首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We propose a spatially and temporally adaptive solution to Richards’ equation based upon a local discontinuous Galerkin approximation in space and a high-order, backward difference method in time. We cast our approach in terms of a general, decoupled adaption algorithm based upon operators. We define non-unique instances of all operators to result in an adaption method from within the general class of methods that is defined. We formally decouple the spatial adaption from the temporal adaption using a method of lines approach and limit the temporal truncation error so that the total error is dominated by the spatial component. We use a multiple grid approach to guide adaption and support the data structures. Spatial adaption decisions are based upon error and regularity indicators, which are economical to compute. The resultant methods are compared for two test problems. The results show that the proposed adaption methods are superior to methods that adapt only in time and that in cases in which the problem has sufficient smoothness, adapting the order of the elements in addition to the grid spacing can further improve the efficiency of this robust solution approach.  相似文献   

2.
Richards’ equation (RE) is commonly used to model flow in variably saturated porous media. However, its solution continues to be difficult for many conditions of practical interest. Among the various time discretizations applied to RE, the method of lines (MOL) has been used successfully to introduce robust, accurate, and efficient temporal approximations. At the same time, a mixed-hybrid finite element method combined with an adaptive, higher order time discretization has shown benefits over traditional, lower order temporal approximations for modeling single-phase groundwater flow in heterogeneous porous media. Here, we extend earlier work for single-phase flow and consider two mixed finite element methods that have been used previously to solve RE using lower order time discretizations with either fixed time steps or empirically based adaption. We formulate the two spatial discretizations within a MOL context for the pressure head form of RE as well as a fully mass-conservative version. We conduct several numerical experiments for both spatial discretizations with each formulation, and we compare the higher order, adaptive time discretization to a first-order approximation with formal error control and adaptive time step selection. Based on the numerical results, we evaluate the performance of the methods for robustness and efficiency.  相似文献   

3.
Developing robust and efficient numerical solution methods for Richards' equation (RE) continues to be a challenge for certain problems. We consider such a problem here: infiltration into unsaturated porous media initially at static conditions for uniform and non-uniform pore size media. For ponded boundary conditions, a sharp infiltration front results, which propagates through the media. We evaluate the resultant solution method for robustness and efficiency using combinations of variable transformation and adaptive time-stepping methods. Transformation methods introduce a change of variable that results in a smoother solution, which is more amenable to efficient numerical solution. We use adaptive time-stepping methods to adjust the time-step size, and in some cases the order of the solution method, to meet a constraint on nonlinear solution convergence properties or a solution error criterion. Results for three test problems showed that adaptive time-stepping methods provided robust solutions; in most cases transforming the dependent variable led to more efficient solutions than untransformed approaches, especially as the pore-size uniformity increased; and the higher-order adaptive time integration method was robust and the most efficient method evaluated.  相似文献   

4.
It is important to include the viscous effect in seismic numerical modelling and seismic migration due to the ubiquitous viscosity in an actual subsurface medium. Prestack reverse‐time migration (RTM) is currently one of the most accurate methods for seismic imaging. One of the key steps of RTM is wavefield forward and backward extrapolation and how to solve the wave equation fast and accurately is the essence of this process. In this paper, we apply the time‐space domain dispersion‐relation‐based finite‐difference (FD) method for visco‐acoustic wave numerical modelling. Dispersion analysis and numerical modelling results demonstrate that the time‐space domain FD method has great accuracy and can effectively suppress numerical dispersion. Also, we use the time‐space domain FD method to solve the visco‐acoustic wave equation in wavefield extrapolation of RTM and apply the source‐normalized cross‐correlation imaging condition in migration. Improved imaging has been obtained in both synthetic and real data tests. The migration result of the visco‐acoustic wave RTM is clearer and more accurate than that of acoustic wave RTM. In addition, in the process of wavefield forward and backward extrapolation, we adopt adaptive variable‐length spatial operators to compute spatial derivatives to significantly decrease computing costs without reducing the accuracy of the numerical solution.  相似文献   

5.
Many groundwater flow and transport problems, especially those with sharp fronts, narrow transition zones, layers and fingers, require extensive computational resources. In this paper, we present a novel multi-resolution adaptive Fup approach to solve the above mentioned problems. Our numerical procedure is the Adaptive Fup Collocation Method (AFCM), based on Fup basis functions and designed through a method of lines (MOL). Fup basis functions are localized and infinitely differentiable functions with compact support and are related to more standard choices such as splines or wavelets. This method enables the adaptive multi-resolution approach to solve problems with different spatial and temporal scales with a desired level of accuracy using the entire family of Fup basis functions. In addition, the utilized collocation algorithm enables the mesh free approach with consistent velocity approximation and flux continuity due to properties of the Fup basis functions. The introduced numerical procedure was tested and verified by a few characteristic groundwater flow and transport problems, the Buckley–Leverett multiphase flow problem, the 1-D vertical density driven problem and the standard 2-D seawater intrusion benchmark–Henry problem. The results demonstrate that the method is robust and efficient particularly when describing sharp fronts and narrow transition zones changing in space and time.  相似文献   

6.
Time integration methods that adapt in both the order of approximation and time step have been shown to provide efficient solutions to Richards' equation. In this work, we extend the same method of lines approach to solve a set of two-phase flow formulations and address some mass conservation issues from the previous work. We analyze these formulations and the nonlinear systems that result from applying the integration methods, placing particular emphasis on their index, range of applicability, and mass conservation characteristics. We conduct numerical experiments to study the behavior of the numerical models for three test problems. We demonstrate that higher order integration in time is more efficient than standard low-order methods for a variety of practical grids and integration tolerances, that the adaptive scheme successfully varies the step size in response to changing conditions, and that mass balance can be maintained efficiently using variable-order integration and an appropriately chosen numerical model formulation.  相似文献   

7.
Modelling density driven flow problems requires an excessive computational time and/or heavy equipments due to the non-linear coupling between flow and transport equations. In this work, we develop a robust numerical model with efficient advanced approximations for both spatial and temporal discretizations in order to reduce the excessive computational requirement while maintaining accuracy.  相似文献   

8.
This paper develops concepts and methods to study stochastic hydrologic models. Problems regarding the application of the existing stochastic approaches in the study of groundwater flow are acknowledged, and an attempt is made to develop efficient means for their solution. These problems include: the spatial multi-dimensionality of the differential equation models governing transport-type phenomena; physically unrealistic assumptions and approximations and the inadequacy of the ordinary perturbation techniques. Multi-dimensionality creates serious mathematical and technical difficulties in the stochastic analysis of groundwater flow, due to the need for large mesh sizes and the poorly conditioned matrices arising from numerical approximations. An alternative to the purely computational approach is to simplify the complex partial differential equations analytically. This can be achieved efficiently by means of a space transformation approach, which transforms the original multi-dimensional problem to a much simpler unidimensional space. The space transformation method is applied to stochastic partial differential equations whose coefficients are random functions of space and/or time. Such equations constitute an integral part of groundwater flow and solute transport. Ordinary perturbation methods for studying stochastic flow equations are in many cases physically inadequate and may lead to questionable approximations of the actual flow. To address these problems, a perturbation analysis based on Feynman-diagram expansions is proposed in this paper. This approach incorporates important information on spatial variability and fulfills essential physical requirements, both important advantages over ordinary hydrologic perturbation techniques. Moreover, the diagram-expansion approach reduces the original stochastic flow problem to a closed set of equations for the mean and the covariance function.  相似文献   

9.
This paper develops concepts and methods to study stochastic hydrologic models. Problems regarding the application of the existing stochastic approaches in the study of groundwater flow are acknowledged, and an attempt is made to develop efficient means for their solution. These problems include: the spatial multi-dimensionality of the differential equation models governing transport-type phenomena; physically unrealistic assumptions and approximations and the inadequacy of the ordinary perturbation techniques. Multi-dimensionality creates serious mathematical and technical difficulties in the stochastic analysis of groundwater flow, due to the need for large mesh sizes and the poorly conditioned matrices arising from numerical approximations. An alternative to the purely computational approach is to simplify the complex partial differential equations analytically. This can be achieved efficiently by means of a space transformation approach, which transforms the original multi-dimensional problem to a much simpler unidimensional space. The space transformation method is applied to stochastic partial differential equations whose coefficients are random functions of space and/or time. Such equations constitute an integral part of groundwater flow and solute transport. Ordinary perturbation methods for studying stochastic flow equations are in many cases physically inadequate and may lead to questionable approximations of the actual flow. To address these problems, a perturbation analysis based on Feynman-diagram expansions is proposed in this paper. This approach incorporates important information on spatial variability and fulfills essential physical requirements, both important advantages over ordinary hydrologic perturbation techniques. Moreover, the diagram-expansion approach reduces the original stochastic flow problem to a closed set of equations for the mean and the covariance function.  相似文献   

10.
Primary variable switching appears as a promising numerical technique for variably saturated flows. While the standard pressure-based form of the Richards equation can suffer from poor mass balance accuracy, the mixed form with its improved conservative properties can possess convergence difficulties for dry initial conditions. On the other hand, variable switching can overcome most of the stated numerical problems. The paper deals with variable switching for finite elements in two and three dimensions. The technique is incorporated in both an adaptive error-controlled predictor–corrector one-step Newton (PCOSN) iteration strategy and a target-based full Newton (TBFN) iteration scheme. Both schemes provide different behaviors with respect to accuracy and solution effort. Additionally, a simplified upstream weighting technique is used. Compared with conventional approaches the primary variable switching technique represents a fast and robust strategy for unsaturated problems with dry initial conditions. The impact of the primary variable switching technique is studied over a wide range of mostly 2D and partly difficult-to-solve problems (infiltration, drainage, perched water table, capillary barrier), where comparable results are available. It is shown that the TBFN iteration is an effective but error-prone procedure. TBFN sacrifices temporal accuracy in favor of accelerated convergence if aggressive time step sizes are chosen.  相似文献   

11.
Existing numerical methods for the solution of the diffusion-convection equation are unsatisfactory for convection dominated flow problems. A new finite element method incorporating the method of characteristics for the solution of the diffusion-convection equation with constant coefficients in one spatial dimensions is derived. This method is capable of solving diffusion-convection equation without any of the difficulties encountered in the existing numerical methods for the whole spectrum of dispersion from pure diffusion, through mixed dispersion, to pure convection. Several examples for the one-dimensional case are solved and results are compared with the exact solutions. The generalization of the method to variable coefficients and to the diffusion-convection equation in two space dimensions are discussed.  相似文献   

12.
In this paper, we propose a nearly‐analytic central difference method, which is an improved version of the central difference method. The new method is fourth‐order accurate with respect to both space and time but uses only three grid points in spatial directions. The stability criteria and numerical dispersion for the new scheme are analysed in detail. We also apply the nearly‐analytic central difference method to 1D and 2D cases to compute synthetic seismograms. For comparison, the fourth‐order Lax‐Wendroff correction scheme and the fourth‐order staggered‐grid finite‐difference method are used to model acoustic wavefields. Numerical results indicate that the nearly‐analytic central difference method can be used to solve large‐scale problems because it effectively suppresses numerical dispersion caused by discretizing the scalar wave equation when too coarse grids are used. Meanwhile, numerical results show that the minimum sampling rate of the nearly‐analytic central difference method is about 2.5 points per minimal wavelength for eliminating numerical dispersion, resulting that the nearly‐analytic central difference method can save greatly both computational costs and storage space as contrasted to other high‐order finite‐difference methods such as the fourth‐order Lax‐Wendroff correction scheme and the fourth‐order staggered‐grid finite‐difference method.  相似文献   

13.
Although fractional integration and differentiation have found many applications in various fields of science, such as physics, finance, bioengineering, continuum mechanics, and hydrology, their engineering applications, especially in the field of fluid flow processes, are rather limited. In this study, a finite difference numerical approach is proposed to solve the time–space fractional governing equations of 1‐dimensional unsteady/non‐uniform open channel flow process. By numerical simulations, results of the proposed fractional governing equations of the open channel flow process were compared with those of the standard Saint‐Venant equations. Numerical simulations showed that flow discharge and water depth can exhibit heavier tails in downstream locations as space and time fractional derivative powers decrease from 1. The fractional governing equations under consideration are generalizations of the well‐known Saint‐Venant equations, which are written in the integer differentiation framework. The new governing equations in the fractional‐order differentiation framework have the capability of modelling nonlocal flow processes both in time and in space by taking the global correlations into consideration. Furthermore, the generalized flow process may possibly shed light on understanding the theory of the anomalous transport processes and observed heavy‐tailed distributions of particle displacements in transport processes.  相似文献   

14.
常规伪谱方法二阶时间差分格式时间精度较低,且对于大步长时间采样间隔,常规伪谱方法不稳定.拟解析方法对于速度变化剧烈的模型,在时间和空间上均有较大误差.本文提出了一种基于解耦的二阶位移弹性波方程波场模拟及矢量波场分解的优化拟解析方法,将归一化的拟拉普拉斯算子分别应用于P波和S波波场延拓,延拓矢量波场的同时,可分解并延拓纯纵波和纯横波波场.利用弹性波优化拟微分算子表示拟拉普拉斯算子,该拟微分算子不仅包括原始微分算子的谱估计,而且还包含一个时间补偿项,其可在波数-空间域精确地补偿波动方程在时间方向上采用二阶有限差分引起的误差.利用低秩分解近似求解弹性波优化拟微分算子,可有效提高计算效率.2D均匀模型、层状模型以及部分盐丘模型数值正演模拟结果表明:相比较于常规的伪谱法和拟解析法,本文方法在时间和空间上均有很高的精度,并且稳定性条件比较宽松.  相似文献   

15.
The age of past lava flows is crucial information for evaluating the hazards and risks posed by effusive volcanoes, but traditional dating methods are expensive and time‐consuming. This study proposes an alternative statistical dating method based on remote sensing observations of tropical volcanoes by exploiting the relationship between lava flow age and vegetation cover. First, the factors controlling vegetation density on lava flows, represented by the normalized difference vegetation index (NDVI), were investigated. These factors were then integrated into pixel‐based multi‐variable regression models of lava flow age to derive lava flow age maps. The method was tested at a pixel scale on three tropical African volcanoes with considerable recent effusive activity: Nyamuragira (Democratic Republic of Congo), Mt Cameroon (Cameroon) and Karthala (the Comoros). Due to different climatic and topographic conditions, the parameters of the spatial modeling are volcano‐specific. Validation suggests that the obtained statistical models are robust and can thus be applied for estimating the age of unmodified undated lava flow surfaces for these volcanoes. When the models are applied to fully vegetated lava flows, the results should be interpreted with caution due to the saturation of NDVI. In order to improve the accuracy of the models, when available, spatial data on temperature and precipitation should be included to directly represent climatic variation. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
Fractional flow formulations of the multi-phase flow equations exhibit several attractive attributes for numerical simulations. The governing equations are a saturation equation having an advection diffusion form, for which characteristic methods are suited, and a global pressure equation whose form is elliptic. The fractional flow approach to the governing equations is compared with other approaches and the implication of equation form for numerical methods discussed. The fractional flow equations are solved with a modified method of characteristics for the saturation equation and a finite element method for the pressure equation. An iterative algorithm for determination of the general boundary conditions is implemented. Comparisons are made with a numerical method based on the two-pressure formulation of the governing equations. While the fractional flow approach is attractive for model problems, the performance of numerical methods based on these equations is relatively poor when the method is applied to general boundary conditions. We expect similar difficulties with the fractional flow approach for more general problems involving heterogenous material properties and multiple spatial dimensions.  相似文献   

17.
1 INTRODUCTION In recent years, due to the increase in population and industrial developments, mankind has faced manyproblems associated with rivers, coastal waters and reservoirs. Some of these problems are flood control,water supply, power generation, and irrigation. In addition, making new hydraulic structures changesnatural conditions. Prediction of these changes is necessary for designing such constructions. For solutionof these problems usually an assessment of flow pattern, sedim…  相似文献   

18.
Numerical inversion is required when Laplace transform cannot be inverted analytically by manipulating tabled formulas of special cases. However, the numerical inverse Laplace transform is generally an ill-posed problem, and there is no universal method which works well for all problems. In this study, we selected seven commonly used numerical inverse Laplace transform methods to evaluate their performance for dealing with solute transport in the subsurface under uniform or radial flow condition. Such seven methods included the Stehfest, the de Hoog, the Honig–Hirdes, the Talbot, the Weeks, the Simon and the Zakian methods. We specifically investigated the optimal free parameters of each method, including the number of terms used in the summation and the numerical tolerance. This study revealed that some commonly recommended values of the free parameters in previous studies did not work very well, especially for the advection-dominated problems. Instead, we recommended new values of the free parameters for some methods after testing their robustness. For the radial dispersion, the de Hoog, the Talbot, and the Simon methods worked very well, regardless of the dispersion-dominated or advection-dominated situations. The Weeks method can be used to solve the dispersion-dominated problems, but not the advection-dominated problems. The Stehfest, the Honig–Hirdes, and the Zakian methods were recommended for the dispersion-dominated problems. The Zakian method was efficient, while the de Hoog method was time-consuming under radial flow condition. Under the uniform flow condition, all the methods could present somewhat similar results when the free parameters were given proper values for dispersion-dominated problems; while only the Simon method, the Weeks method, and the de Hoog method worked well for advection-dominated problems.  相似文献   

19.
基于双变网格算法的地震波正演模拟   总被引:5,自引:2,他引:3       下载免费PDF全文
为了适应对局部复杂模型的精细模拟,本文实现了可变网格算法,对速度场进行局部加密,从空间上有效地提高模拟精度同时又降低计算机内存需求.但是在数值模拟中,由于稳定性条件的限制,当空间网格变化时,时间稳定性仍然必须满足最短波长的原则,从而增加了时间汁算量.为了配合空间可变网格技术,本文对时间层计算也进行了局部变化,提出了双变...  相似文献   

20.
The Galerkin finite element method coupled with the Crank-Nicolson time advance procedure is often used as a numerical analog for unsaturated soil-moisture transport problems. The Crank-Nicolson procedure leads to numerical mass balance problems which results in instability. A new temporal and spatial integration procedure is proposed that exactly satisfies mass balance for the approximating function used. This is accomplished by fitting polynomials continuously throughout the time and space domain and integrating the governing differential equations. To reduce computational effort, the resulting higher order polynomials are reduced to quadratic and linear piece-wise continuous polynomial approximation functions analogous to the finite element approach. Results indicate a substantial improvement in accuracy over the combined Galerkin and Crank-Nicolson methods when comparing to simplified problems where analytical solutions are available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号