首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Laplace domain solutions have been obtained for three-dimensional groundwater flow to a well in confined and unconfined wedge-shaped aquifers. The solutions take into account partial penetration effects, instantaneous drainage or delayed yield, vertical anisotropy and the water table boundary condition. As a basis, the Laplace domain solutions for drawdown created by a point source in uniform, anisotropic confined and unconfined wedge-shaped aquifers are first derived. Then, by the principle of superposition the point source solutions are extended to the cases of partially and fully penetrating wells. Unlike the previous solution for the confined aquifer that contains improper integrals arising from the Hankel transform [Yeh HD, Chang YC. New analytical solutions for groundwater flow in wedge-shaped aquifers with various topographic boundary conditions. Adv Water Resour 2006;26:471–80], numerical evaluation of our solution is relatively easy using well known numerical Laplace inversion methods. The effects of wedge angle, pumping well location and observation point location on drawdown and the effects of partial penetration, screen location and delay index on the wedge boundary hydraulic gradient in unconfined aquifers have also been investigated. The results are presented in the form of dimensionless drawdown-time and boundary gradient-time type curves. The curves are useful for parameter identification, calculation of stream depletion rates and the assessment of water budgets in river basins.  相似文献   

2.
The solution describing the wellbore flow rate in a constant‐head test integrated with an optimization approach is commonly used to analyze observed wellbore flow‐rate data for estimating the hydrogeological parameters of low‐permeability aquifers. To our knowledge, the wellbore flow‐rate solution for the constant‐head test in a two‐zone finite‐extent confined aquifer has never been reported so far in the literature. This article is first to develop a mathematical model for describing the head distribution in the two‐zone aquifer. The Laplace domain solutions for the head distributions and wellbore flow rate in a two‐zone finite confined aquifer are derived using the Laplace transform, and their corresponding time domain solutions are then obtained using the Bromwich integral method and residue theorem. These new solutions are expressed in terms of an infinite series with Bessel functions and not straightforward to calculate numerically. A large‐time solution for the wellbore flow rate is therefore developed by employing the relationship of small Laplace variable versus large time variable and L'Hospital's rule. The result shows that the large‐time solution is identical to the steady‐state solution obtained after applying the Tauberian theorem into the Laplace domain solution. This large‐time solution can reduce to the Thiem equation in the case of no skin. Finally, the newly developed solution is used to investigate the effects of outer boundary distance and conductivity ratio on the wellbore flow rate. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
The objective of this paper is to present an analytical solution for describing the head distribution in an unconfined aquifer with a single pumping horizontal well parallel to a fully penetrating stream. The Laplace-domain solution is developed by applying Fourier sine, Fourier and Laplace transforms to the governing equation as well as the associated initial and boundary conditions. The time-domain solution is obtained after taking the inverse Laplace transform along with the Bromwich integral method and inverse Fourier and Fourier sine transforms. The upper boundary condition of the aquifer is represented by the free surface equation in which the second-order slope terms are neglected. Based on the solution and Darcy’s law, the equation representing the stream depletion rate is then derived. The solution can simulate head distributions in an aquifer infinitely extending in horizontal direction if the well is located far away from the stream. In addition, the solution can also simulate head distributions in confined aquifers if specific yield is set zero. It is shown that the solution can be applied practically to evaluate flow to a horizontal well.  相似文献   

4.
In this paper, we present a conceptual‐numerical model that can be deduced from a calibrated finite difference groundwater‐flow model, which provides a parsimonious approach to simulate and analyze hydraulic heads and surface water body–aquifer interaction for linear aquifers (linear response of head to stresses). The solution of linear groundwater‐flow problems using eigenvalue techniques can be formulated with a simple explicit state equation whose structure shows that the surface water body–aquifer interaction phenomenon can be approached as the drainage of a number of independent linear reservoirs. The hydraulic head field could be also approached by the summation of the head fields, estimated for those reservoirs, defined over the same domain set by the aquifer limits, where the hydraulic head field in each reservoir is proportional to a specific surface (an eigenfunction of an eigenproblem, or an eigenvector in discrete cases). All the parameters and initial conditions of each linear reservoir can be mathematically defined in a univocal way from the calibrated finite difference model, preserving its characteristics (geometry, boundary conditions, hydrodynamic parameters (heterogeneity), and spatial distribution of the stresses). We also demonstrated that, in practical cases, an accurate solution can be obtained with a reduced number of linear reservoirs. The reduced computational cost of these solutions can help to integrate the groundwater component within conjunctive use management models. Conceptual approximation also facilitates understanding of the physical phenomenon and analysis of the factors that influence it. A simple synthetic aquifer has been employed to show how the conceptual model can be built for different spatial discretizations, the parameters required, and their influence on the simulation of hydraulic head fields and stream–aquifer flow exchange variables. A real‐world case was also solved to test the accuracy of the proposed approaches, by comparing its solution with that obtained using finite‐difference MODFLOW code. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Alluvial fans are potential sites of potable groundwater in many parts of the world. Characteristics of alluvial fans sediments are changed radially from high energy coarse-grained deposition near the apex to low energy fine-grained deposition downstream so that patchy wedge-shaped aquifers with radial heterogeneity are formed. The hydraulic parameters of the aquifers (e.g. hydraulic conductivity and specific storage) change in the same fashion. Analytical or semi-analytical solutions of the flow in wedge-shaped aquifers are available for homogeneous cases. In this paper we derive semi-analytical solutions of groundwater flow to a well in multi-zone wedge-shaped aquifers. Solutions are provided for three wedge boundary configurations namely: constant head–constant head wedge, constant head–barrier wedge and barrier–barrier wedge. Derivation involves the use of integral transforms methods. The effect of heterogeneity ratios of zones on the response of the aquifer is examined. The results are presented in form of drawdown and drawdown derivative type curves. Heterogeneity has a significant effect on over all response of the pumped aquifer. Solutions help understanding the behavior of heterogeneous multi-zone aquifers for sustainable development of the groundwater resources in alluvial fans.  相似文献   

6.
Groundwater in coastal areas is commonly disturbed by tidal fluctuations. A two‐dimensional analytical solution is derived to describe the groundwater fluctuation in a leaky confined aquifer system near open tidal water under the assumption that the groundwater head in the confined aquifer fluctuates in response to sea tide whereas that of the overlying unconfined aquifer remains constant. The analytical solution presented here is an extension of the solution by Sun for two‐dimensional groundwater flow in a confined aquifer and the solution by Jiao and Tang for one‐dimensional groundwater flow in a leaky confined aquifer. The analytical solution is compared with a two‐dimensional finite difference solution. On the basis of the analytical solution, the groundwater head distribution in a leaky confined aquifer in response to tidal boundaries is examined and the influence of leakage on groundwater fluctuation is discussed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
The solutions of constant‐head and constant‐flux tests are commonly used to predict the temporal or spatial drawdown distribution or to determine aquifer parameters. Theis and Thiem equations, for instance, are well‐known transient and steady‐state drawdown solutions, respectively, of the constant‐flux test. It is known that the Theis equation is not applicable to the case where the aquifer has a finite boundary or the pumping time tends to infinity. On the other hand, the Thiem equation does not apply to the case where the aquifer boundary is infinite. However, the issue of obtaining the Thiem equation from the transient drawdown solution has not previously been addressed. In this paper, the drawdown solutions for constant‐head and constant‐flux tests conducted in finite or infinite confined aquifers with or without consideration of the effect of the well radius are examined comprehensively. Mathematical verification and physical interpretation of the solutions to these two tests converging or not converging to the Thiem equation are presented. The result shows that there are some finite‐domain solutions for these two tests that can converge to the Thiem equation when the time becomes infinitely large. In addition, the time criteria to give a good approximation to the finite‐domain solution by the infinite‐domain solution and the Thiem equation are investigated and presented. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Two analytical solution methods are presented for regional steady-state groundwater flow in a two-dimensional stratified aquifer cross section where the water table is approximated by the topographic surface. For the first solution, the surficial aquifer is represented as a set of dipping parallel layers with different, but piecewise constant, anisotropic hydraulic conductivities, where the anisotropy is aligned with the dip of the layered formation. The model may be viewed as a generalization of the solutions developed by [Tóth JA. A theoretical analysis of groundwater flows in small drainage basins. J Geophys Res 1963;68(16):4795–812; Freeze R, Witherspoon P. Theoretical analysis of regional groundwater flow 1) analytical and numerical solution to the mathematical model, water resources research. Water Resour Res 1966;2(4):641–56; Selim HM. Water flow through multilayered stratified hillside. Water Resour Res 1975;11:949–57] to an multi-layer aquifer with general anisotropy, layer orientation, and a topographic surface that may intersect multiple layers. The second solution presumes curved (syncline) layer stratification with layer-dependent anisotropy aligned with the polar coordinate system. Both solutions are exact everywhere in the domain except at the topographic surface, where a Dirichlet condition is met in a least-squared sense at a set of control points; the governing equation and no-flow/continuity conditions are met exactly. The solutions are derived and demonstrated on multiple test cases. The error incurred at the location where the layer boundaries intersect the surface is assessed.  相似文献   

9.
An analysis method for slug tests performed in a partially penetrating well within a vertical cutoff wall is presented. A steady‐state shape factor for evaluating hydraulic conductivity of the material within the wall was derived by applying the method of images to the previously developed analytical solution of Zlotnik et al. (2010) for an infinite aquifer. Two distinct boundary conditions were considered: constant‐head boundary for the case of direct contact between the wall and the aquifer, and no‐flux boundary representing an impermeable filter cake on the sides of the wall. The constant‐head and no‐flux boundary conditions yield significantly higher and lower shape factors, respectively, than those for the infinite aquifer. Consequently the conventional line‐fitting method for slug test analysis would yield an inaccurate estimate of the hydraulic conductivity of a vertical cutoff wall.  相似文献   

10.
Analytical solution for drainage and recession from an unconfined aquifer   总被引:1,自引:0,他引:1  
Liang X  Zhang YK 《Ground water》2012,50(5):793-798
One-dimensional transient groundwater flow from a divide to a river in an unconfined aquifer described by the Boussinesq equation was studied. We derived the analytical solution for the water table recession and drainage change process described with a linearized Boussinesq equation with a physically based initial condition. A method for determining the average water table in the solutions was proposed. It is shown that the solution derived in the form of infinite series can be well approximated with the simplified solution which contains only the leading term of the original solution. The solution and their simplification can be easily evaluated and used by others to study the groundwater flow problems, such as drainage and base flow estimation, in an unconfined aquifer.  相似文献   

11.
El-Hames AS 《Ground water》2012,50(4):621-626
A comprehensive numerical approach has been developed to solve the transient groundwater level changes due to the construction of underground dams. This method assumes no flow takes place through the dam and does not require knowledge of either the dam hydraulic properties or information about downstream water table changing level or aquifer geometry beyond the dam site. It couples the solution of the general groundwater flow equation with a modified equation derived at the lower boundary nodes of the simulated domain. The robustness of this method has been tested against simulations of the full groundwater equation for different time periods of up to 50 years with different aquifer characteristics. Comparison shows good agreement between the developed model outputs and the full groundwater flow equation simulated results, under the different simulated scenarios.  相似文献   

12.
Reply     
Abstract

This paper develops a new analytical solution for the aquifer system, which comprises an unconfined aquifer on the top, a semi-confined aquifer at the bottom and an aquitard between them. This new solution is derived from the Boussinesq equation for the unconfined aquifer and one-dimensional leaky confined flow equation for the lower aquifer using the perturbation method, considering the water table over-height at the remote boundary. The head fluctuation predicted from this solution is generally greater than the one solved from the linearized Boussinesq equation when the ratio of the tidal amplitude to the thickness of unconfined aquifer is large. It is found that both submarine groundwater discharges from upper and lower aquifers increase with tidal amplitude–aquifer thickness ratio and may be underestimated if the discharge is calculated based on the average head fluctuation. The effects of the aquifer parameters and linearization of the Boussinesq equation on the normalized head fluctuation are also investigated.

Editor D. Koutsoyiannis; Associate editor J. Simunek

Citation Chuang, M.-H., Mahdi, A.-A. and Yeh, H.-D., 2012. A perturbation solution for head fluctuations in a coastal leaky aquifer system considering water table over-height. Hydrological Sciences Journal, 57 (1), 162–172.  相似文献   

13.
In this study, the well‐known Hantush solution procedure for groundwater mounding under infinitely long infiltration strips is extended to finite and semi‐infinite aquifer cases. Initially, the solution for infinite aquifers is presented and compared to those available in literature and to the numerical results of MODFLOW. For the finite aquifer case, the method of images, which is commonly used in well hydraulics, is used to be able to represent the constant‐head boundaries at both sides. It is shown that a finite number of images is enough to obtain the results and sustain the steady state. The effect of parameters on the growth of the mound and on the time required to reach the steady state is investigated. The semi‐infinite aquifer case is emphasized because the growth of the mound is not symmetric. As the constant‐head boundary limits the growth, the unbounded side grows continuously. For this reason, the groundwater divide shifts toward the unbounded side. An iterative solution procedure is proposed. To perform the necessary computations a code was written in Visual Basic of which the algorithm is presented. The proposed methodology has a wide range of applicability and this is demonstrated using two practical examples. The first one is mounding under a stormwater dispersion trench in an infinite aquifer and the other is infiltration from a flood control channel into a semi‐infinite aquifer. Results fit very well with those of MODFLOW.  相似文献   

14.
ABSTRACT

This paper presents a model of the groundwater flow into a river from an aquifer beneath the river. The mathematical problem is to solve Laplace's equation with a free boundary and the solution procedure uses a variational inequality which leads to an approximate solution using finite differences. The method can be used to provide for example, inflow conditions in river modelling calculations.  相似文献   

15.
The study on the hydraulic properties of coastal aquifers has significant implications both in hydrological sciences and environmental engineering. Although many analytical solutions are available, most of them are based on the same basic assumption that assumes aquifers extend landward semi‐infinitely, which does not necessarily reflect the reality. In this study, the general solutions for a leaky confined coastal aquifer have been developed that consider both finitely landward constant‐head and no‐flow boundaries. The newly developed solutions were then used to examine theoretically the joint effects of leakage and aquifer length on hydraulic head fluctuations within the leaky confined aquifer, and the validity of using the simplified solution, which assumes the aquifer is semi‐infinite. The results illustrated that the use of the simplified solution may cause significant errors, depending on joint effects of leakage and aquifer length. A dimensionless characteristic parameter was then proposed as an index for judging the applicability of the simplified solution. In addition, practical application of the general solution for the constant‐head inland boundary was used to characterize the hydraulic properties of a leaky confined aquifer using the data collected from a field site at the Seine River estuary, France, and the versatility of the general solution was further justified.  相似文献   

16.
An exact, closed-form analytical solution is developed for calculating ground water transit times within Dupuit-type flow systems. The solution applies to steady-state, saturated flow through an unconfined, horizontal aquifer recharged by surface infiltration and discharging to a downgradient fixed-head boundary. The upgradient boundary can represent, using the same equation, a no-flow boundary or a fixed head. The approach is unique for calculating travel times because it makes no a priori assumptions regarding the limit of the water table rise with respect to the minimum saturated aquifer thickness. The computed travel times are verified against a numerical model, and examples are provided, which show that the predicted travel times can be on the order of nine times longer relative to existing analytical solutions.  相似文献   

17.
We present explicit analytical solutions to problems of steady groundwater flow to a pumping well in an aquifer divided by an infinite, linear fault. The transmissivity of the aquifer is allowed to jump from one side of the fault to the other to model the juxtaposition of host rocks with different hydrologic properties caused by faulting. The fault itself is represented as a thin anisotropic inhomogeneity; this allows the fault to act as a combined conduit–barrier to groundwater flow, as is commonly described in the literature. We show that the properties of the fault may be represented exactly by two lumped parameters—fault resistance and fault conductance—and that the effects of the fault on flow in the adjacent aquifer is independent of the fault width. We consider the limiting cases of a purely leaky and a purely conductive fault where the fault domain may be replaced exactly by internal boundary conditions, and we investigate the effects of fault properties on the flow behavior in the adjacent aquifers. We demonstrate that inferring fault properties based on field observations of head in the aquifer is inherently difficult, even when the fault may be described by one of the two limiting cases. In particular, the effects of a leaky fault and a conductive fault on heads and discharges in the aquifer opposite the fault from the well, are shown to be identical in some cases.  相似文献   

18.
Lu C  Chen Y  Luo J 《Ground water》2012,50(3):386-393
Prevention of sea water intrusion in coastal aquifers subject to groundwater withdrawal requires optimization of well pumping rates to maximize the water supply while avoiding sea water intrusion. Boundary conditions and the aquifer domain size have significant influences on simulating flow and concentration fields and estimating maximum pumping rates. In this study, an analytical solution is derived based on the potential-flow theory for evaluating maximum groundwater pumping rates in a domain with a constant hydraulic head landward boundary. An empirical correction factor, which was introduced by Pool and Carrera (2011) to account for mixing in the case with a constant recharge rate boundary condition, is found also applicable for the case with a constant hydraulic head boundary condition, and therefore greatly improves the usefulness of the sharp-interface analytical solution. Comparing with the solution for a constant recharge rate boundary, we find that a constant hydraulic head boundary often yields larger estimations of the maximum pumping rate and when the domain size is five times greater than the distance between the well and the coastline, the effect of setting different landward boundary conditions becomes insignificant with a relative difference between two solutions less than 2.5%. These findings can serve as a preliminary guidance for conducting numerical simulations and designing tank-scale laboratory experiments for studying groundwater withdrawal problems in coastal aquifers with minimized boundary condition effects.  相似文献   

19.
Steady interface flow in heterogeneous aquifer systems is simulated with single‐density groundwater codes by using transformed values for the hydraulic conductivity and thickness of the aquifers and aquitards. For example, unconfined interface flow may be simulated with a transformed model by setting the base of the aquifer to sea level and by multiplying the hydraulic conductivity with 41 (for sea water density of 1025 kg/m3). Similar transformations are derived for unconfined interface flow with a finite aquifer base and for confined multi‐aquifer interface flow. The head and flow distribution are identical in the transformed and original model domains. The location of the interface is obtained through application of the Ghyben‐Herzberg formula. The transformed problem may be solved with a single‐density code that is able to simulate unconfined flow where the saturated thickness is a linear function of the head and, depending on the boundary conditions, the code needs to be able to simulate dry cells where the saturated thickness is zero. For multi‐aquifer interface flow, an additional requirement is that the code must be able to handle vertical leakage in situations where flow in an aquifer is unconfined while there is also flow in the aquifer directly above it. Specific examples and limitations are discussed for the application of the approach with MODFLOW. Comparisons between exact interface flow solutions and MODFLOW solutions of the transformed model domain show good agreement. The presented approach is an efficient alternative to running transient sea water intrusion models until steady state is reached.  相似文献   

20.
This paper develops a well function applicable to extraction of groundwater or soil vapor from a well under the most common field test conditions. The general well function (Perina and Lee, 2006) [12] is adapted to soil vapor extraction and constant head boundary at the top. For groundwater flow, the general well function now applies to an extraction well of finite diameter with uniform drawdown along the screen, finite-thickness skin, and partially penetrating an unconfined, confined, and leaky aquifer, or an aquifer underneath a reservoir. With a change of arguments, the model applies to soil vapor extraction from a vadose zone with no cover or with leaky cover at the ground surface. The extraction well can operate in specified drawdown (pressure for soil vapor) or specified flowrate mode. Frictional well loss is computed as flow-only dependent component of the drawdown inside the extraction well. In general case, the calculated flow distribution is not proportional to screen length for a multiscreen well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号