首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 64 毫秒
1.
The Upper Garonne Basin included the largest glacial system in the Pyrenees during the last glacial cycle. Within the long-term glacial retreat during Termination-1 (T-1), glacier fluctuations left geomorphic evidence in the area. However, the chronology of T-1 glacial oscillations on the northern slopes of the Central Pyrenees is still poorly constrained. Here, we introduce new geomorphological observations and a 12-sample dataset of 10Be cosmic-ray exposure ages from the Ruda Valley. This U-shaped valley, surrounded by peaks exceeding 2800 m a.s.l., includes a sequence of moraines and polished surfaces that enabled a reconstruction of the chronology of the last deglaciation. Following the maximum ice extent, warmer conditions prevailing at ~15–14 ka, during the Bølling–Allerød (B–A) Interstadial, favoured glacial retreat in the Ruda Valley. Within the B–A, glaciers experienced two phases of advance/stillstand with moraine formation at 13.5 and 13.0 ka. During the early Younger Dryas (YD), glacial retreat exposed the highest surfaces of the Saboredo Cirque (~2300–2350 m) at 12.7 ka. Small glaciers persisted only inside the highest cirques (~2470 m), such as in Sendrosa Cirque, with moraines stabilising at 12.6 ka. The results of this work present the most complete chronology for Pyrenean glacial oscillations from the B–A to the YD.  相似文献   

2.
This study presents the first multi-proxy palaeoenvironmental and palaeoclimatic history for northern South America based on the palaeolimnological reconstruction of a pond located in a dry paramo at 3570 masl. During the Last Glacial Maximum (LGM), the study area was under glacial conditions, then during global events Heinrich Stadial 1 (HS1), Bølling–Allerød (BA), and the Younger Dryas (YD), the pond expanded, accumulation rates and proxies for erosion reached the highest values, indicative of humid conditions, with maxima in humidity during the BA and YD. Dry conditions and pond desiccation occurred in the Greenlandian–Northgrippian and by 6010 cal a bp the area was transformed into the mire of today. Comparisons with records from other sites in South America indicate that changes in humidity are most likely controlled by the Intertropical Convergence Zone, mainly during the glacial and postglacial, and by changes in the Pacific Ocean, more pronounced after the YD.  相似文献   

3.
The Magdalen Islands are a valuable terrestrial record, evidencing the complex glacial and periglacial history of the Gulf of St. Lawrence. Thirteen structures interpreted as ice‐wedge pseudomorphs or composite‐wedge casts were observed at four sites on the southern Magdalen Islands and testify to the former presence of permafrost under periglacial conditions. These features truncate Carboniferous sandstone or Last Glacial Maximum (LGM) glacial and glaciomarine diamicts, both overlain by subtidal or coastal units. Six optically stimulated luminescence (OSL) and four radiocarbon ages were obtained from both host and infilled sedimentary units. These ages provide the first absolute chronological data on these structures, shedding new light on the relationships between glacial and periglacial phases. Our chronostratigraphic data suggest that, after the deglaciation and the emersion of the archipelago, thermal contraction cracks grew during the cold period of the Younger Dryas (11–10 ka; 12.9–11.5 cal. ka BP). The Younger Dryas, which is well documented in the Maritime Provinces of Canada, occurred after a pedogenesis phase associated with the Allerød warm period evidenced by the well‐developed palaeopodzol ubiquitous on the Magdalen Islands.  相似文献   

4.
This paper presents an event stratigraphy based on data documenting the history of vegetation cover, lake‐level changes and fire frequency, as well as volcanic eruptions, over the Last Glacial–early Holocene transition from a terrestrial sediment sequence recovered at Lake Accesa in Tuscany (north‐central Italy). On the basis of an age–depth model inferred from 13 radiocarbon dates and six tephra horizons, the Oldest Dryas–Bølling warming event was dated to ca. 14 560 cal. yr BP and the Younger Dryas event to ca. 12 700–11 650 cal. yr BP. Four sub‐millennial scale cooling phases were recognised from pollen data at ca. 14 300–14 200, 13 900–13 700, 13 400–13 100 and 11 350–11 150 cal. yr BP. The last three may be Mediterranean equivalents to the Older Dryas (GI‐1d), Intra‐Allerød (GI‐1b) and Preboreal Oscillation (PBO) cooling events defined from the GRIP ice‐core and indicate strong climatic linkages between the North Atlantic and Mediterranean areas during the last Termination. The first may correspond to Intra‐Bølling cold oscillations registered by various palaeoclimatic records in the North Atlantic region. The lake‐level record shows that the sub‐millennial scale climatic oscillations which punctuated the last deglaciation were associated in central Italy with different successive patterns of hydrological changes from the Bølling warming to the 8.2 ka cold reversal. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
The late‐glacial Bølling period was first identified by Johs. Iversen on the basis of pollen results from Lake Bølling Sø in Denmark. Because there were no radiocarbon dates from the sequence the Bølling Chronozone (12 000–13 000 14C yr BP) was later established on the basis of dates from other sites. A new project is reinvestigating the sediments from the Bølling Sø sequence with AMS radiocarbon dating and multiproxy analyses. Here we present results of AMS radiocarbon dating, macrofossil analyses, cladoceran analyses (Cladocera concentrations and chydorid ephippia) and Pediastrum analyses (concentrations). The AMS dates on land plant remains show that the lower part of the sequence is around 12 500 14C yr BP, and thus clearly pre‐dates the Allerød chronozone. However, construction of a chronology for the sequence was problematic, partly because of reworking of macroscopic plant remains. The climate ameliorated after glacial conditions to such an extent that growth of plants could begin at ca. 12 500 14C yr BP, but the results of multiproxy analyses show little evidence for a further warming period during the pre‐Allerød part of the sequence. Lake productivity was low, and tree birch rare or maybe absent. This may reflect widespread occurrence of dead ice, unstable soils, heavy in‐wash of minerogenic matter to the lake, resulting in turbid water and rapid sedimentation. The early pioneer vegetation was characterised by Salix polaris and Dryas octopetala, and by herbs. The Allerød Chronozone, and especially its initial part, appears to have been relatively warm but reduced cladoceran concentrations and increased proportion of chydorid ephippia suggest that climate cooled in the middle Allerød and that the late Allerød was colder than the early part. The early Younger Dryas was probably colder than the late Younger Dryas. Clear warming is apparent at the beginning of the Holocene, where the first macrofossil evidence of trees (Betula pubescens, Populus tremula) is found. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
Earlier spring onset and the associated extension of the growing season in high latitudes belong to the most obvious consequences of global warming. The natural dynamics of growing-season properties during past climate shifts however, are extremely difficult to reconstruct since temperature reconstructions are hardly ever seasonally resolved and the applied proxies such as chirinomid or pollen analysis are mainly sensitive to summer temperatures. Here we apply a newly developed leaf cuticle-based proxy to reconstruct growing degree-days (GDD) in a quantitative way and to estimate changes in the timing of spring onset over the last deglaciation. Cuticle analyses of fossil birch leaves preserved in lake sediments from southern Germany reveal extremely low GDD values during the Late Pleniglacial, which are rapidly increasing at the onset of the Bølling/Allerød interstadial. While temperature and GDDs show a simultaneous warming during deglaciation, a GDD decline precedes lowering of summer temperatures during the Older Dryas cooling. Later bud-burst dates support the hypothesis of a shortening the growing season during this cool pulse.  相似文献   

7.
Detailed 10Be and 14C dating and supporting pollen analysis of Alpine Lateglacial glacial and landslide deposits in the Hohen Tauern Mountains (Austria) constrain a sequence‐based stratigraphy comprising a major landslide (13.0±1.1 ka) overlain by till and termino‐lateral moraines of an advancing (12.6±1.0 ka) and retreating (11.3±0.8 ka) glacier in turn overlain by a minor landslide (10.8±1.1 ka). These results define glacier activity during the Younger Dryas age Egesen stadial bracketed by landslide activities during the Bølling‐Allerød interstadial and the Preboreal. In contrast to recent studies on Holocene glaciation in the Alps, no traces of any Holocene glacier advance bigger than during the Little Ice Age are documented. Furthermore, this study demonstrates the advantages of using an allostratigraphical approach based on unconformity‐bounded sedimentary units as a tool for glacial stratigraphy in formerly glaciated mountain regions, rather than a stratigraphy based on either isolated morphological features or lithostratigraphical characteristics.  相似文献   

8.
The deglaciation history of the Escarra and Lana Mayor glaciers (Upper Gállego valley, central Spanish Pyrenees) had been reconstructed on the basis of detailed geomorphological studies of glacier deposits, sedimentological and palynological analyses of glacial lake sediments and an accelerator mass spectrometry (AMS) 14C chronology based on minimum ages from glacial lake deposits. The maximum extent of the Pyrenean glaciers during the last glaciation was before 30 000 yr BP and pre‐dated the maximum advances of the Scandinavian Ice Sheet and some Alpine glaciers. A later advance occurred during the coldest period (around 20 000 yr BP), synchronous with the maximum global ice extent, but in the Pyrenees it was less extensive than the previous one. Later, there were minor advances followed by a stage of debris‐covered glaciers and a phase of moraine formation near cirque backwalls. The deglaciation chronology of the Upper Gállego valley provides more examples of the general asynchroneity between mountain and continental glaciers. The asynchroneity of maximum advances may be explained by different regional responses to climatic forcing and by the southern latitude of the Pyrenees. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
A Lateglacial and early Holocene sequence of coleopteran assemblages is described from La Taphanel in the Massif Central, France. The site is a sediment-filled small lake at an altitude of almost 1000 m. The insect fauna provides evidence for a detailed palaeoecological reconstruction, and in particular enables a reconstruction of climatic changes at the close of the last glaciation. A sudden climatic warming occurs at about 13000 yr BP followed by a temperate episode equivalent in time to the Bølling period. There is clear evidence of a short cold period between the Bølling and Allerød that is approximately equivalent to the Older Dryas period. The Allerød phase is decidedly cooler than the Bølling, as is shown by the Coleoptera from several sites in northwest Europe. A clear Younger Dryas signal is provided by the Coleoptera, with climates similar in severity to those of the glacial period. The climatic improvement at the start of the Holocene is also sudden, so that by Preboreal times temperatures were equivalent to those of the present day.  相似文献   

10.
We present a Lateglacial and early Holocene chironomid‐based July air temperature reconstruction from Foppe (1470 m a.s.l.) in the Swiss Southern Alps. Our analysis suggests that chironomid assemblages have responded to major and minor climatic fluctuations during the past 17 000 years, such as the Oldest Dryas, the Younger Dryas and the Bølling/Allerød events in the Lateglacial and the Preboreal Oscillation at the beginning of the Holocene. Quantitative July air temperature estimates were produced by applying a combined Norwegian and Swiss temperature inference model consisting of 274 lakes to the fossil chironomid assemblages. The Foppe record infers average July air temperatures of ca. 9.9 °C during the Oldest Dryas, 12.2 °C during most of the Bølling/Allerød and 11.1 °C for the Younger Dryas. Mean July air temperatures during the Preboreal were 14 °C. Major temperature changes were observed at the Oldest Dryas/Bølling (+2.7 °C), the Allerød/Younger Dryas (?2 °C) and the Younger Dryas/Holocene transitions (+3.9 °C). The temperature reconstruction also shows centennial‐scale coolings of ca. 0.8–1.4 °C, which may be synchronous with the Aegelsee (Greenland Interstadial 1d) and the Preboreal Oscillations. A comparison of our results with other palaeoclimate records suggests noticeable temperature gradients across the Alps during the Lateglacial and early Holocene. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Palaeoenvironmental change following deglaciation of the last British–Irish Ice Sheet on the continental shelf west of Ireland was investigated using multiproxy analyses of sediment and foraminifera data from nine sediment cores. Lithofacies associations record various depositional regimes across the shelf, which evolve from subglacial to postglacial conditions. Census data provide the first characterisation of benthic foraminifera populations across the continental shelf and multivariate analyses reveal three distinct biotopes. Biomineralization within these biotopes is restricted to ≤21 200 cal a bp by four radiocarbon ages. The transition from glacial to postglacial benthic foraminifera populations near the shelf break marks the establishment of productive, nutrient-rich, ice-distal conditions at ~20 900 cal a bp ; these conditions may also mark the start of favourable conditions for postglacial cold-water coral growth. Postglacial conditions on the inner shelf were not established until <14 500 cal a bp , suggesting glacial conditions west of Ireland may have persisted into the Bølling–Allerød Interstadial.  相似文献   

12.
The upwelling region off northwest Africa is one of the most productive regions in the world ocean. This study details the response of surface‐ and deep‐water environments off Mauritania, northwest Africa, to the rapid climate events of the last deglaciation, especially the Bølling–Allerød (15.5–13.5 ka BP) and Younger Dryas (13.5–11.5 ka BP). A high accumulation rate gravity core GeoB7926‐2, recovered at ~20° N, 18° W, was analysed for the grain size distribution of the terrigenous sediment fraction, the organic carbon content, diatom and benthic foraminifera communities. Humid conditions were observed during the Bølling–Allerød with a high contribution of fluvial sediment input. During the Younger Dryas intensified trade winds caused a larger sediment input of aeolian dust from the Sahara and more intense upwelling with higher primary productivity, as indicated by high diatom concentrations. The abrupt and large increase of organic matter caused low oxygen conditions at the sea floor, reflected by the poor benthic foraminiferal fauna and the dominance of the low‐oxygen‐tolerant foraminiferal species Bulimina exilis. This is surprising since low‐oxygen conditions have not been recorded during modern times at the sea floor in this region, despite present‐day intensive upwelling and high primary productivity. After the Younger Dryas, more humid conditions returned, diatom abundance decreased and B. exilis was replaced by typical deep‐sea species as found in the region today, indicating the return of more oxygenated conditions at the sea floor. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
A chironomid–July air temperature inference model based on chironomid assemblages in the surface sediments of 81 Swiss lakes was used to reconstruct Late Glacial July air temperatures at Lac Lautrey (Jura, Eastern France). The transfer‐function was based on weighted averaging–partial least squares (WA‐PLS) regression and featured a leave‐one‐out cross‐validated coefficient of determination (r2) of 0.80, a root mean square error of prediction (RMSEP) of 1.53 ° C, and was applied to a chironomid record consisting of 154 samples covering the Late Glacial period back to the Oldest Dryas. The model reconstructed July air temperatures of 11–12 ° C during the Oldest Dryas, increasing temperatures between 14 and 16.5 ° C during the Bølling, temperatures around 16.5–17.0 ° C for most of the Allerød, temperatures of 14–15 ° C during the Younger Dryas and temperatures of ca. 16.5 ° C during the Preboreal. The Lac Lautrey record features a two‐step July air temperature increase after the Oldest Dryas, with an abrupt temperature increase of ca. 3–3.5 ° C at the Oldest Dryas/Bølling transition followed by a more gradual warming between ca. 14 200 and 13 700 BP. The transfer‐function reconstructs a less rapid cooling at the Allerød/Younger Dryas transition than other published records, possibly an artefact caused by the poor analogue situation during the earliest Younger Dryas, and an abrupt warming at the Younger Dryas/Holocene transition. During the Allerød, two centennial‐scale 1.5–2.0 ° C coolings are apparent in the record. Although chronologically not well constrained, the first of these cold events may be synchronous with the beginning of the Gerzensee Oscillation. The second is inferred just before deposition of the Laachersee tephra at Lac Lautrey and is therefore coeval with the end of the Gerzensee Oscillation. In contrast to the Greenland oxygen isotope records, the Lac Lautrey palaeotemperature reconstruction lacks a clearly defined Greenland Interstadial (GI) event 1d and the decreasing temperature trend during the Bølling/Allerød Interstadial. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
The transition from the last glacial and beginning of Bølling–Allerød and Pre‐Boreal periods in particular is marked by rapid increases in atmospheric methane (CH4) concentrations. The CH4 concentrations reached during these intervals, ~650–750 ppb, is twice that at the last glacial maximum and is not exceeded until the onset of industrialization at the end of the Holocene. Periods of rapid sea‐level rise as the Last Glacial Maximum ice sheets retreated and associated with ‘melt‐water pulses’ appear to coincide with the onset of elevated concentrations of CH4, suggestive of a potential causative link. Here we identify and outline a mechanism involving the flooding of the continental shelves that were exposed and vegetated during the glacial sea‐level low stand and that can help account for some of these observations. Specifically, we hypothesize that waterlogging (and later, flooding) of large tracts of forest and savanna in the Tropics and Subtropics during the deglacial transition and early Holocene would have resulted in rapid anaerobic decomposition of standing biomass and emission of methane to the atmosphere. This novel mechanism, akin to the consequences of filling new hydroelectric reservoirs, provides a mechanistic explanation for the apparent synchronicity between rate of sea‐level rise and occurrence of elevated concentrations of ice core CH4. However, shelf flooding and the creation of transient wetlands are unlikely to explain more than ~60 ppb of the increase in atmospheric CH4 during the deglacial transition, requiring additional mechanisms to explain the bulk of the glacial to interglacial increase. Similarly, this mechanism has the potential also to play some role in the rapid changes in atmospheric methane associated with the Dansgaard–Oeschger cycles. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
The timing of glaciation in the Lahul Himalaya of northern India was ascertained using the concentrations of cosmogenic 10Be and 26Al from boulders on moraines and drumlins, and from glacially polished bedrock surfaces. Five glacial stages were identified: Sonapani I and II, Kulti, Batal and Chandra. Of these, cosmogenic exposure ages were obtained on samples representative of the Batal and Kulti glacial cycles. Stratigraphical relationships indicate that the Sonapani I and II are younger. No age was obtained for the Chandra glacial advance. Batal Glacial Stage deposits are found throughout the valley, indicating the presence of an extensive valley glacial system. During the Kulti Stage, glaciers advanced ca. 10 km beyond their current positions. Moraines produced during the Batal Stage, ca. 12–15.5 ka, are coeval with the Northern Hemisphere Late‐glacial Interstadial (Bølling/Allerød). Deglaciation of the Batal Glacial Stage was completed by ca. 12 ka and was followed by the Kulti Glacial Stage during the early Holocene, at ca. 10–11.4 ka. On millennial time‐scales, glacier oscillations in the Lahul Himalaya apparently reflect periods of positive mass‐balance coincident with times of increased insolation. During these periods the South Asian summer monsoon strengthened and/or extended its influence further north and west, thereby enhancing high‐altitude summer snowfall. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
During the last glacial termination, the climate system experienced intense global variations whose causes and impacts are not fully defined, particularly for low latitudes. The northwestern Mexico Sky Islands present a climate-sensitive ideal setting to record palaeoecological and palaeoclimatic changes due to their physiographic complexity and location in the ecotone between temperate and tropical ecosystems. High-resolution pollen analysis and a detailed sedimentological study were conducted at the Ciénega Tonibabi tropical thorn scrub site. The 15 540–0 cal a bp nearly continuous record shows that the North Atlantic Ocean did have a cold and humid climatic influence during the glacial stages of the end of the Pleistocene, including a sharp pulse during the Younger Dryas. However, a shift to the Pacific Ocean influence occurred during the Holocene, which led to the development of the El Niño conditions prevailing today. Colder and warmer phases follow one another with higher or lower winter precipitation, including a sharp Bølling–Allerød and development and intensification of the North American monsoon. They are reflected in hydrological changes as well as in the advances, retreats and intermingling of coniferous forests and tropical thorn scrub.  相似文献   

17.
In this study we have obtained 17 cosmogenic exposure ages from three well‐developed moraine systems – Halland Coastal Moraines (HCM), Göteborg Moraine (GM) and Levene Moraine (LM) – which were formed during the last deglaciation in southwest Sweden by the Scandinavian Ice Sheet (SIS). The inferred ages of the inner HCM, GM and LM are 16.7 ± 1.6, 16.1 ± 1.4 and 13.6 ± 1.4 ka, respectively, which is slightly older than previous estimates of the deglaciation based on the minimum limiting radiocarbon ages and pollen stratigraphy. During this short interval from 16.7 ± 1.6 to 13.6 ± 1.4 ka a large part (100–125 km) of the marine‐based sector of the SIS in southwest Sweden was deglaciated, giving an average ice margin retreat between 20 to 50 m a?1. The inception of the deglaciation pre‐dated the Bølling/Allerød warming, the rapid sea level rise at 14.6 cal. ka BP and the first inflow of warm Atlantic waters into Skagerrak. We suggest that ice retreat in southwest Sweden is mainly a dynamical response governed by the disintegration of the Norwegian Channel Ice Stream and not primarily driven by climatic changes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Detailed fieldwork and new extensive 14C dating of residual channel infillings provide data for the reconstruction of the Late‐glacial channel downcutting and incision history of the Venlo–Boxmeer lower reach of the River Meuse (= Maas) in the southern Netherlands. Within a period of 500–1300 yr after Late‐glacial climatic amelioration, the Meuse responded to increased discharges and decreased sediment supply by adjusting the width/depth ratio of its channels. Two main phases of channel downcutting are followed by two main phases of floodplain lowering and narrowing, indicating net floodplain degradation by the fluvial system as a non‐linear response to Late‐glacial and Early Holocene climate change. Some 1300 yr after initial late‐glacial warming, channels downcut rapidly during the Early Bølling (13.3–12.5 kyr BP) and adopted a high‐sinuosity meandering style. Channel downcutting paused around 11.9 kyr BP, possibly in response to rising groundwater levels and/or the Older Dryas cooling event. Between 11.9 and 11.3 kyr BP a new floodplain was formed. Then, lateral erosion took place and initiated a first phase of 2.6 m floodplain lowering during the Late Allerød. Gradual climate deterioration during the Allerød progressively broke up soils and vegetation cover, from 11.3 to 10.9 kyr BP. The Meuse gradually adjusted to an increased ratio of sediment supply over transport capacity through higher width/depth ratios. Main channels became shallower and adopted a low‐sinuosity pattern, finally culminating in a braided river system during the Younger Dryas. The final Holocene warming resulted, within 500 yr, in renewed rapid channel downcutting by a single low‐sinuosity channel during the Early Preboreal, followed by a second phase of 1.8–2.8 m floodplain lowering. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
Despite warming regional conditions and our general understanding of the deglaciation, a variety of data suggest glaciers re‐advanced on Svalbard during the Lateglacial–early Holocene (LGEH). We present the first well‐dated end moraine formed during the LGEH in De Geerbukta, NE Spitsbergen. This landform was deposited by an outlet glacier re‐advancing into a fjord extending 4.4 km beyond the late Holocene (LH) maximum. Comparing the timing of the De Geerbukta glacier re‐advance to a synthesis of existing data including four palaeoclimate records and 15 other proposed glacier advances from Svalbard does not suggest any clear synchronicity in glacial and climatic events. Furthermore, we introduce six additional locations where glacier moraines have been wave‐washed or cut by postglacial raised marine shorelines, suggesting the landforms were deposited before or during high relative sea‐level stands, thus exhibiting a similar LGEH age. Contrary to current understanding, our new evidence suggests that the LGEH glaciers were more dynamic, exhibited re‐advances and extended well beyond the extensively studied LH glacial expansion. Given the widespread occurrence of the LGEH glacier deposits on Svalbard, we suggest that the culmination of the Neoglacial advances during the Little Ice Age does not mark the maximum extent of most Svalbard glaciers since deglaciation; it is just the most studied and most visible in the geological record.  相似文献   

20.
The timing of the local last glacial maximum in the mountains of the Northern Iberian Peninsula is not synchronous with the global Last Glacial Maximum (LGM) probably due to the marginal position of the Northern Iberian Peninsula within the European continent. The study of a Cantabrian massif, the Asón platform and summits, provides new data on the extent and timing of the local last glaciation. Here we can place the last maximal extent of glaciers during Early Würm, according to OSL dating on till samples. The main glaciers developed at least between 78-65 ka BP, well centred on MIS 4 and even the transition to MIS 5. The erosive efficacy of these glaciers decreased later, ca. 45–40 ka BP, until they abruptly disappeared from the edges of the massif. A new ice advance left well-defined moraines at the edges of the massif’s internal depressions, indicating a tongue disjunction phase with two glacier sub-stages, probably one at the beginning of the cooling ca. 27–25 ka BP, followed by a retreat and another glacial advance ca. 21–18 ka BP. After these episodes the glaciers disappeared from the Asón Mountains and only some residual glaciers were formed that may be related to the LGM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号