首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comets must form a major part of the interstellar medium. The solar system provides a flux of comets into the interstellar space and there is no reason to suspect that many other stars and their surrounding cometary systems would not make a similar contribution. Occasionally interstellar comets must pass through the inner solar system, but Whipple (1975) considers it unlikely that such a comet is among the known cases of apparently hyperbolic comets. Even so the upper limit for the density of unobserved interstellar comets is relatively high.In addition, we must consider the possibility that comets are a genuine component of interstellar medium, and that the Oort Cloud is merely a captured part of it (McCrea, 1975). Here we review various dynamical possibilities of two-way exchange of comet populations between the Solar System and the interstellar medium. We describe ways in which a traditional Oort Cloud (Oort, 1950) could be captured from the interstellar medium. However, we note that the so called Kuiper belt (Kuiper, 1951) of comets cannot arise through this process. Therefore we have to ask how necessary the concept of the yet unobserved Kuiper belt is for the theory of short period comets.There has been considerable debate about the question whether short period comets can be understood as a captured population of the Oort Cloud of comets or whether an additional source has to be postulated. The problem is made difficult by the long integration times of comet orbits through the age of the Solar System. It would be better to have an accurate treatment of comet-planet encounters in a statistical sense, in the form of cross sections, and to carry out Monte Carlo studies. Here we describe the plan of action and initial results of the work to derive cross sections by carrying out large numbers of comet — planet encounters and by deriving approximate analytic expressions for them. Initially comets follow parabolic orbits of arbitrary inclination and perihelion distance; cross sections are derived for obtaining orbits of given energy and inclination after the encounter. The results are used in subsequent work to make evolutionary models of the comet population.  相似文献   

2.
The Oort Cloud, the Kuiper belt and the Scattered Disk are dynamically distinct populations of small bodies evolving in the outer regions of the Solar System. Whereas their collisional activity is now quiet, gravitational interactions with giant planets may have shaped these populations both dynamically and collisionally during their formation. Using a hybrid approach [Charnoz, S., Morbidelli, A., 2003. Icarus 166, 141-166], the present paper tries to couple the primordial collisional and dynamical evolution of these three populations in a self-consistent way. A critical parameter is the primordial size-distribution. We show that the initial planetesimal size distribution that allows an effective mass depletion of the Kuiper belt by collisional grinding, would decimate also the population of comet-size bodies that end in the Oort Cloud and, in particular, in the Scattered Disk. As a consequence, the Oort Cloud and the Scattered Disk would be too anemic, by a factor 20 to 100, relative to the estimates achieved from the observation of the fluxes of long period and Jupiter family comets, respectively. For these two reservoirs to have a sufficient number of comets, the initial size distribution in the planetesimal disk had to be such that the mass depletion by collisional erosion of the Kuiper belt was negligible. Consequently the current mass deficit of the Kuiper belt needs to be explained by dynamical mechanisms.  相似文献   

3.
The present paper reviews our current understanding of the dynamical structure of the Kuiper belt and of the origin of Jupiter-family comets. It also discusses the evolutionary scenarios that have been proposed so far to explain the observed structure of the Kuiper belt population. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Abstract— In the primordial solar system, the most plausible sources of the water accreted by the Earth were in the outer asteroid belt, in the giant planet regions, and in the Kuiper Belt. We investigate the implications on the origin of Earth's water of dynamical models of primordial evolution of solar system bodies and check them with respect to chemical constraints. We find that it is plausible that the Earth accreted water all along its formation, from the early phases when the solar nebula was still present to the late stages of gas‐free sweepup of scattered planetesimals. Asteroids and the comets from the Jupiter‐Saturn region were the first water deliverers, when the Earth was less than half its present mass. The bulk of the water presently on Earth was carried by a few planetary embryos, originally formed in the outer asteroid belt and accreted by the Earth at the final stage of its formation. Finally, a late veneer, accounting for at most 10% of the present water mass, occurred due to comets from the Uranus‐Neptune region and from the Kuiper Belt. The net result of accretion from these several reservoirs is that the water on Earth had essentially the D/H ratio typical of the water condensed in the outer asteroid belt. This is in agreement with the observation that the D/H ratio in the oceans is very close to the mean value of the D/H ratio of the water inclusions in carbonaceous chondrites.  相似文献   

5.
Studies of the D:H ratio in H2O within the Solar nebula provide a relationship between the degree of enrichment of deuterium and the distance from the young Sun. In the context of cometary formation, such models suggest that comets which formed in different regions of the Solar nebula should have measurably different D:H ratios. We aim to illustrate how the observed comets can give information about the formation regions of the reservoirs in which they originated. After a discussion of the current understanding of the regions in which comets formed, simple models of plausible formation regions for two different cometary reservoirs (the Edgeworth–Kuiper belt and the Oort Cloud) are convolved with a deuterium-enrichment profile for the pre-solar nebula. This allows us to illustrate how different formation regions for these objects can lead to great variations in the deuterium enrichment distributions that we would observe in comets today. We also provide an illustrative example of how variations in the population within a source region can modify the resulting observational profile. The convolution of a deuterium-enrichment profile with examples of proto-cometary populations gives a feel for how observations could be used to draw conclusions on the formation region of comets which are currently fed into the inner Solar system from at least two reservoirs. Such observations have, to date, been carried out on only three comets, but future work with instruments such as ALMA and Herschel should vastly improve the dataset, leading to a clearer consensus on the formation of the Oort cloud and Edgeworth–Kuiper belt.  相似文献   

6.
We consider the secular evolution of the orbits of bodies in the Outer Solar System under the perturbations of the jovian planets assumed on coplanar and circular orbits. Through the approach used for asteroidal belt by Yoshihide Kozai in 1962, we obtain that the Kozai resonance do not affect the behavior of bodies belonging to the Kuiper belt but concerns the long-timescale evolution of long-period comets. In particular this resonance appears as a process contributing to produce Sun-grazer comets.  相似文献   

7.
The dynamics of two families of minor inner solar system bodies that suffer frequent close encounters with the planets is analyzed. These families are: Jupiter family comets (JF comets) and Near Earth Asteroids (NEAs). The motion of these objects has been considered to be chaotic in a short time scale,and the close encounters are supposed to be the cause of the fast chaos. For a better understanding of the chaotic behavior we have computed Lyapunov Characteristic Exponents (LCEs) for all the observed members of both populations. LCEs are a quantitative measure of the exponential divergence of initially close orbits. We have observed that most members of the two families show a concentration of Lyapunov times (inverse of LCE) around 50–100yr. The concentration is more pronounced for JF comets than for NEAs, among which a lesser spread is observed for those that actually cross the Earth's orbit (mean perihelion distance q < 1.05 AU). It is also observed that a general correspondence exists between Lyapunov times and the time between consecutive encounters. A simple model is introduced to describe the basic characteristics of the dynamical evolution. This model considers an impulsive approach, where the particles evolve unperturbedly between encounters and suffer ‘kicks’ in semimajor axis at the encounters. It also reproduces successfully the short Lyapunov times observed in the numerical integrations and is able to estimate the dynamical lifetimes of comets during a stay in the Jupiter family in correspondence with previous estimates. It has been demonstrated with the model that the encounters with the largest effect on the exponential growth of the distance between initially nearby orbits are neither the infrequent deep encounters, nor the frequent and far ones; instead, the intermediate approaches have the most relevant contribution to the error growth. Such encounters are at a distance a few times the radius of the Hill's sphere of the planet (e.g. 3). An even simpler model allows us to get analytical estimates of the Lyapunov times in good agreement with the values coming from the model above and the numerical integrations. The predictability of the medium‐term evolution and the hazard posed to the Earth by those objects are analysed in the Discussion section. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Abstract— We present results of thermal evolution calculations for objects originating in the Kuiper belt and transferring inwards, to the region of the outer planets. Kuiper belt objects (KBOs) are considered to be part of a reservoir that supplies the flux of small icy bodies, mainly Centaurs and Jupiter‐family comets, to regions interior to the orbit of Neptune. We study the internal thermal evolution, for ?108 yr, of three typical KBOs and use the end state of the simulation as initial conditions for evolutionary calculations of two typical Centaurs. Some evolutionary trends can be identified for the KBOs, depending on key physical parameters, such as size and composition. The subsequent evolution in the Centaur region results in both specific features for each modeled object (mainly surface and sub‐surface composition) and common characteristics of thermally evolved Centaurs.  相似文献   

9.
We present a purely physical model to determine cosmogenic production rates for noble gases and radionuclides in micrometeorites (MMs) and interplanetary dust particles (IDPs) by solar cosmic‐rays (SCR) and galactic cosmic‐rays (GCR) fully considering recoil loss effects. Our model is based on various nuclear model codes to calculate recoil cross sections, recoil ranges, and finally the percentages of the cosmogenic nuclides that are lost as a function of grain size, chemical composition of the grain, and the spectral distribution of the projectiles. The main advantage of our new model compared with earlier approaches is that we consider the entire SCR particle spectrum up to 240 MeV and not only single energy points. Recoil losses for GCR‐produced nuclides are assumed to be equal to recoil losses for SCR‐produced nuclides. Combining the model predictions with Poynting‐Robertson orbital lifetimes, we calculate cosmic‐ray exposure ages for recently studied MMs, cosmic spherules, and IDPs. The ages for MMs and the cosmic‐spherule are in the range <2.2–233 Ma, which corresponds, according to the Poynting‐Robertson drag, to orbital distances in the range 4.0–34 AU. For two IDPs, we determine exposure ages of longer than 900 Ma, which corresponds to orbital distances larger than 150 AU. The orbital distance in the range 4–6 AU for one MM and the cosmic spherule indicate an origin either in the asteroid belt or release from comets coming either from the Kuiper Belt or the Oort Cloud. Three of the studied MMs have orbital distances in the range 23–34 AU, clearly indicating a cometary origin, either from short‐period comets from the Kuiper Belt or from the Oort Cloud. The two IDPs have orbital distances of more than 150 AU, indicating an origin from Oort Cloud comets.  相似文献   

10.
Results are presented of a statistical analysis of dynamic parameters for 114 comets with split nuclei. A list of the objects includes actually split comets, fragments of cometary pairs, lost comets with designation D, and comets with large-scale atmospheric features. Some aspects of the hypothesis that splitting is caused by collisions of cometary nuclei with meteoroid swarms are investigated. To verify the hypothesis, an analysis is conducted of the positions of split comets’ orbits relative to 58 meteor streams from Cook’s catalogue. The calculations give the number (N) of orbital nodes of split comets relative to the plane of each swarm within a distance of 0.001, 0.005, 0.01, 0.05, and 0.1 AU from each swarm. A special algorithm is proposed for determining the degree of redundancy of N by finding the expected value and dispersion for the number of the nodes. The comparison of N with the expected value, together with the consideration of the dispersion, reveals a redundancy of N in 29 cases. Therefore, collisions of comets with meteoroid swarms can be considered as one of the possible causes of comet splitting. A similar testing is conducted for the asteroid belt and Kuiper belt as potential sources of a vast number of sporadic meteoroids. Based on the results of the calculations, the former may be considered as the most effective region of splitting of periodic comets.  相似文献   

11.
The idea of a missing planet between Mars and Jupiter has been with us since the formulation of the Titius-Bode law. The discovery of the asteroid belt in that location led to speculation about a planetary breakup event. Both ideas remained conjectures until Ovenden's finding in 1972, from which it could be derived that the mass of the missing planet was about 90 Earth masses and that its breakup was astronomically recent. Apparently much of that mass was blown out of the solar system during the disruption of the planet. Because of the action of planetary perturbations, only two types of orbits of surviving fragments could remain at present-asteroid orbits and once-around very-long-period elliptical orbits. Objects in the latter type of orbit are known to exist-the very-long-period comets. A large number of these are on elliptical trajectories with periods of revolution of 5 million years; yet they are known to have made no more than one revolution in an orbit passing close to the Sun. By direct calculation it is possible to predict the distribution of the orbital elements of objects moving on long-period ellipses which might have originated in a breakup event in the asteroid belt 5 million years ago. The comet orbits have the predicted distribution in every case where a measure is possible. Some of the distribution anomalies, such as a bias in the directions of perihelion passage, are statistically strong and would be difficult to explain in any other uncontrived way. In addition, a relative deficiency of orbits with perihelia less than 1 AU indicates that the comets must have had small perihelion distances since their origin, rather than that they have been perturbed into small perihelion orbits from a distant “cloud” of comets by means of stellar encounters. The comet orbital data lead to the conclusion that all comets originated in a breakup event in the asteroid belt (5.5±0.6) × 106 years ago. Asteroid and meteoritic evidence can now be interpreted in a way which not only is supportive but also provides fresh insights into understanding their physical, chemical, and dynamical properties. Particularily noteworthy are the young cosmic-ray exposure ages of meteorites, evidence of a previous high-temperature/pressure environment and of chemical differentiation of the parent body, and compositional similarities among comets, asteroids, and meteorites. Certain “explosion signatures” in asteroid orbital element distributions are likewise indicative. Tektites may also have originated in the same event; but if so, there are important implications regarding the absolute accuracy of certain geological dating methods. Little is known about possible planetary breakup mechanisms of the requisite type, though some speculations are offered. In any case, the asteroid belt is an existing fact; and the arguments presented here that a large planet did disintegrate 5 million years ago must be judged on their merits, even in the absence of a suitable theory of planetary explosions.  相似文献   

12.
We present results of a simulation of a steady-state binary near-Earth asteroid (NEA) population. This study combines previous work on tidal disruption of gravitational aggregates [Walsh, K.J., Richardson, D.C., 2006. Icarus 180, 201-216] with a Monte Carlo simulation of NEA planetary encounters. Evolutionary effects include tidal evolution and binary disruption from close planetary encounters. The results show that with the best known progenitor (small Main Belt asteroids) shape and spin distributions, and current estimates of NEA lifetime and encounter probabilities, that tidal disruption should account for approximately 1-2% of NEAs being binaries. Given the best observed estimate of a ∼15% binary NEA fraction, we conclude that there are other formation mechanisms that contribute significantly to this population. We also present the expected distribution of binary orbital and physical properties for the steady-state binary NEAs formed by tidal disruption. We discuss the effects on binary fraction and properties due to changes in the least constrained parameters, and other possible effects on our model that could account for differences between the presented results and the observed binary population. Finally, we model possible effects of a significant population of binaries migrating to the near-Earth population from the Main Belt.  相似文献   

13.
Cratering rates on the Galilean satellites   总被引:1,自引:0,他引:1  
Zahnle K  Dones L  Levison HF 《Icarus》1998,136(2):202-222
We exploit recent theoretical advances toward the origin and orbital evolution of comets and asteroids to obtain revised estimates for cratering rates in the jovian system. We find that most, probably more than 90%, of the craters on the Galilean satellites are caused by the impact of Jupiter-family comets (JFCs). These are comets with short periods, in generally low-inclination orbits, whose dynamics are dominated by Jupiter. Nearly isotropic comets (long period and Halley-type) contribute at the 1-10% level. Trojan asteroids might also be important at the 1-10% level; if they are important, they would be especially important for smaller craters. Main belt asteroids are currently unimportant, as each 20-km crater made on Ganymede implies the disruption of a 200-km diameter parental asteroid, a destruction rate far beyond the resources of today's asteroid belt. Twenty-kilometer diameter craters are made by kilometer-size impactors; such events occur on a Galilean satellite about once in a million years. The paucity of 20-km craters on Europa indicates that its surface is of order 10 Ma. Lightly cratered surfaces on Ganymede are nominally of order 0.5-1.0 Ga. The uncertainty in these estimates is about a factor of five. Callisto is old, probably more than 4 Ga. It is too heavily cratered to be accounted for by the current flux of JFCs. The lack of pronounced apex-antapex asymmetries on Ganymede may be compatible with crater equilibrium, but it is more easily understood as evidence for nonsynchronous rotation of an icy carapace.  相似文献   

14.
The magnitude distribution of the trans-Neptunian bodies composed of the Kuiper Belt Objects (KBOs) and Scattered Disk Objects (SDOs) is determined for absolute magnitudes H?7, using maximum likelihood estimation methods. This is translated into a corresponding size distribution. This gave a differential size index of q=3.966±0.15 for KBOs and q=3.016±0.32 for SDOs. It was found that these two distributions were statistically different. The KBOs were further split into classical KBOs and Plutinos which had indices of q=4.074±0.18 and q=3.301±0.37, respectively. There was no statistical evidence that these are different populations. The classical KBOs were further split and examined for four different semi-major axis ranges and it was found that there was moderate evidence that the entire sample was not well represented by one index. The distribution indices of the SDOs were compared with the distributions of short period comets and found to be similar. It is likely that the scattered disk population is the source of the short period comets.  相似文献   

15.
An overview is given of close encounters of nearly parabolic comets (NPCs; with periods of P > 200 years and perihelion distances of q > 0.1 AU; the number of the comets is N = 1041) with planets. The minimum distances Δmin between the cometary and planetary orbits are calculated to select comets whose Δmin are less than the radius of the planet’s sphere of influence. Close encounters of these comets with planets are identified by numerical integration of the comets’ equations of motion over an interval of ±50 years from the time of passing the perihelion. Close encounters of NPCs with Jupiter in 1663–2011 are reported for seven comets. An encounter with Saturn is reported for comet 2004 F2 (in 2001).  相似文献   

16.
We have performed an ecliptic survey of the Kuiper belt, with an areal coverage of 8.9 square degrees to a 50% limiting magnitude of , and have detected 88 Kuiper belt objects, roughly half of which received follow-up 1–2 months after detection. Using this survey data alone, we have measured the luminosity function of the Kuiper belt, thus avoiding any biases that might come from the inclusion of other observations. We have found that the Cold population defined as having inclinations less than 5° has a luminosity function slope αCold = 0.82 ± 0.23, and is different from the Hot population, which has inclinations greater than 5° and a luminosity function slope αHot = 0.35 ± 0.21. As well, we have found that those objects closer than 38 AU have virtually the same luminosity function slope as the Hot population. This result, along with similar findings of past surveys demonstrates that the dynamically Cold Kuiper belt objects likely have a steep size distribution, and are unique from all of the excited populations which have much shallower distributions. This suggests that the dynamically excited population underwent a different accretion history and achieved a more evolved state of accretion than the Cold population. As well, we discuss the similarities of the Cold and Hot populations with the size distributions of other planetesimal populations. We find that while the Jupiter family comets and the scattered disk exhibit similar size distributions, a power-law extrapolation to small sizes for the scattered disk cannot account for the observed influx of comets. As well, we have found that the Jupiter Trojan and Hot populations cannot have originated from the same parent population, a result that is difficult to reconcile with scattering models similar to the NICE model. We conclude that the similarity between the size distributions of the Cold population and the Jupiter Trojan population is a striking coincidence.  相似文献   

17.
E. van der Helm  S.V. Jeffers 《Icarus》2012,218(1):448-458
The number of observed Halley-type comets is hundreds of times less than predicted by models (Levison, H.F., Dones, L., Duncan, M.J. [2001]. Astron. J. 121, 2253–2267). In this paper we investigate the impact of collisions with planetesimals on the evolution of Halley-type comets. First we compute the dynamical evolution of a sub-set of 21 comets using the Mercury integrator package over 100 Myr. The dynamical lifetime is determined to be of the order of 105–106 years in agreement with previous work. The collisional probability of Halley-type comets colliding with known asteroids, a simulated population of Kuiper-belt objects, and planets, is calculated using a modified, Öpik-based collision code. Our results show that the catastrophic disruption of the cometary nucleus has a very low probability of occurring, and disruption through cumulative minor impacts is concluded to be negligible. The dust mantle formed from ejected material falling back to the comet’s surface is calculated to be less than a few centimeters thick, which is insignificant compared to the mantle formed by volatile depletion, while planetary encounters were found to be a negligible disruption mechanism.  相似文献   

18.
This paper studies the dynamical evolution of 97 Jupiter-family comets over an 800-year time period. More than two hundred encounters with Jupiter are investigated, with the observed comets moving during a certain period of time in an elliptic jovicentric orbit. In most cases this is an ordinary temporary satellite capture of a comet in Everhart??s sense, not associated with a transition of the small body into Jupiter??s family of satellites. The phenomenon occurs outside the Hill sphere with comets with a high Tisserand constant relative to Jupiter; the comets?? orbits have a small inclination to the ecliptic plane. An analysis of 236 encounters has allowed the determination within the planar pair two-body problem of a region of orbits in the plane (a, e) whose semimajor axes and eccentricities contribute to the phenomenon under study. Comets with orbits belonging to this region experience a temporary satellite capture during some of their encounters; the jovicentric distance function has several minima; and the encounters are characterized by reversions of the line of apsides and some others features of their combination that are intrinsic to comets in this region. Therefore, this region is called a region of comets with specific features in their encounters with Jupiter. Twenty encounters (out of 236), whereby the comet enters an elliptic jovicentric orbit in the Hill sphere, are identified and investigated. The size and shape of the elliptic heliocentric orbits enabling this transition are determined. It is found that in 11 encounters the motion of small bodies in the Hill sphere has features the most important of which is multiple minima of the jovicentric distance function. The study of these 20 encounters has allowed the introduction of the concept of temporary gravitational capture of a small body into the Hill sphere. An analysis of variations in the Tisserand constant in these (20) encounters of the observable comets shows that their motion is unstable in Hill??s sense.  相似文献   

19.
We analyze the conditions for the formation and time evolution of peripheral comet structures of solar-type planetary systems. In the Solar system, these include the Kuiper belt, the Oort cloud, the comet spear, and the Galactic comet ring that marks the Galactic orbit of the Sun. We consider the role of the viscosity of a protoplanetary gas–dust disk, major planets, field stars, globular clusters, giant molecular clouds, and the Galactic gravitational field in the formation of these peripheral structures marked by comets and asteroids. We give a list of the closest past and future passages of neighboring stars through the solar Oort cloud that perturb the motion of its comets and, thus, contribute to the enhancement of its cometary activity, on the one hand, and to the replenishment of the solar comet spear with new members, on the other hand.  相似文献   

20.
The effects of a sample of 1300 individual stellar encounters spanning a wide range of parameter values (mass, velocity and encounter distance) are investigated. Power law fits for the number of injected comets demonstrate the long range effect of massive stars, whereas light stars affect comets mainly along their tracks. Similarly, we show that the efficiency of a star to fill the phase space region of the Oort cloud where the Galactic tides are able to inject comets into the observable region - the so-called “tidally active zone” (TAZ) - is also strongly dependent on the stellar mass. Power laws similar to those for direct injection are obtained for the efficiency of stars to fill the TAZ. This filling of the tidally active zone is crucial for the long term flux of comets from the Oort cloud. Based on long-term Monte Carlo simulations using a constant Galactic tide and a constant flux of stellar encounters, but neglecting the detailed effects of planetary perturbations, we show that this flux essentially results from a two step mechanism: (i) the stellar injection of comets into the TAZ; and (ii) the tidal injection of TAZ comets into the loss cone. We find that single massive stars are able to induce “comet drizzles” - corresponding to an increase of the cometary flux of about 40% - which may last for more than 100 Myr by filling the TAZ to a higher degree than normal. It appears that the stars involved in this process are the same that cause comet showers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号