首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have compared solutions obtained from the general 13-moment system of transport equations with those obtained from the standard collision-dominated transport equations for conditions corresponding to low speed thermal proton flow in the topside ionosphere in the vicinity of the plasmapause. In general, the solutions obtained from the 13-moment system of equations, which allows for different species temperatures parallel and perpendicular to the geomagnetic field and non-classical heat flows, are different from those obtained from the standard transport equations, which account for isotropic temperatures and classical collision-dominated heat flows. Within the plasmasphere, where the electron density is high, the differences between the 13-moment and standard solutions are typically small. However, outside the plasmasphere where the electron density is lower and in the ionosphere above SAR-arcs, where substantial electron and proton heat flows occur, there can be significant differences between the 13-moment and standard solutions. Generally, the differences are much larger for the protons than for the electrons. Our 13-moment solutions indicate that the proton and electron distributions are anisotropic with the difference between parallel and perpendicular temperatures approaching 4000 K for the protons and 2500 K for the electrons in the ionosphere above SAR-arcs. Also, above SAR-arcs the 13-moment heat flow equations yield proton heat flows as much as a factor of 10 lower and electron heat flows as much as a factor of 2 lower than those predicted by the classical collision-dominated heat flow expressions for the same boundary conditions.  相似文献   

2.
A general theory of rotational discontinuities is developed and the changes in the components of the plasma pressure, p| and p, and in the magnetic induction, B, are found. For a given value of λ=(p|p) 4πμ/B2 upstream only a limited range of downstream anisotropies are possible. If λ>0.6 upstream then isotropy is not possible downstream. Some special solutions are analysed and the identification of rotational discontinuities is the solar wind is discussed.  相似文献   

3.
The process of magnetic reconnection in anisotropic plasmas is studied numerically using a 2-dimensional, 3-component hybrid simulation. The results of the calculation show that, when the plasma pressure in the direction perpendicular to magnetic field is larger than that in the parallel direction (e.g. P/P = 1.5), instability may greatly increase, speeding up the rate of reconnection. When P is smaller than P, (e.g., when P/P = 0.6), fire hose instability appears, which will restrain the tearing mode instability and the process of magnetic reconnection.  相似文献   

4.
Observations, from the Apollo 16 Spacecraft, in lunar orbit, of the total radiance of the K + F corona, from 3 R to 55 R are presented and discussed.

The logarithmic slope of the K + F coronal radiance, in the region r > 20 R, is found to be n = 1.93, slightly less steep than previous determinations. The photometric axis of the radiance is found to be displaced 3 ± 1° north of the ecliptic, for the region r > 20 R, and this displacement is interpreted as an annual variation due to non-coincidence of the ecliptic and the symmetry axis of the zodiacal cloud.  相似文献   


5.
Auroral ion velocity distributions for a polarization collision model   总被引:1,自引:0,他引:1  
We have calculated the effect that convection electric fields have on the velocity distribution of auroral ions at the altitudes where the plasma is weakly-ionized and where the various ion-neutral collision frequencies are much smaller than the ion cyclotron frequencies, i.e. between about 130 and 300 km. The appropriate Boltzmann equation has been solved by expanding the ion velocity distribution function in a generalized orthogonal polynomial series about a bi-Maxwellian weight factor. We have retained enough terms in the series expansion to enable us to obtain reliable quantitative results for electric field strengths as large as 90 mV m?1. Although we have considered a range of ion-neutral scattering mechanisms, our main emphasis has been devoted to the long-range polarization interaction. In general, we have found that to lowest order the ion velocity distribution is better represented by a two-temperature or bi-Maxwellian distribution than by a one-temperature Maxwellian, with there being different ion temperatures parallel and perpendicular to the geomagnetic field. However, the departures from this zeroth-order bi-Maxwellian distribution become significant when the ion drift velocity approaches (or exceeds) the neutral thermal speed.  相似文献   

6.
In this paper we have derived a set of transport equations for thermal electron component of the ionospheric plasma in the presence of an anisotropy of the electron energy distribution. Expressions are calculated in a 16-moment approximation for the moments of integrals of elastic and inelastic collisions of thermal electrons with basic neutral ionospheric components. The obtained moments determine variations of the hydrodynamical parameters, such as macroscopic velocity, pressure tensor, viscosity tensor, heat fluxes in respective equations due to collisions. The results have been obtained for an arbitrary degree of electron temperature anisotropy.  相似文献   

7.
The expression of anisotropic temperature ion distribution function under the 13-moment approximation is obtained by solving a set of moment equations based on the Boltzmann equation for a relaxation collision model and with consideration of the anisotropic temperature ion distribution. And the incoherent scatter spectrum with an anisotropic temperature ion distribution is simulated in different directions based on the electromagnetic radiation theory of Sheffield. The effects of different electrical field strengths, ratios of electron temperature to ion temperature, and ion-neutral collision frequencies on the incoherent scatter spectrum are all discussed. Finally, the value of theoretical simulation is compared with the measured value of incoherent scattering spectrum. The result show that the incoherent scatter spectrum of ions seriously deviates from the form of the Maxwellian distribution in the equilibrium state. This phenomenon can be attributed to the effects of anisotropic temperature ion distribution, the larger convection electric field, and other factors in high latitude ionosphere.  相似文献   

8.
The energy distribution of thermal electrons in the ionospheric plasma was measured by means of a glass-sealed Langmuir probe. Second derivatives of the v-i curves were obtained electrically by using the second harmonic method. The height of the measurement was from 103 to 360 km.Above 130 km the energy distribution of thermal electrons were Maxwellian enough to evaluate electron temperature. Below 130 km the electrons appeared to consist of two groups of electrons of different temperatures. Because of the bi-Maxwellian energy distribution, the apparent electron temperature obtained from the above method differed from that of an electron temperature probe.  相似文献   

9.
The effect of cold plasma injection on whistler mode instability has been studied separately for a bi-Maxwellian and a loss-cone hackground plasma with perpendicular AC electric field. The cold plasma is described by a simple Maxwellian distribution, whereas a generalized distribution function with index j that reduces to a bi-Maxwellian for j = 0 and to a loss-cone for j = 1 has been derived for a plasma in the presence of a perpendicular AC electric field, to form a hot/warm background. The dispersion relation is obtained using the method of characteristic solutions and kinetic approach. An expression for the growth rate of a system with added cold plasma injection has been calculated. Results of sample theoretical calculations for representative values of parameters suited to the magnetosphere of Uranus has been obtained. The salient features of the analysis and the results obtained in both cases have been compared and discussed. It is inferred that it is not the magnitude but the frequency of the AC field which influences the growth rate and a loss-cone background plasma has a triggering effect on the growth rate, increasing the value of the real frequency and maximum growth rate by an order of magnitude. These results may go a long way to enable one to get a better understanding of whistlers and diagnostics of plasma parameters in the Uranian magnetosphere.  相似文献   

10.
The high-velocity tail of the electron distribution has been calculated by solving the high-velocity form of the Landau equation for a thermal structure representative of a flaring coronal loop. These calculations show an enhancement of the tail population above Maxwellian for electrons moving down the temperature gradient. In the transition region they also show enhancement at higher velocities for electrons with all pitch angles, except those streaming up the gradient within 45° of the vertical direction. These results have been used to test the reliability of the BGK approximation. The comparison shows that the BGK technique can estimate contributions to the heat flux from the high-energy tail, to within an order of magnitude.  相似文献   

11.
Propagation of torsional Alfvén waves in the magnetosphere is examined for two models of the Earth's magnetic field, one where the field is toroidal, the other being a dipole field. Both models yield magnetically guided torsional wave modes which are strongly localized in all directions transverse to the steady magnetic field. The transverse structure is determined by a self-consistent solution of the ideal MHD equations. It is shown that the torsional wave is guided even when b is finite, where b is the component of the wave magnetic field in a direction parallel to the steady magnetic field.  相似文献   

12.
Using an exosphere model which includes the effects of rotation and temperature and density variations at the exobase, we determine kinetic temperature and density distributions for planetary exospheres in general and terrestrial O, He and H in particular, the latter being based on empirical models for density and temperature variations at exobase altitudes. We examine the effects of energy flow and confirm Fahr's suggestion that the lateral energy flow at the exobase should be important for the temperature distributions above the base. Considering uniform density and sinusoidal temperature variations at the base, we find that temperatures decrease with altitude above the diurnal temperature maximum Tmax at the base. On the other hand, above the diurnal temperature minimum Tmin at the base, the temperatures increase from the base to peak values (except for low values of mMG/kT0) and then decrease above the peaks, tending to approach the values above Tmax. The corresponding densities near the base, above Tmin, decrease with altitude more rapidly than above Tmax but exhibit considerable increases in their scale heights in the vicinity of their temperature peaks, at which points the densities begin to approach those above Tmax. In the converse case, with uniform base temperature and sinusoidal base density variations, the exospheric density and temperature distributions above the diurnal density maximum Nmax and minimum Nmin at the base result in similar characteristics to those above Tmax and Tmin, respectively. Applying the model to terrestrial O, He and H, we find that multiple exospheric temperatures should occur wherein temperatures above Tmax decrease less rapidly with altitude for increasing species mass. On the other hand, O and He temperatures increase with altitude above Tmin to peak values near 5000 km and then decrease above the peaks while H temperatures decrease with altitude throughout. We also examine the effects of the terrestrial exospheric H temperature distribution on optical depths for Lyman alpha absorption and find that such temperature variation may be important for radiative transfer calculations when the depths are greater than unity and satellite orbits are unimportant.  相似文献   

13.
We investigate how the presence of a non-thermal tail beyond a Maxwellian electron distribution affects the synchrotron process as well as Comptonization in plasmas with parameters typical for accretion flows on to black holes. We find that the presence of the tail can significantly increase the net (after accounting for self-absorption) cyclo-synchrotron emission of the plasma, which then provides seed photons for Compton upscattering. Thus, the luminosity in the thermally Comptonized spectrum is enhanced as well. The importance of these effects increases with both increasing Eddington ratio and black hole mass. The enhancement of the Comptonized synchrotron luminosity can be as large as ∼103 and ∼105 for stellar and supermassive black holes, respectively, when the energy content in the non-thermal tail is 1 per cent.
The presence of the tail only weakly hardens the thermal Comptonization spectrum but it leads to the formation of a high-energy tail beyond the thermal cut-off, which two effects are independent of the nature of the seed photons. Since observations of high-energy tails in Comptonization spectra can constrain the non-thermal tails in the electron distribution and thus the Comptonized synchrotron luminosity, they provide upper limits on the strength of magnetic fields in accretion flows. In particular, the measurement of an MeV tail in the hard state of Cyg X-1 by McConnell et al. implies the magnetic field strength in this source to be at most an order of magnitude below equipartition.  相似文献   

14.
Using a dipole plus tail magnetic field model, H+, He++ and O 16 +6 ions are followed numerically, backward in time, from an output plane perpendicular to the axis of the geomagnetic tail, to their point of entrace to the magnetosphere as solar wind particles in the magnetosheath. An adiabatic or guiding center approximation is used in regions where the particles do not interact directly with the current sheet. A Maxwellian distribution with bulk flow is assumed for solar wind particles in the magnetosheath. Bulk velocity, density, and temperature along the magnetopause are taken from the fluid calculations of Spreiter. Using Liouville's theorem, and varying initial conditions at the output plane, the distribution function is found as a function of energy and pitch angle at the output plane. These results are then mapped to the auroral ionosphere using guiding center theory. Results show that the total precipitation rate is sufficient only for particles which enter the magnetosphere near the edges of the current sheet. Small pitch angles are favored at the output plane, but mappings to the auroral ionosphere indicate isotropic pitch angle distributions are favored with some peaking of the fluxes parallel or at other angles to the field lines. Perpendicular auroral pitch angle anisotropies are at times produced by the current sheet acceleration mechanism. Therefore, caution must be used in interpreting all such observations as ‘loss cone-trapping’ distributions. Energy spectra appear to be quite narrow for small cross-tail electric fields, and a little broader as the electric field increases. Comparisons of these results with experimental observations are presented.  相似文献   

15.
Within a framework of the two-fluids approximation, basic modes constituting hydromagnetic coupling oscillations in non-uniform, finite-β plasmas are examined. It is shown that the oscillations consist of a coupling between a localized mode and a propagating one, and a strong peak appears at a resonance point. In the case of isothermal plasma (Te = Ti), there are two localized modes, the Alfvén (or drift Alfvén) and the ion drift modes, and a propagating mode being known as the fast magnetosonic wave. Coupling oscillations associated with the Alfvén mode exhibit a nearly incompressible character, whereas those with the ion drift mode are compressional and diamagnetic. Furthermore, the slow magnetosonic wave also couples with the localized mode in the case of Te > Ti. Based on characteristics of these oscillations, the origin of geomagnetic pulsations is discussed in connection with the distribution of plasma parameters in the outer magnetosphere.  相似文献   

16.
Using the proper motion and parallax data for 1011 O-B stars in the Hipparcos Catalogue we have derived the Oort constants, A = 17.60 ± 0.21 (km/s)/kpc, B = −14.62 ± 0.20 (km/s)/kpc, and a solar velocity V = 16.7 ± 0.10 km/s in the direction l = 45.3° ± 2.8°, b = 21.0° ± 2.3°. For a galactocentric distance of the sun of R0 = 8.5 kpc, we then get a galactic rotational velocity of the solar neighbourhood of Vlsr = 273.9 km/s, obviously much higher than the IAU published value of 220 km/s. We have investigated the cause for this difference.  相似文献   

17.
A quantitative theoretical analysis of electric field and current distributions in the ionosphere is given assuming certain time variable convection field profiles at an altitude of 1250 km. A number of idealized assumptions regarding the ionospheric characteristics are defined and discussed. A qualitative discussion of a quasi-stationary configuration with an approximately curl free electric field is also given. Geomagnetically field aligned current densities i of the order 10−5−10−4A/m2 are consistent with quite reasonable assumptions about the convection field E. Oscillations in E with periods of the order of 10 sec should readily be generated when σ is large. In the quasi-stationary case there may be a mechanism that strengthens and concentrates i locally under certain conditions. It is found that a number of recent high altitude observations of convection field reversals may be consistent with large potential drops along the magnetic field lines. The solutions obtained as well as some of the basic assumptions are compared with observations.  相似文献   

18.
Temporal evolution of whistler instability has been studied due to cold plasma injectionin the presence of a perpendicular AC electric field in the magnetosphere of Uranus. Ageneralized distribution function with index j, which is a reducible to a bi-Maxwellianfor j = 0 and to a loss-cone for j = 1, for a plasma in the presence of a perpendicularAC electric field, has been derived from a hot/warm background plasma and atime-dependent plasma described by a simple Maxwellian distribution has been considered to represent the injected cold plasma. An expression for the growth rate of a system with added time-dependent cold plasma injection has been calculated using the method of characteristics and kinetic approach The results obtained for representative value of the parameters suited to the Uranian magnetosphere in both cases have been compared and discussed. It is inferred that the temperature anisotropy remains the major source of free energy whereas a loss-cone background acts as an additional source of free energy for the instability. It is not the magnitude but the frequency of the AC field which Influences the growth rate. In comparison to the Uranian magnetosphere this effect is more significant in Earth's magnetosphere. As the ionisation time of the time-dependent injected cold plasma increases, the growth rate goes on increasing, this effect being much greater in a loss-cone background in comparison to a bi-Maxwellian background plasma time-dependence of thecold plasma has been considered since it represents a more realistic situation in injection experiments.  相似文献   

19.
On the basis of radial velocity and Hipparcos proper motion data, we have analyzed the galactic kinematics of classical Cepheids. Using the 3-D Ogorodnikov-Milne model we have determined the rotational velocity of the Galaxy to be V0 = 240.5 ± 10.2 km/s, on assuming a glactocentric distance of the Sun of R0 = 8.5 kpc. The results clearly indicate a contracting motion in the solar neighbourhood of (∂Vθ∂θ)/R = −2.60 ± 1.07 km s−1 kpc−1, along the direction of galactic rotation. Possible reason for this motion is discussed. The solar motion found here is S = 18.78 ± 0.86 km/s in the direction l = 54.4° ± 2.9° and b = +26.6° ± 2.6°.  相似文献   

20.
A study is made of the free convection in hydromagnetic flows through a porous medium of a heat generating fluid past an infinite vertical porous plate. A strong magnetic field is imposed in a direction which is perpendicular to the free stream and makes an alge to the vertical direction. The governing equations for the hydromagnetic fluid flow and the heat transfer are solved analytically. The influence of Hall currents, the permeabilityK and the inclination upon the velocity field are shown in figures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号