首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Late Quaternary ( c . 130,000–10,000 BP) glacial history of the central west coast of Jameson Land, East Greenland, is reconstructed through glacial stratigraphical studies. Seven major sedimentary units are described and defined. They represent two interglacial events (where one is the Holocene). one interstadial event and two glacial events. The older interglacial event comprises marine and fluvial sediments, and is correlated to the Langelandselv interglacial, corresponding to oxygen isotope sub-stage 5e. It is followed by an Early Weichselian major glaciation during the Aucellaelv stade, and subsequently by an Early Weichselian interstadial marine and deltaic event (the Hugin Sø interstade). Sediments relating to the Middle Weichselian have not been recognized in the area. The Hugin Sø interstade deposits have been overrun by a Late Weichselian ice advance, during the Flakkerhuk stade, when the glacier, which probably was a thin, low gradient fjord glacier in Scoresby Sund, draped older sediments and landforms with a thin till. Subsequent to the final deglaciation, some time before 10,000BP, the sea reached the marine limit around 70 m a.s.l., and early Holocene marine, fluvial and littoral sediments were deposited in the coastal areas.  相似文献   

2.
The deposits of six glacial episodes, including five till beds and fluvial deposits of one temperate substage, stratigraphically lying between the Holsteinian and Eemian Interglacials have been recognized in the geological record of the Kleszczów Graben, central Poland. Two other temperate substages have been recognized on the basis of well-developed weathering horizons on the tills. The depositional environments and general petrological features of these sediments are described and their stratigraphical position is discussed. The Saalian Complex of the Kleszczów Graben has been subdivided into the Older Saalian (three glacial episodes), the Pilica Interstadial and the Younger Saalian (three glacial episodes and two presumed interstadials). This sequence cannot be simply correlated with other Saalian stratigraphic sequences in Europe, although the pre-Odranian and Odranian (=main Drenthe) tills most probably belong to the Older Saalian, and the Wartanian (Warthe) tills to the Younger Saalian. The geological record presented here suggests that reforestation phases occurred during the Saalian. This contradicts recently developed continental stratigraphics.  相似文献   

3.
Sub-bottom sediment profiles and sediment cores show that the lacustrine sediments in lake Linnevatnet are underlain by marine sediments and a basal till that mantles the bedrock. The till was probably deposited by the glacier that during the Late Weichselian glacial maximum removed all pre-existing sediments from the basin. The cores were collected in closed basins, where continuous deposition is expected. The marine sediment in the studied cores is up to 8 m thick and consists of bioturbated clay and silt. Radiocarbon dates on shells from the base of the marine sequence suggest that glacial retreat from the lake basin occurred around 12,500BP. This is more than a thousand years older than basal shell dates from raised marine sediments on the slopes above the lake. Typical ice proximal litbofacies were not identified in the cores. stratigraphic record indicates both a rapid glacial retreat and that no younger glacial re-advances occurred. During the Younger Dryas local glaciers on western Svalbard were smaller than during the Little Ice Age. This is in sharp contrast to western Europe, where Younger Dryas glaciers were much larger than those the Little Ice Age.  相似文献   

4.
Younger Dryas cirque glaciers are known to have existed beyond the Scandinavian Ice Sheet in parts of western Norway. At Kråkenes, on the outermost coast, a cirque glacier formed and subsequently wasted away during the Younger Dryas. No glacier existed there during the Allerød. Large cirque moraines, some with marine deltas and associated fans, extend into the western part of Sykkylvsfjorden. Comparison with existing late-glacial sea-level curves shows that the uppermost marine sediment in these features was deposited well above Younger Dryas sea-level, demonstrating that the cirques were occupied by glaciers before the Younger Dryas. During the Younger Dryas the cirque glaciers expanded, and some advanced across the deltas, depositing till and supplying the sediment to form lower-level fans and deltas controlled by Younger Dryas sea level. The extent of the Younger Dryas advance of some of the glaciers was, at least in part, controlled by grounding on material deposited before the Younger Dryas. The depositional history of the glacial–marine deposits in the Sykkylven area indicates that cirque glaciers existed throughout Late-glacial time and only expanded during the Younger Dryas. The sediment sequence in glacial lakes beyond cirque moraines and reconstructions of glacier equilibrium lines indicate that this was true for most cirques in western Norway. Only on the outermost coast were new glaciers formed in response to Younger Dryas climate cooling. © 1998 John Wiley & Sons Ltd.  相似文献   

5.
Stratigraphical exposures of both glacial and non‐glacial sediments at Morgan Bluffs, a >6‐km long exposure on the east coast of Banks Island, comprise a discontinuous archive of Quaternary environmental change. A detailed facies analysis of the sediments and a new stratigraphical framework is incompatible with the many climatostratigraphical units proposed previously. Instead, three distinct intervals of sedimentation are recognized. The first records the progradation of a delta, followed by fluvial aggradation of a braided river valley perhaps ~1 Ma. The second documents glacigenic sedimentation, including fluctuations of a tidewater glacier margin, in a marine basin more than 0.78 Ma. The third records till deposition by the NW Laurentide Ice Sheet during the Late Wisconsinan, followed by the progradation of a deglacial, ice‐contact delta into an ice‐dammed lake ~12.8 cal. ka BP. The revised stratigraphical framework adds important new terrestrial observations to a sparse and fragmentary data set of Quaternary environmental change in the Canadian Arctic. This study challenges former references and correlations to the previously proposed climatostratigraphical framework and nomenclature.  相似文献   

6.
Lyså, A., Hjelstuen, B. O. & Larsen, E. 2009: Fjord infill in a high‐relief area: Rapid deposition influenced by deglaciation dynamics, glacio‐isostatic rebound and gravitational activity. Boreas, 10.1111/j.1502‐3885.2009.00117.x. ISSN 0300‐9483. Seismic profiles and gravity cores have been collected from the previously glaciated Nordfjord system on the west coast of Norway. The results give new information about the deglaciation history of the area and contribute to our understanding of fjord fill in high relief areas. During the last deglaciation, up to 360 m of sediments was deposited in the 135 km long fjord system. Shortly after the coastal area became ice‐free, ~12 300 14C years BP, the first ice‐marginal deposits were formed, probably due to a minor glacier re‐advance. The greatest volume of sediments in the fjord was deposited during the Allerød ice recession period, the Younger Dryas re‐advance and the succeeding ice retreat period until the ice disappeared from the fjord in early Preboreal. During the Allerød, the fjord was ice‐free and glaciomarine stratified sediments were deposited. The ice margin is suggested to have been located just west of Lake Strynevatnet before the advance during the Younger Dryas. In the late phase of the Younger Dryas, and within the succeeding ~1000 years, the glacio‐isostatic rebound was rapid, and extensive re‐sedimentation took place. Slide activities continued into mid‐Holocene, albeit with less intensity and were followed by normal and calm marine conditions that prevailed until the present. One huge rock avalanche into the fjord took place between 2200 and 1800 14C yr BP, probably triggering a tsunami and several slides in the fjord. Even though glacigenic sediments totally dominate in terms of sediment volume, the present study underlines the importance of re‐sedimentation and other gravitational processes in such fjord settings.  相似文献   

7.
Differentiating between forced regressive deposits from deglacial periods in high latitude domains and forced regressive deposits from the onset of glacial periods in low latitude domains is fundamental for the accurate interpretation of glacial cycles within the geological record and then for the reconstruction of palaeogeography and palaeo‐climate. A forced regressive deglacial sequence is documented from the Lake Saint‐Jean basin (Québec, Canada). In this area, the Late Pleistocene to Holocene sediments have recorded the Laurentide ice sheet retreat accompanied by the invasion of marine waters (Laflamme Gulf) from ca 12·9 cal kyr bp . Subsequently, fluvio‐deltaic and coastal prograding wedges were deposited; they followed the base‐level fall due to glacio‐isostatic rebound. This succession, representing a transition from glacial to post‐glacial periods within a previously glaciated area, was investigated through recent mapping, preserved landforms, facies analysis, and new optical stimulated luminescence and radiocarbon dates. Three basin‐scale geological sections share a common lower part made of isolated ice‐contact fan deposits overlying bedrock. Throughout the entire basin, ice‐contact fans are capped by glacimarine muds. Above, fluvial and coastal prograding systems were deposited and evolved through four steps: (i) deltaic systems progressively increased in width; (ii) coastal influence on sedimentation increased; (iii) hydrographic drainage systems became more organised; and (iv) deltas graded from steep (Gilbert delta) to low‐angle foresets (mouth‐bar delta). Deposited during the base‐level fall from glacio‐isostatic rebound, the complete succession has been designated as a single falling stage system tract referred to as a deglacial falling stage system tract. It is representative of a deglaciation sequence in areas previously covered by ice during glacial periods (i.e. medium to high latitude domains). Diagnostic criteria are provided to identify such a deglacial falling stage system tract in the geological record, which may aid identification of previously unknown glacial cycles.  相似文献   

8.
Deposits of Late Pleistocene age were investigated near the Fynselv river on the southwestern coast of Jameson Land. East Greenland. The deposits are of fluvial, deltaic shallow marine and glacigenic origin. Four stratigraphic units are recorded. Unit I consists of deltaic and shallow marine deposits reflecting a relative sea level of at least 20 m above the present. Elevated fluvial deposits represent the subaerial part of the depositional system. The system existed during full interglacial and subarctic conditions as indicated by remains or flora and Fauna and unit I is correlated with the Langelandselv interglaciation (isotopic substage 5e). Unit II consists of a till deposited by a glacier in the Scoresby Sund Fjord during the beginning of the Early Weichselian referred to as the Aucellaelv stade. The glacier probably melted in a marine environment. Unit III represents a marine delta system during the Hugin Sø interstade. and reveals a relative sea level of at least 62 m above the present. Unit IV consists of till and kame deposits assumed to be deposited by a glacier in the Scoresby Sund Fjord during the Flakkerhuk stade. probably a Late Weichselian glacier advance.  相似文献   

9.
Thick deposits of glaciomarine clay and silt overlain by Holocene marine sediments in Norwegian fjord valleys have been, and still are, subject to erosional processes such as river incision, ravine formation and slide activity. In Buvika, Mid‐Norway, these land‐forming processes have been highly influenced by the valley‐fill stratigraphy. Glaciomarine and marine clay sediments dominate this 8 km long hanging valley south of the Gaulosen fjord, with local occurrences of coarser‐grained sediments. Studies of sediments and structures in road excavations together with 14C ages indicate at least one, possibly two, minor glacier readvances in late Allerød/early Younger Dryas (YD) time. This implies a more dynamic ice sheet with more minor ice‐front oscillations than earlier documented in this region. Glacioisostatic rebound resulted in groundwater leaching of marine clay and quick‐clay formation in certain layers or zones. The relative sea‐level fall led to incision by rivers accompanied by numerous slides involving quick clay, which completely liquefies when remoulded. To the east, permeInger‐Lise Solberg (e‐mail: inger‐lise.solberg@sintef.no ), Department of Geology and Mineral Resources Engineering, Norwegian University of Science and Technology (NTNU). Present address: SINTEF Building and Infrastructure, Høgskoleringen 7a, NO‐7465 Trondheim, Norway; Kåre Rokoengen, Department of Geology and Mineral Resources Engineering, NTNU, Sem Sælands veg 1, NO‐7491 Trondheim, Norway; Louise Hansen, Lars Olsen and Harald Sveian, Geological Survey of Norway, NO‐7491 Trondheim, Norwayable layers of northwesterly dipping sand and gravel generally originate from a former ice‐marginal delta. These relatively thick and frequent layers of interbedded sand and gravel in the clay‐dominated deposits drain groundwater in the slopes, leading to the development of deeply incised ravines. To the south and north, thinner layers of coarse material in the clay lead to pore‐pressure build‐ups and quick‐clay development, resulting in numerous slide scars. Knowledge of the morphology, stratigraphy and erosion pattern of areas prone to formation of quick clay is important in order to understand the landscape development and evaluate risk areas.  相似文献   

10.
The retreat of the Barents Sea Ice Sheet on the western Svalbard margin   总被引:1,自引:0,他引:1  
The deglaciation of the continental shelf to the west of Spitsbergen and the main fjord, Isfjorden. is discussed based on sub-bottom seismic records and scdirncnt cores. The sea lloor on the shelf to the west of Isfjorden is underlain by less than 2 m of glaciomarine sediments over a firm diamicton interpreted as till. In central Isfjordcn up to 10 m of deglaciation sediments were recorded, whereas in cores from the innermost tributary, Billefjorden, less than a meter of ice proximal sediments was recognized between the till and the 'normal' Holocene marine sediments. We conclude that the Barents Sea Ice Sheet terminated along the shelf break during the Late Weichselian glacial maximum. Radiocarbon dates from thc glaciomarine sediments above the till indicate a stepwise deglaciation. Apparently the ice front rctrcatcd from the outermost shelf around 14. 8 ka A dramatic increase in the flux of line-grained glaciomarine sediments around 13 ka is assumed to reflect increased melting and/or current activity due to a climatic warming. This second stage of deglaciation was intcrruptcd by a glacial readvance culminating on the mid-shelf area shortly after 12.4 ka. The glacial readvance, which is correlated with a simultaneous readvance of the Fennoscundian ice sheet along the western coast of Norway, is attributed to the so-called 'Older Dryas' cooling event in the North Atlantic region. Following this glacial readvance the outer part of Isljorden became rapidly deglaciated around 12.3 ka. During the Younger Dryas the inner fjord branches were occupied by large outlet glaciers and possibly the ice liont terminated far out in the main fjord. The remnants of the Harcnts Sea Ice Shcet melted quickly away as a response to the Holocene warming around 10 ka.  相似文献   

11.
Using extensive data sets from three separate areas in the German North Sea sector, consisting of seismic grids, cores and in‐situ cone penetration tests (CPT), we have established a revised stratigraphical framework for the mid to late Quaternary deposits of the German North Sea sector. This framework consists of four regional unconformities and 15 other local unconformities derived from seismic profiles. Using these unconformities, along with lithological and geotechnical data, it was possible to define and correlate 14 major units and 21 subunits within the framework. The Quaternary cover in the area is characterized by a variety of environmental settings ranging from glacial terrestrial and fluvial to lacustrine as well as brackish and marine environments with associated erosion, reworking and deposition. The complexity of Quaternary deposits within the area is explained by its history of repeated ice advances interrupted by marine transgressions and exposed periglacial landscapes. Within the framework, eight buried tunnel valleys and two shallow buried river valleys are identified from seismic profiles with four phases of tunnel valley generation inferred. These phases of tunnel valley generation are associated with the Elsterian (three) and Saalian (one) glacial stages. Infill of these tunnel valleys consists of glaciofluvial sands, thick sequences of marine and lacustrine fine‐grained sediments and some reworked till remnants. Elsewhere, extensive tabular units have formed consisting of marine and fluvial sediments. We compare this new stratigraphy with previous stratigraphies for the German North Sea sector, attribute informal stratigraphical names and offer preliminary correlations with established stratigraphies from other sectors of the North Sea.  相似文献   

12.
Tillites, conglomerates and sandstones occurring in the basal part of the Smalfjord Formation along the Varangerfjord, East Finnmark, North Norway are believed to have formed during the retreat of a glacier. At Kvalnes, on the south side of the fjord, the following sequence, up to 20 m thick, is found: (1) massive monomict tillite interpreted as a subglacial till, (2) massive polymict tillite with lenticular intercalations of stratified sandstone and tillite, interpreted as supraglacial/proglacial drift, (3) polymict conglomerate interstratified with laminated sandstones, interpreted as braided stream deposits. The last named interfingers laterally and is overlain by marine sandstones. At Bigganjargga, near the head of the fjord, a lens of tillite about 3 m thick rests on a striated pavement and is overlain by sandstones and shales. Part of the tillite, containing irregular patches of slightly winnowed tillite, is interpreted as a melt-out till, while a marginal part consisting of inclined tillite beds is interpreted as a series of flow till deposits. The lens is believed to be an oblique section through what was originally an ice-cored moraine ridge. During a subsequent transgression, the moraine was partially eroded, a lag conglomerate was formed, and overlying marine sediments were deposited. Bedded flow tills formed in a supraglacial/proglacial environment may be preserved where the extent of current reworking is very low (such as an isolated end moraine). Stratified conglomerate and sandstone, intimately intercalated with tillite, is to be expected at a glacier margin where glacial meltwater is locally and occasionally abundant, and glacier ablation permits downslope flowage of mobilized supraglacial fluid till.  相似文献   

13.
At Kap Herschell, in the outer fjord zone of central northeast Greenland, exposed sections in a Late Pleistocene ice-cored moraine revealed four major stratigraphic units deposited during the complex Kap Herschell Stade . All contain fragmented and redeposited marine shells that most likely belong to an Eemian or Early Weichselian marine episode. The oldest unit consists of buried ground ice with folded and sheared debris bands. Isotopic analyses show that the slope of the regression line for δ2H vs. δ18O of the ice is about 8.5. which suggests correlation with the Global Meteoric Water Line (GMWL). Data strongly suggest that the ground ice at Kap Herschell is a remnant of a Late Pleistocene glacier. It was probably generated at low altitudes (< 1000 m) in the inner fjord region or in the nunatak zone. The ground ice is unconformably overlain by all younger stratigraphic units, the oldest of which is a diamicton probably deposited as ablation till from the ice. A complex unit composed of mainly glaciolacustrine deposits and subordinate beds of fluvial and deltaic origin overlies the till and ground ice. Luminescence dating of the lacustrine sediments indicates maximum ages younger than 43 ka BP, suggesting deposition during isotope stages 3 or 2. The glaciolacustrine deposits suffered strongly from glaciotectonic deformation, caused by renewed glacier advance through the fjord. It reached the inner shelf and led to deposition of a discordant till at Kap Herschell, most probably during the Late Weichselian.  相似文献   

14.
JOHN SHAW 《Sedimentology》1987,34(1):103-116
Glacigenic sediments exposed in pits around Villeneuve, near Edmonton, Alberta, are subdivided into facies based on grain size, sedimentary structure, glacially-induced deformation and faulting, and groove marks. Two diamicton facies are recognised, one of which is interpreted as a primary till, deposited directly from glacier ice, and the other as a product of mass-movement. The diamicton facies are closely associated with current bedded facies interpreted as fluvioglacial deposits. The stratigraphic sedimentological and tectonic aspects of these fluvial deposits suggest subglacial deposition in channels and cavities. At any one place the glacier appears to have alternated between being attached to the bed, causing thrusting and sole marking, and being separated from the bed by a cavity in which fluvial and mass-movement sediments accumulated. The net result is a highly complex and laterally variable stratigraphy produced by a single glacial advance. The correct interpretation of such sequences is essential if lithostratigraphy is to be used to establish glacial history. In addition, the interpretations presented here have implications regarding the formation of soft zones in ‘till’. They indicate that the soft zones are beds of sorted sediment redeposited by mass-movement.  相似文献   

15.
The deglaciation history of the Malangen‐Målselv fjord and valley area proximally to the Tromsø‐Lyngen (Younger Dryas) moraine at Bakkejord, Malangen, northern Norway, is reconstructed based on morphostratigraphic, lithostratigraphic and geophysical evidence, and 25 radiocarbon dates from marine shells and foraminifera. The results show that following the Skarpnes event c. 12 200 14Cyr BP, and prior to the Younger Dryas readvance, the area was deglaciated at least as far as Sandmo situated 22 km proximally to the Tromsø‐Lyngen moraine. Two moraine ridges crossing the fjord at Sandmo and buried beneath thick glaciomarine sediments are correlated with this period. The area was subsequently deglaciated between 10 300 and 9200 14Cyr BP, following the Tromsø‐Lyngen (Younger Dryas) readvance. Five ice‐front accumulations post‐dating the Tromsø‐Lyngen moraine and situated 19, 27, 42, 55 and 77 km behind it are identified and dated based on radiocarbon dates and correlation of marine limits: Målsnes (c. 10 050 14Cyr BP), Kjerresnes (c. 10 000 14Cyr BP), Solli (c. 9750 14Cyr BP), Bardufoss‐Brentmoen‐Storskogmoen (c. 9600–9700 14Cyr BP) and Alapmoen (c. 9200 Cyr BP). The largest of these, at Bardufoss‐Storskogmoen, possibly accumulated as a response to an ice advance. Fourteen dates of apparent late Allerød/Younger Dryas age (11 100–10 000 14Cyr BP), obtained from fossils in glaciomarine sediments in the Målselv valley up to 77 km proximally to the Tromsø‐Lyngen moraine, are interpreted as postdating rather than predating this moraine. Several of these are considered to be too old because of uncertain reservoir age, carbon‐dating plateaus and/or contamination. This highlights uncertainties associated with radiocarbon‐dating and the profound effect such uncertainties may have on interpreting geological events.  相似文献   

16.
Deglaciation of western Central Norway   总被引:4,自引:0,他引:4  
The glacier movements and corresponding ice margins in Central Norway during Younger Dryas and Preboreal are reconstructed. Scattered, older marginal deposits are difficult to correlate. Raised beach features indicate that the deep fjords became ice-free at an early stage due to calving. In Møre og Romsdal county the glacier front lay at the fjord heads during Younger Dryas, with extensive local glaciation in the intervening mountain areas, and a limit of glaciation 500–600 m lower than the present. In certain places local moraines older than Younger Dryas have been preserved. Autochthonous block fields are widespread in the mountains of Møre og Romsdal. The lower limit of block fields lies at c. 500 m above sea level on the outermost coast and rises to c. 1500 m above sea level in the interior fjord country. No erratics, striation or lateral moraines from the inland ice have been found above this limit. Its gradient, which in outer fjord districts is about 1%, seems to indicate the ice surface at the last maximum of Weichsel glaciation.  相似文献   

17.
The stratigraphy and sedimentology of the glacial deposits exposed along the coast of east Yorkshire are reviewed. Critical sections at Filey Brigg, Barmston and Skipsea are examined to reassess the stratigraphy of Devensian Dimlington Stadial glacial deposits in the light of recent developments in glacial sedimentology. Sedimentary and glaciotectonic structures studied in the field and by using scanning electron microscopy are emphasised. Two hypotheses are considered for the genesis of the interbedded diamictons and stratified sediments. The first involves the deposition of lodgement till and/or deformation till followed by meltout till, which was overridden to produce more deformation till, reflecting periods of ice stagnation punctuated by glacier thickening. The second hypothesis, which is favoured on the basis of field evidence and micromorphology, involves the vertical accretion of a deforming till layer associated with cavity/channel or tunnel valley fills, beneath active ice. At Barmston the upper part of the diamicton contains elongate pendant structures containing gravels, indicating that the diamicton was saturated and able to flow. The diamictons, therefore, represent a complex sequence of tills deposited and deformed by active ice during the Dimlington Stadial. Previously published stratigraphical schemes involving classifications of multiple tills in east Yorkshire should be simplified and it is more appropriate to assign these to a single formation, the Skipsea Till Formation. Rhythmic glaciolacustrine and proglacial glaciofluvial sediments overlie the tills at Barmston and Skipsea. These were deposited in sag basins during deglaciation as the tills settled and deformed under thickening sediment and as buried ice melted out. Extensive sands and gravels cap the succession and were deposited on a sandur during the later stages of deglaciation.  相似文献   

18.
The sedimentology and stratigraphy of a multi‐phase glaciation sequence dating to Marine Isotope Stage 6 in the Rakaia Valley, South Island, New Zealand, is presented. This outcrop presents an example of the depositional signature of an end member of temperate valley glaciation, where voluminous sediment supply in a tectonically active setting combines with high annual temperatures and low seasonality to generate significant year‐round glacifluvial activity. Such glacial systems produce geological–climatic units that are dominated by thick sequences of aggradational gravels and proglacial lake sediments trapped behind outwash heads during deglaciation. At Bayfields Cliff, outwash sequences record an oscillating glacier margin marked by a sequence of glacier‐fed, Gilbert‐type deltas. The deltas are cut by numerous small‐scale, syndepositional, normal faults indicating both loss of glacier support and melt‐out of buried ice. A larger‐scale thrust fault system reflects late‐stage ice overrun. Braid plain gravels and chaotic disturbed glacial lake sediments are also recorded. A notable feature of these systems is the virtual absence of till in an environment with much other evidence for proximal ice. Cumulatively we regard these sediment–landform associations as diagnostic of debris‐laden, perhumid, temperate valley glacier systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Compared to the other islands in the Svalbard archipelago, Nordaustlandet offers only limited stratigraphical or sedimentological information on its Quaternary deposits. This article aims to fill the gap by presenting new results from glacial geological, sedimentological and chronological studies in the southern Murchisonfjorden area. Field data include reconnaissance mapping and detailed logging of vertical sections along cliff-face outcrops a few metres high adjacent to the present-day shoreline. Combined with OSL and AMS age determinations, these data provide evidence of three successive Weichselian sequences, each represented by the deposition of till followed by the accumulation of shallow marine deposits. Contrary to earlier conclusions, this study demonstrates that the area was occupied by a Late Weichselian glacier (LWG), although the LWG till is thin and discontinuous. Interstadial sublittoral sand related to the Mid-Weichselian interstadial was dated to 38–40 kyr, and an Early Weichselian interstadial to 76–80 kyr. The preservation of older sediments, multiple striae generations and abundant observations of weathered local bedrock material indicate weak glacial erosion within the study area. We suggest that the Late Weichselian glacier was relatively inactive and remained mainly cold-based until the deglaciation. The Isvika sections can be considered a new key site that offers further potential to improve our understanding of the Weichselian stage within the northwestern sector of the Barents–Kara Ice Sheet.  相似文献   

20.
Lake Vättern represents a critical region geographically and dynamically in the deglaciation of the Fennoscandian Ice Sheet. The outlet glacier that occupied the basin and its behaviour during ice‐sheet retreat were key to the development and drainage of the Baltic Ice Lake, dammed just west of the basin, yet its geometry, extent, thickness, margin dynamics, timing and sensitivity to regional retreat forcing are rather poorly known. The submerged sediment archives of Lake Vättern represent a missing component of the regional Swedish deglaciation history. Newly collected geophysical data, including high‐resolution multibeam bathymetry of the lake floor and seismic reflection profiles of southern Lake Vättern, are used here together with a unique 74‐m sediment record recently acquired by drill coring, and with onshore LiDAR‐based geomorphological analysis, to investigate the deglacial environments and dynamics in the basin and its terrestrial environs. Five stratigraphical units comprise a thick subglacial package attributed to the last glacial period (and probably earlier), and an overlying >120‐m deglacial sequence. Three distinct retreat–re‐advance episodes occurred in southern Lake Vättern between the initial deglaciation and the Younger Dryas. In the most recent of these, ice overrode proglacial lake sediments and re‐advanced from north of Visingsö to the southern reaches of the lake, where ice up to 400 m thick encroached on land in a lobate fashion, moulding crag‐and‐tail lineations and depositing till above earlier glacifluvial sediments. This event precedes the Younger Dryas, which our data reveal was probably restricted to north‐central sectors of the basin. These dynamics, and their position within the regional retreat chronology, indicate a highly active ice margin during deglaciation, with retreat rates on average 175 m a?1. The pronounced topography of the Vättern basin and its deep proglacial‐dammed lake are likely to have encouraged the dynamic behaviour of this major Fennoscandian outlet glacier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号