首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evidence shows that massive black holes reside in most local galaxies. Studies have also established a number of relations between the MBH mass and properties of the host galaxy such as bulge mass and velocity dispersion. These results suggest that central MBHs, while much less massive than the host (~0.1%), are linked to the evolution of galactic structure. In hierarchical cosmologies, a single big galaxy today can be traced back to the stage when it was split up in hundreds of smaller components. Did MBH seeds form with the same efficiency in small proto-galaxies, or did their formation had to await the buildup of substantial galaxies with deeper potential wells? I briefly review here some of the physical processes that are conducive to the evolution of the massive black hole population. I will discuss black hole formation processes for ‘seed’ black holes that are likely to place at early cosmic epochs, and possible observational tests of these scenarios.  相似文献   

2.
We investigate the evolution of high-redshift seed black hole masses at late times and their observational signatures. The massive black hole seeds studied here form at extremely high redshifts from the direct collapse of pre-galactic gas discs. Populating dark matter haloes with seeds formed in this way, we follow the mass assembly of these black holes to the present time using a Monte Carlo merger tree. Using this machinery, we predict the black hole mass function at high redshifts and at the present time, the integrated mass density of black holes and the luminosity function of accreting black holes as a function of redshift. These predictions are made for a set of three seed models with varying black hole formation efficiency. Given the accuracy of present observational constraints, all three models can be adequately fitted. Discrimination between the models appears predominantly at the low-mass end of the present-day black hole mass function which is not observationally well constrained. However, all our models predict that low surface brightness, bulgeless galaxies with large discs are least likely to be sites for the formation of massive seed black holes at high redshifts. The efficiency of seed formation at high redshifts has a direct influence on the black hole occupation fraction in galaxies at   z = 0  . This effect is more pronounced for low-mass galaxies. This is the key discriminant between the models studied here and the Population III remnant seed model. We find that there exist a population of low-mass galaxies that do not host nuclear black holes. Our prediction of the shape of the M BH–σ relation at the low-mass end is in agreement with the recent observational determination from the census of low-mass galaxies in the Virgo cluster.  相似文献   

3.
The growth of supermassive black holes by merging and accretion in hierarchical models of galaxy formation is studied by means of Monte Carlo simulations. A tight linear relation between masses of black holes and masses of bulges arises if the mass accreted by supermassive black holes scales linearly with the mass-forming stars and if the redshift evolution of mass accretion tracks closely that of star formation. Differences in redshift evolution between black hole accretion and star formation introduce a considerable scatter in this relation. A non-linear relation between black hole accretion and star formation results in a non-linear relation between masses of remnant black holes and masses of bulges. The relation of black hole mass to bulge luminosity observed in nearby galaxies and its scatter are reproduced reasonably well by models in which black hole accretion and star formation are linearly related but do not track each other in redshift. This suggests that a common mechanism determines the efficiency for black hole accretion and the efficiency for star formation, especially for bright bulges.  相似文献   

4.
The overabundance of Mg relative to Fe, observed in the nuclei of bright ellipticals, and its increase with galactic mass, poses a serious problem for all current models of galaxy formation. Here, we improve on the one-zone chemical evolution models for elliptical galaxies by taking into account positive feedback produced in the early stages of supermassive central black hole growth. We can account for both the observed correlation and the scatter if the observed anti-hierarchical behaviour of the AGN population couples to galaxy assembly and results in an enhancement of the star formation efficiency which is proportional to galactic mass. At low and intermediate galactic masses, however, a slower mode for star formation suffices to account for the observational properties.  相似文献   

5.
An empirically motivated model is presented for accretion-dominated growth of supermassive black holes (SMBH) in galaxies, and the implications are studied for the evolution of the quasar population in the Universe. We investigate the core aspects of the quasar population, including space density evolution, evolution of the characteristic luminosity, plausible minimum masses of quasars, the mass function of SMBH and their formation epoch distribution. Our model suggests that the characteristic luminosity in the quasar luminosity function arises primarily as a consequence of a characteristic mass scale above which there is a systematic separation between the black hole and the halo merging rates. At lower mass scales, black hole merging closely tracks the merging of dark haloes. When combined with a declining efficiency of black hole formation with redshift, the model can reproduce the quasar luminosity function over a wide range of redshifts. The observed space density evolution of quasars is well described by formation rates of SMBH above  ∼108  M  . The inferred mass density of SMBH agrees with that found independently from estimates of the SMBH mass function derived empirically from the quasar luminosity function.  相似文献   

6.
We investigate the correlation of star formation quenching with internal galaxy properties and large-scale environment (halo mass) in empirical data and theoretical models. We make use of the halo-based group catalogue of Yang and collaborators, which is based on the Sloan Digital Sky Survey. Data from the Galaxy evolution explorer are also used to extract the recent star formation rate. In order to investigate the environmental effects, we examine the properties of 'central' and 'satellite' galaxies separately. For central galaxies, we are unable to conclude whether star formation quenching is primarily connected with halo mass or stellar mass, because these two quantities are themselves strongly correlated. For satellite galaxies, a nearly equally strong dependence on halo mass and stellar mass is seen. We make the same comparison for five different semi-analytic models based on three independently developed codes. We find that the models with active galactic nuclei feedback reproduce reasonably well the dependence of the fraction of central red and passive galaxies on halo mass and stellar mass. However, for satellite galaxies, the same models badly overproduce the fraction of red/passive galaxies and do not reproduce the empirical trends with stellar mass or halo mass. This satellite overquenching problem is caused by the too-rapid stripping of the satellites' hot gas haloes, which leads to rapid strangulation of star formation.  相似文献   

7.
We demonstrate that the luminosity function of the recently detected population of actively star-forming galaxies at redshift z  = 3 and the B -band luminosity function of quasi-stellar objects (QSOs) at the same redshift can both be matched with the mass function of dark matter haloes predicted by standard variants of hierarchical cosmogonies for lifetimes of optically bright QSOs anywhere in the range 106 to 108 yr. There is a strong correlation between the lifetime and the required degree of non-linearity in the relation between black hole and halo mass. We suggest that the mass of supermassive black holes may be limited by the back-reaction of the emitted energy on the accretion flow in a self-gravitating disc. This would imply a relation of black hole to halo mass of the form M bh ∝  v 5halo ∝  M 5/3halo and a typical duration of the optically bright QSO phase of a few times 107 yr. The high integrated mass density of black holes inferred from recent black hole mass estimates in nearby galaxies may indicate that the overall efficiency of supermassive black holes for producing blue light is smaller than previously assumed. We discuss three possible accretion modes with low optical emission efficiency: (i) accretion at far above the Eddington rate, (ii) accretion obscured by dust, and (iii) accretion below the critical rate leading to an advection-dominated accretion flow lasting for a Hubble time. We further argue that accretion with low optical efficiency might be closely related to the origin of the hard X-ray background and that the ionizing background might be progressively dominated by stars rather than QSOs at higher redshift.  相似文献   

8.
The evolution in X-ray properties of early-type galaxies is largely unconstrained. In particular, little is known about how, and if, remnants of mergers generate hot gas haloes. Here we examine the relationship between X-ray luminosity and galaxy age for a sample of early-type galaxies. Comparing normalized X-ray luminosity to three different age indicators, we find that L X L B increases with age, suggesting an increase in X-ray halo mass with time after the last major star formation episode of a galaxy. The long-term nature of this trend, which appears to continue across the full age range of our sample, poses a challenge for many models of hot halo formation. We conclude that models involving a declining rate of type Ia supernovae, and a transition from outflow to inflow of the gas originally lost by galactic stars, offer the most promising explanation for the observed evolution in X-ray luminosity.  相似文献   

9.
Void regions of the Universe offer a special environment for studying cosmology and galaxy formation, which may expose weaknesses in our understanding of these phenomena. Although galaxies in voids are observed to be predominately gas rich, star forming and blue, a subpopulation of bright-red void galaxies can also be found, whose star formation was shutdown long ago. Are the same processes that quench star formation in denser regions of the Universe also at work in voids?
We compare the luminosity function of void galaxies in the 2dF Galaxy Redshift Survey, to those from a galaxy formation model built on the Millennium simulation. We show that a global star formation suppression mechanism in the form of low-luminosity 'radio-mode' active galactic nuclei (AGN) heating is sufficient to reproduce the observed population of void early types. Radio-mode heating is environment independent other than its dependence on dark matter halo mass, where, above a critical mass threshold of approximately   M vir∼ 1012.5 M  , gas cooling on to the galaxy is suppressed and star formation subsequently fades. In the Millennium simulation, the void halo mass function is shifted with respect to denser environments, but still maintains a high-mass tail above this critical threshold. In such void haloes, radio-mode heating remains efficient and red galaxies are found; collectively these galaxies match the observed space density without any modification to the model. Consequently, galaxies living in vastly different large-scale environments but hosted by haloes of similar mass are predicted to have similar properties, consistent with observations.  相似文献   

10.
11.
A simple analytical model is used to calculate the X-ray heating of the intergalactic medium (IGM) for a range of black hole masses. This process is efficient enough to decouple the spin temperature of the IGM from the cosmic microwave background (CMB) temperature and produce a differential brightness temperature of the order of ∼ 5–20 mK out to distances as large as a few comoving Mpc, depending on the redshift, black hole mass and lifetime. We explore the influence of two types of black holes, those with and without ionizing ultraviolet radiation. The results of the simple analytical model are compared to those of a full spherically symmetric radiative transfer code. Two simple scenarios are proposed for the formation and evolution of black hole mass density in the Universe. The first considers an intermediate mass black hole that form as an end-product of pop III stars, whereas the second considers supermassive black holes that form directly through the collapse of massive haloes with low spin parameter. These scenarios are shown not to violate any of the observational constraints, yet produce enough X-ray photons to decouple the spin temperature from that of the CMB. This is an important issue for future high-redshift 21-cm observations.  相似文献   

12.
We present a simplified analytic approach to the problem of the spiralling of a massive body orbiting within the dark halo of a dwarf galaxy. This dark halo is treated as the core region of a King distribution of dark matter particles, in consistency with the observational result of dwarf galaxies having solid-body rotation curves. Thus we derive a simple formula which provides a reliable and general first-order solution to the problem, totally analogous to the one corresponding to the dynamical friction problem in an isothermal halo. This analytic approach allows a clear handling and a transparent understanding of the physics and the scaling of the problem. A comparison with the isothermal case shows that in the core regions of a King sphere, dynamical friction proceeds at a different rate, and is sensitive to the total core radius. Thus, in principle, observable consequences may result. In order to illustrate the possible effects, we apply this formula to the spiralling of globular cluster orbits in dwarf galaxies, and show how present-day globular cluster systems could, in principle, be used to derive better limits on the structure of dark haloes around dwarf galaxies, when the observational situation improves. As a second application, we study the way a massive black hole population forming a fraction of these dark haloes would gradually concentrate towards the centre, with a consequent deformation of an originally solid-body rotation curve. This effect allows us to set limits on the fraction/mass of any massive black hole minority component of the dark haloes of dwarf galaxies. In essence, we take advantage of the way the global matter distribution fixes the local distribution function for the dark matter particles, which in turn determines the dynamical friction problem.  相似文献   

13.
We use a semi-analytic model of galaxy formation to study signatures of large-scale modulations in the star formation (SF) activity in galaxies. In order to do this, we carefully define local and global estimators of the density around galaxies. The former are computed using a voronoi tessellation technique and the latter are parametrized by the normalized distance to haloes and voids, in terms of the virial and void radii, respectively. As a function of local density, galaxies show a strong modulation in their SF, a result that is in agreement with those from several authors. When taking subsamples of equal local density at different large-scale environments, we find relevant global effects whereby the fraction of red galaxies diminishes for galaxies in equal local density environments farther away from clusters and closer to voids. In general, the semi-analytic simulation is in good agreement with the available observational results, and offers the possibility to disentangle many of the processes responsible for the variation of galaxy properties with the environment; we find that the changes found in samples of galaxies with equal local environment but different distances to haloes or voids come from the variations in the underlying mass function of dark matter (DM) haloes. There is an additional possible effect coming from the host DM halo ages, indicating that halo assembly also plays a small but significant role (1.14σ) in shaping the properties of galaxies, and in particular, hints at a possible spatial correlation in halo/stellar mass ages. An interesting result comes from the analysis of the coherence of flows in different large-scale environments of fixed local densities; the neighbourhoods of massive haloes are characterized by lower coherences than control samples, except for galaxies in filament-like regions, which show highly coherent motions.  相似文献   

14.
15.
The time-scale for galaxies within merging dark matter haloes to merge with each other is an important ingredient in galaxy formation models. Accurate estimates of merging time-scales are required for predictions of astrophysical quantities such as black hole binary merger rates, the build-up of stellar mass in central galaxies and the statistical properties of satellite galaxies within dark matter haloes. In this paper, we study the merging time-scales of extended dark matter haloes using N -body simulations. We compare these results to standard estimates based on the Chandrasekhar theory of dynamical friction. We find that these standard predictions for merging time-scales, which are often used in semi-analytic galaxy formation models, are systematically shorter than those found in simulations. The discrepancy is approximately a factor of 1.7 for M sat/ M host≈ 0.1 and becomes larger for more disparate satellite-to-host mass ratios, reaching a factor of ∼3.3 for M sat/ M host≈ 0.01. Based on our simulations, we propose a new, easily implementable fitting formula that accurately predicts the time-scale for an extended satellite to sink from the virial radius of a host halo down to the halo's centre for a wide range of M sat/ M host and orbits. Including a central bulge in each galaxy changes the merging time-scale by ≲10 per cent. To highlight one concrete application of our results, we show that merging time-scales often used in the literature overestimate the growth of stellar mass by satellite accretion by ≈40 per cent, with the extra mass gained in low mass ratio mergers.  相似文献   

16.
The mass density of massive black holes observed locally is consistent with the hard X-ray background provided that most of the radiation produced during their growth was absorbed by surrounding gas. A simple model is proposed here for the formation of galaxy bulges and central black holes in which young spheroidal galaxies have a significant distributed component of cold dusty clouds, which accounts for the absorption. The central accreting black hole is assumed to emit both a quasar-like spectrum, which is absorbed by the surrounding gas, and a slow wind. The power in both is less than the Eddington limit for the black hole. The wind, however, exerts the most force on the gas and, as earlier suggested by Silk & Rees, when the black hole reaches a critical mass it is powerful enough to eject the cold gas from the galaxy, so terminating the growth of both black hole and galaxy. In the present model this point occurs when the Thomson depth in the surrounding gas has dropped to about unity and results in the mass of the black hole being proportional to the mass of the spheroid, with the normalization agreeing with that found for local galaxies by Magorrian et al. for reasonable wind parameters. The model predicts a new population of hard X-ray and submm sources at redshifts above 1, which are powered by black holes in their main growth phase.  相似文献   

17.
The merging history of dark matter haloes is computed with the Merging Cell Model proposed by Rodrigues & Thomas. While originally discussed in the case of scale-free power spectra, it is developed and tested here in the framework of the cold dark matter cosmology. The halo mass function, the mass distribution of progenitors and child haloes, as well as the probability distribution of formation times, have been computed and compared with the available analytic predictions. The halo autocorrelation function has also been obtained (a first for a semi-analytic merging tree), and tested against analytic formulae. An overall good agreement is found between results of the model, and the predictions derived from the Press & Schechter theory and its extensions. More severe discrepancies appear when formulae that better describe N -body simulations are used for comparison. In many instances, the model can be a useful tool for following the hierarchical growth of structures. In particular, it is suitable for addressing the issue of the formation and evolution of galaxy clusters, as well as the population of Lyman-break galaxies at high redshift, and their clustering properties.  相似文献   

18.
Galaxies are believed to be in one-to-one correspondence with simulated dark matter subhaloes. We use high-resolution N -body simulations of cosmological volumes to calculate the statistical properties of subhalo (galaxy) major mergers at high redshift ( z = 0.6–5). We measure the evolution of the galaxy merger rate, finding that it is much shallower than the merger rate of dark matter host haloes at   z > 2.5  , but roughly parallels that of haloes at   z < 1.6  . We also track the detailed merger histories of individual galaxies and measure the likelihood of multiple mergers per halo or subhalo. We examine satellite merger statistics in detail: 15–35 per cent of all recently merged galaxies are satellites, and satellites are twice as likely as centrals to have had a recent major merger. Finally, we show how the differing evolution of the merger rates of haloes and galaxies leads to the evolution of the average satellite occupation per halo, noting that for a fixed halo mass, the satellite halo occupation peaks at   z ∼ 2.5  .  相似文献   

19.
Direct and indirect observational evidence leads to the conclusion that high-redshift QSOs did shine in the core of early-type protogalaxies during their main episode of star formation. Exploiting this fact, we derive the rate of formation of this kind of stellar system at high redshift by using the QSO luminosity function. The elemental proportions in elliptical galaxies, the descendants of the QSO hosts, suggest that the star formation was more rapid in more massive objects. We show that this is expected to occur in dark matter haloes, when the processes of cooling and heating are considered. This is also confirmed by comparing the observed submm counts with those derived by coupling the formation rate and the star formation rate of the spheroidal galaxies with a detailed model for their SED evolution. In this scenario SCUBA galaxies and Lyman-break galaxies are early-type protogalaxies forming the bulk of their stars before the onset of QSO activity.  相似文献   

20.
We study the formation of galaxies in a Λ cold dark matter (ΛCDM) universe using high-resolution hydrodynamical simulations with a multiphase treatment of gas, cooling and feedback, focusing on the formation of discs. Our simulations follow eight isolated haloes similar in mass to the Milky Way and extracted from a large cosmological simulation without restriction on spin parameter or merger history. This allows us to investigate how the final properties of the simulated galaxies correlate with the formation histories of their haloes. We find that, at   z = 0  , none of our galaxies contains a disc with more than 20 per cent of its total stellar mass. Four of the eight galaxies nevertheless have well-formed disc components, three have dominant spheroids and very small discs, and one is a spheroidal galaxy with no disc at all. The   z = 0  spheroids are made of old stars, while discs are younger and formed from the inside-out. Neither the existence of a disc at   z = 0  nor the final disc-to-total mass ratio seems to depend on the spin parameter of the halo. Discs are formed in haloes with spin parameters as low as 0.01 and as high as 0.05; galaxies with little or no disc component span the same range in spin parameter. Except for one of the simulated galaxies, all have significant discs at   z ≳ 2  , regardless of their   z = 0  morphologies. Major mergers and instabilities which arise when accreting cold gas is misaligned with the stellar disc trigger a transfer of mass from the discs to the spheroids. In some cases, discs are destroyed, while in others, they survive or reform. This suggests that the survival probability of discs depends on the particular formation history of each galaxy. A realistic ΛCDM model will clearly require weaker star formation at high redshift and later disc assembly than occurs in our models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号