》2000,196(1):181-197
The ignition of coronal shock waves by flares is investigated. It is assumed that an explosive expansion of the source region caused by impulsive heating generates a fast-mode MHD blast wave which subsequently transforms into a shock wave. The solutions of 1-D MHD equations for the flaring region and for the external region are matched at their boundary. The obtained results show under what conditions flares can ignite shock waves that excite the metric type II bursts. The heat input rate per unit mass has to be sufficiently high and the preflare value of the plasma parameter in the flaring region has to be larger than 0 crit. The critical values depend on the flare dimensions and impulsiveness. Larger and more impulsive flares are more effective in generating type II bursts. Shock waves of a higher Mach number require a higher preflare value of and a more powerful heating per unit mass. The results demonstrate why only a small fraction of flares is associated with type II bursts and why the association rate increases with the flare importance.  相似文献   

5.
The Very Large Array and the Westerbork Synthesis Radio Telescope have been used to observe eight solar bursts at 2, 6, or 20 cm wavelength with second-of-arc angular resolution. The regions of burst energy were all resolved with angular sizes between 5″ and 30″, brightness temperatures between 2 × 107 K and 2 x 108 K, and degrees of circular polarization between 10 and 90%. A series of 10 s snapshot maps are presented for the more intense bursts, and superimposed on photospheric magnetograms or Hα photographs. The impulsive phase of the radio bursts is located near the magnetic neutral line of the active regions, and between the flaring Hα kernels which mark the footpoints of magnetic loops. The impulsive phase of one 6 cm burst was smaller and spatially separated from both the preburst radio emission and the gradual decay phase of the burst. Another 6 cm burst exhibited preburst heating of the coronal loop in which the burst occurred. The plasma was probably heated at a lower level in the loop, while the burst energy was released several minutes later at a higher level. A multiple-spike 20 cm burst exhibited polarity inversions with degrees of circular polarization of 90%. The rapid changes in circular polarization are attributed to either a magnetically complex region or the emersion of new magnetic flux at coronal heights where magnetic field strengths H ≈ 300 to 400 G.  相似文献   

6.
Some properties of solar radio bursts observed at the Earth are mainly due to propagation effects in the corona. A radio echo of short-time narrow-band bursts is observed by a decameter radioheliograph on the basis of UTR-2 antenna. Propagation effects are manifested in the marked regular change of the burst intensity-time profile at 25 MHz during a half-rotation of the Sun. A displacement of limb diffuse bursts deep into the solar atmosphere of 1.5 - 2R has been also found during the burst lifetime.  相似文献   

7.
Tu  C.-Y.  Marsch  E. 《Solar physics》1997,171(2):363-391
A model of the solar corona and wind is developed which includes for the first time the heating and acceleration effects of high-frequency Alfvén waves in the frequency range between 1 Hz and 1 kHz. The waves are assumed to be generated by the small-scale magnetic activity in the chromospheric network. The wave dissipation near the gyro-frequency, which decreases with increasing solar distance, leads to strong coronal heating. The resulting heating function is different from other artificial heating functions used in previous model calculations. The associated thermal pressure-gradient force and wave pressure-gradient force together can accelerate the wind to high velocities, such as those observed by Helios and Ulysses. Classical Coulomb heat conduction is also considered and turns out to play a role in shaping the temperature profiles of the heated protons. The time-dependent two-fluid (electrons and protons) model equations and the time-dependent wave-spectrum equation are numerically integrated versus solar distance out to about 0.3 AU. The solutions finally converge and settle on time-stationary profiles which are discussed in detail. The model computations can be made to fit the observed density profiles of a polar coronal hole and polar plume with the sonic point occurring at 2.4 R and 3.2 R , respectively. The solar wind speeds obtained at 63 R are 740 km s-1 and 540 km s-1; the mass flux is 2.1 and 2.2 × 108 cm-2 s-1 (normalized to 1 AU), respectively. The proton temperature increases from a value of 4 × 105 K at the lower boundary to 2 × 106 K in the corona near 2 R .  相似文献   

8.
Doyle  J.G.  Keenan  F.P.  Ryans  R.S.I.  Aggarwal  K.M.  Fludra  A. 《Solar physics》1999,188(1):73-80
Using new close-coupling excitation rates for the C-like ion Siix, density-diagnostic ratios based on Siix lines have been re-evaluated and applied to a sequence of CDS observations taken above a polar coronal hole. The derived electron densities are in excellent agreement with previous values of Neestimated from the N-like ion Siviii for another coronal hole. The confirmed trend is for a fall-off of one order of magnitude within the first 0.3 Rabove the limb. These densities are well fitted with an analytic formula for the density profile out to at least 8 R, by which stage the electron density has fallen to 4×103 cm–3, from 1.5×108 cm–3at 1.0 R.  相似文献   

9.
The Very Large Array (VLA) and the RATAN 600 were used to observe a solar active region on two consecutive days around the time of a partial solar eclipse in July 1990. VLA synthesis maps at 2.0, 3.5, and 6.2 cm wavelength reveal bright (T b = 0.2 – 2.2 × 106 K), compact ( = 10–40) sources above the penumbra of the leading sunspot while maps at 20 cm wavelength reveal an extended ( 4.5) looplike structure (T b 106 K) between the dominant spots. Total flux and brightness temperature spectra of both components were obtained by the RATAN at nine wavelengths between 1.7 and 21 cm. The relatively-flat spectrum of the extended emission is attributed to the optically thin thermal brems Strahlung of electrons trapped in a magnetic loop at coronal temperatures. Step-spectrum sunspot-associated emission is attributed to thermal gyroresonance radiation at different heights along the leg of a loop joining regions of opposite magnetic polarity. Comparisons with predicted distributions of gyroresonance radiation indicate that the compact sunspot-associated sources lie at heights of h = 2500–17500 km above the photosphere. Although potential fields of sufficient strength appear to exist at coronal heights, differences n the observed and predicted brightness distributions suggest some role for non-potential fields or for an inhomogeneous distribution of electron density or temperature above the sunspot.  相似文献   

10.
Simultaneous observations of a solar limb flare in the X-ray and ultraviolet regions of the spectrum are presented. Temporal and spectral X-ray observations were obtained for the 25–300 keV range while temporal, spectral, and spatial X-ray observations were obtained for the 30–0.3 keV range. The ultraviolet observations were images with a 10 spatial resolution in the lines of O v (T e 2.5 × 105 K) and Fe xxi (T e 1.1 × 107 K). The hard X-ray and O v data indicate that the impulsive phase began in the photosphere or chromosphere and continued for several minutes as material was ejected into the corona. Impulsive excitation was observed up to 30 000 km above the solar surface at specific points in the flare loop. The Fe xxi observations indicate a preheating before the impulsive phase and showed the formation of hot post-flare loops. This later formation was confirmed by soft X-ray observations. These observations provide limitations for current flare models and will provide the data needed for initial conditions in modeling the concurrent coronal transient.  相似文献   

11.
The physical properties in the coronal disturbance (CD) (W90, N25°) associated with an active prominence are investigated on the basis of the intensities and profiles of 5694 Å Caxv and 6702 Å Nixv lines and continuum measured in the eclipse coronal spectra of 31 July, 1981. The spectrograms have been taken with a dispersion of between 7 to 10 Å mm-1 and a solar image of 15 mm in diameter. The following characteristics of the CD have been deduced. The CD occurred cospatially with an active prominence and consisted of two discrete regions with different temperatures penetrating each other. (1) Caxv region: T e= 3.8 × 106 K, the length along the slit of the spectrograph Z 65000 km, the effective line-of-sight length L 20000 km, the average electron density , nonthermal velocities V t= (20–32) km s-1. (2)Nixv-Caxiii region: T e= 2.3 × 106 K, Z 37000 km, L 35000 km, n e 1 × 109 cm-3, V t= (23–30) km s-1. A macroscopic mass motion has been discovered within the Nixv region of the CD from the Doppler shifts of the 6702 Å Nixv line: V r= + 27 km s-1 on the lower and V r= - 12 km s-1 on the upper border of the CD. The average height of the CD was H 0.08 R . The radial velocities in the prominence found from the emission line tilts are + 12 and - 8 km s-1 on its lower and upper borders. A similar picture of the mass motion in the CD and the prominence speaks in favour of an intimate relation between them.  相似文献   

12.
Vršnak  B.  Ruždjak  V.  Brajša  R.  Zlobec  P.  Altaş  L.  Özgüç  A.  Aurass  H.  Schroll  A. 《Solar physics》2000,194(2):285-303
A sample of 47 importance 1 flares whose H emission occurred or protruded over umbrae of major sunspots (so called Z-flares) was studied to investigate characteristics of the associated dm–m radio, microwave and soft X-ray emission as the energy release site permeats into regions of strong magnetic fields. A close time association was found between the microwave burst peak and the `contact' of the H emission with the sunspot umbra. The H emission attained maximum close to or a few minutes after the contact. The soft X-ray bursts were delayed more, attaining maximum 0–10 min after the contact. The onset of bursts in the dm–m wavelength range was associated with the period of growth or the peak of the microwave burst. Two categories of type III and IV bursts could be recognized: the ones starting some ten minutes before the microwave peak, and those that begin close to the microwave burst peak. Type III bursts occur preferably when the microwave burst peaks simultaneously with or after the contact. The results are explained presuming that the contact reveals a permeation of the energy release process into a region of strong magnetic fields, where the process intensifies, and where the accelerated particles have access to magnetic field lines extending to large coronal heights. Different manifestations of the energy release process in various magnetic field topologies are considered to account for the various time sequences observed.  相似文献   

13.
Stewart  R. T.  Howard  R. A.  Hansen  F.  Gergely  T.  Kundu  M. 《Solar physics》1974,36(1):219-231
Observations of a coronal disturbance on 1973 January 11 commencing at 18h01m UT are described. The event is homologous with an earlier disturbance from the same region of the corona. The observations suggest that a cloud of coronal gas containing 4 × 1039 electrons propagated outwards to 5 R behind a piston-driven shock wave travelling at a velocity of 800 to 1200 km s–1.On leave from Division of Radiophysics, CSIRO, Sydney, Australia.  相似文献   

14.
The analysis of a storm of type III solar radio bursts observed in August 1968 between 5 and 0.2 MHz by the RAE-1 satellite has yielded the storm morphology, a possible relation to meter and decameter storms, and an average exciter speed of 0.37 c between 10 and 40 R (Fainberg and Stone, 1970a, b). A continuation of the analysis, based on the apparent dependence of burst drift rate on heliographic longitude of the associated active region, now provides a distance scale between plasma levels in the streamer, an upper limit to the scale size of coronal streamer density inhomogeneities, and an estimate of the solar wind speed. By fixing one level the distance scale is utilized to determine the electron density distribution along the streamer between 10 and 40 R . The streamer density is found to be 16 times that expected for the solar minimum quiet solar wind. An upper limit to the scale size of streamer density inhomogeneities is estimated to be of the order of 1 or 2 solar radii over the same height range. From the progressive delay of the central meridian passage (CMP) of the lower frequency emission, a streamer curvature is inferred which in turn implies an average solar wind speed of 380 km/sec between 14 and 36 R within the streamer.  相似文献   

15.
Willson  Robert F. 《Solar physics》2000,197(2):399-419
Very Large Array (VLA) observations of the Sun at 91 and 400 cm wavelength have been used to investigate the radio signatures of EUV heating events and coronal mass ejections (CMEs) detected by SOHO and TRACE. Our 91 cm observations show the onset of Type I noise storm emission about an hour after an EUV ejection event was detected by EIT and TRACE. The EUV event also coincided with the estimated start time of a CME detected by the LASCO C2 coronagraph, suggesting an association between the production of nonthermal particles and evolving plasma-magnetic field structures at different heights in the corona. On another day, our VLA 400 cm observations reveal weak, impulsive microbursts that occurred sporadically throughout the middle corona. These low-brightness-temperature (T b=0.7–22×106 K) events may be weak Type III bursts produced by beams of nonthermal electrons which excite plasma emission at a height where the local plasma frequency or its first harmonic equals the observing frequency of 74 MHz. For one microburst, the emission was contained in two sources separated by 0.7 R 0, indicating that the electron beams had access to widely-divergent magnetic field lines originating at a common site of particle acceleration. Another 400 cm microburst occurred in an arc-like source lying at the edge of EUV loops that appeared to open outward into the corona, possibly signaling the start of a CME. In most instances the 400 cm microbursts were not accompanied by detectable EUV activity, suggesting that particles that produce the microbursts were independently accelerated in the middle corona, perhaps as the result of some quasi-continuous, large-scale process of energy release.  相似文献   

16.
We report peculiar spectral activity of four large microwave bursts as obtained from the Solar Arrays at the Owens Valley Radio Observatory during observations of X-class flares on 1990 May 24 and 1991 March 7, 8, and 22. Main observational points that we newly uncovered are: (1) flat flux spectra over 1–18 GHz in large amounts of flux ranging from 102 to 104 s.f.u. at the maximum phase, (2) a common evolutionary pattern in which the spectral region of dominant flux shifts from high frequencies at the initial rise to low frequencies at the decaying phase, and (3) unusual time profiles that are impulsive at high frequencies but more extended at lower frequencies.In an attempt to elucidate these new properties, we carry out the model calculations of microwave spectra under assumptions of gyrosynchrotron mechanism and a dipole field configuration to reproduce the observational characteristics. Our results are summarized as follows. First, a flat microwave spectrum reaching up to 102–104 s.f.u. may occur in a case where a magnetic loop is extended to an angular size of (0.7–7.0) × 10–7 sterad and contains a huge number (N(E > 10 keV) 1036– 1038) of nonthermal electrons with power-law index 3–3.5 over the entire volume. Second, the observed spectral activity could adequately be accounted for by the shrinking of the region of nonthermal electrons to the loop top and by the softening of the power-law spectrum of electrons in a time scale ranging 3–45 min depending on the event. Third, the extended microwave activity at lower frequencies is probably due to electrons trapped in the loop top where magnetic fields are low. Finally, we clarify the physical distinction between these large, extended microwave bursts and the gradual/post-microwave bursts often seen in weak events, both of which are characterized by long-period activity and broadband spectra.  相似文献   

17.
Observations of the post-flare loop system formed after the east limb proton flare of 12 August 1970 include (a) sets of filtergrams from which photographic subtractions have been constructed and (b) spectra from which a distribution of electron density as a function of temperature for three coronal regions are derived. The filtergrams show no indications of radial velocities in excess of 80 km/s. The spectra indicate an increase in density at the tops of the loops with most of the material at a relatively cool temperature: N 6.0 × 1010, T = 3 × 105K. The distribution functions obtained for areas just above and just below loops indicate a lower electron density and the presence of material at high temperatures, N 2.0 × 1010 and T 2.6 × 106K (above the loops) and T e > > 4.4 × 106K for material below the loops.  相似文献   

18.
A photometric and colorimetric analysis of a color picture of the very inner solar corona, near the South pole region, is performed. Dimensions and average electron densities of both chromospheric and very fine resolved coronal spikes are deduced. For the coronal spike a half width of 1.67 is measured, the estimate of electron density yields n e = 1010 cm–3. Some conclusions are attempted on the light of a simultaneously observed spectrum of the same region which appeared to be a disappearing coronal hole. The observations seem to support the concept of a striated corona.On leave from Institut d'Astrophysique, Paris as NRC Post-Doctoral Research Assistant.  相似文献   

19.
The mass ejection event on 17 January 1974 was a classsic spray associated with a flare from an over the limb region. The structure of the accompanying coronal transient was typical of well-observed mass ejections, with coronal loops and a forerunner racing ahead of the rising prominence. Observations in H, soft X-ray, white light and radio wavelengths allowed us to track both cool (T e104 K) and hot (T e>106 K) material from limb de-occultation to 6R . We determined the kinematics and thermodynamics of the internal material, and the overall mass and energy budget of the event. The majority of the mass and energy was linked with coronal material, but at least 20% of the ejected mass originated as near-surface prominence material. We conclude that the upper part of the prominence was being continuously heated to coronal temperatures as it rose through the corona. Above 2R nearly all of the material was completely ionized. The primary acceleration of the prominence occurred below 3.5 × 104 km with all of the material exhibiting constant velocity above 1.5R . We found evidence that a moving type IV burst, indicative of strong magnetic fields, was associated with the upper part of the prominence. Our observations suggest that both the cool and hot material were acted upon by a similar, continuous force(s) to great heights and over a long time interval. We find that the observations are most consistent with magnetic propulsion models of coronal transients.  相似文献   

20.
The relevant data for the known 147 pulsars are presented in graphical and tabular forms. Various data correlations are discussed, and a detailed analysis of pulsar dispersion measures and distances is given. The range of the electron densities in the diffuse interstellar medium is found to be 0.01 cm–3n e0.1 cm–3, and n e0.03 cm–3. The dispersion scale height for pulsars is found to be 5.9±0.7 pc cm–3 implying a linear scale height of 200 pc, which is much smaller than the electron scale height of our Galaxy.Astrophysics and Space Science Review Paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号