首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paleo-hydrography in the Japan Sea called a “mini-Ocean” was reconstructed based on the high-resolution analysis of diatom assemblages over the period of 150,000 yr. The decrease of diatom fertilization in the Japan Sea, when it was isolated from surrounding seas due to the drop of sea-level during the glacial to stadial phase, resulted in dissolution and/or extremely low diatom production in the northern cores in the subarctic water-masses. The annual Td′-derived paleo-SSTs (°C) were controlled by the fluctuations of 2-kyr and 4-kyr periods at intervals of 20 kyr and 40 kyr over the last 160 kyr BP, respectively. A 23-kyr cycle is recognized during the periods from 140 ka to 100 ka, according to the Wavelet analysis. After temperature and sea-level increased both at 133–128 ka, 60–53 ka and 15–10 ka, oceanic warm-water diatom species predominated at 127–119 ka and after 9 cal ka in the interstadial phase. At 21.3–16.9 ka and 12.9–9.8 ka, sea-level and salinity increased as the transgression developed. At 10.0–7.0 ka, the oceanic association shifted from cold-water species in the stadial period to warm-water ones in the interstadial phase. The fluctuations of Td′ derived-SSTs (°C) on century to millennial time-scales during the Holocene are well correlated with abrupt climatic events that different paleoclimatic proxies record in many regions of the Northern Hemisphere.  相似文献   

2.
During the last glacial interval, the North Atlantic ice sheets expanded and contracted in approximate synchronicity with orbitally forced global climate change. Variation in ice rafted detritus content in North Atlantic marine sediment cores record the waxing and waning of glaciers, as well as the abrupt temperature changes at millennial time scales. The background variations of ice rafting are punctuated by Heinrich layers, which appear to record the catastrophic collapse of the Laurentide ice sheet through the Hudson Strait. The objective of this paper is to document the evolution of glaciation on Laurentia during the last 43 14C kyr. We present a provenance study based on 40Ar/39Ar dates of individual hornblende grains from 57 samples taken at 2 cm spacing between 4 and 134 cm from core V23-14 (43.4°N, 45.25°W, 3177 m). Sedimentation rates outside of the Heinrich layers are very low in this core, but the Heinrich layers are easily identified. Laurentide glaciation did not extend into the ocean south of 55°N until about 26 14C kyr, and retreated to the coastline or beyond by 14 14C kyr. Documenting the history of this major ice sheet has significant implications for understanding ice rafting sources in more distal locations where mixing among different ice sheets is likely.  相似文献   

3.
To understand Holocene climate evolutions in low-latitude region of the western Pacific, paired δ18O and Mg/Ca records of planktonic foraminifer Globigerinoides ruber (250–300 μm, sensu stricto, s.s.) from a marine core ORI715-21 (121.5°E, 22.7°N, water depth 760 m) underneath the Kuroshio Current (KC) off eastern Taiwan were analyzed. Over the past 7500 years, the geochemical proxy-inferred sea surface temperature (SST) hovered around 27–28 °C and seawater δ18O (δ18OW) slowly decreased 0.2–0.4‰ for two KC sites at 22.7° and 25.3°N. Comparison with a published high-SST and high-salinity equatorial tropical Pacific record, MD98-2181 located at the Mindanao Current (MC) at 6.3°N, reveals an anomalous time interval at 3.5–1.5 kyr ago (before 1950 AD). SST gradient between the MC site and two KC site decrease from 1.5–2.0 °C to only 0–1 °C, and δ18OW from 0.1–0.3‰ to 0‰ for this 2-kyr time window. The high SST and low gradient could result from a northward shift of the North Equatorial Current, which implies a weakened KC. The long-term descending δ18OW and increasing precipitation in the entire low-latitude western Pacific and the gradually decreasing East Asian summer monsoonal rainfall during middle-to-late Holocene is likely caused by different land and ocean responses to solar insolation and/or enhanced moisture transportation from the Atlantic to Pacific associated with the southward movement of ITCZ.  相似文献   

4.
Sannai-Maruyama is one of the most famous and best-researched mid-Holocene (mid-Jomon) archaeological sites in Japan, because of a large community of people for a long period. Archaeological studies have shown that the Jomon people inhabi1ted the Sannai-Maruyama site from 5.9 to 4.2 ± 0.1 cal kyr BP However, a continuous record of the terrestrial and marine environments around the site has not been available. Core KT05-7 PC-02, was recovered from Mutsu Bay, only 20 km from the site, for the reconstruction of high-resolution time series of environmental records, including sea surface temperature (SST). C37 alkenone SSTs showed clear fluctuations, with four periods of high (8.4–7.9, 7.0–5.9, 5.1–4.1, and 2.3–1.4 cal kyr BP) and four of low (?8.4, 7.9–7.0, 5.9–5.1, and 4.1–2.3 cal kyr BP) SST. Thus, each SST cycle lasted 1.0–2.0 kyr, and the amplitude of fluctuation was about 1.5–2.0 °C. Total organic carbon (TOC) and C37 alkenone contents, and the TOC/total nitrogen ratio indicate that marine biogenic production was low before 7.0 cal kyr BP, but was clearly increased between 5.9 and 4.0 cal kyr BP, because of stronger vertical mixing. During the period when the community at the site prospered (between 5.9 and 4.2 ± 0.1 cal kyr BP), the terrestrial climate was relatively warm. The high relative abundance of pollen of both Castanea and Quercus subgen. Cyclobalanopsis supports the interpretation that the local climate was optimal for human habitation. Between 5.9 and 5.1 cal kyr BP, in spite of warm terrestrial climates, the C37 alkenone SST was low; this apparent discrepancy may be attributed to the water column structure in the Tsugaru Strait, which differed from the modern condition. The evidence suggests that at about 5.9 cal kyr B.P, high productivity of marine resources such as fish and shellfish and a warm terrestrial climate led to the establishment of a human community at the Sannai-Maruyama site. Then, at about 4.1 ± 0.1 cal kyr BP, abrupt marine and terrestrial cooling, indicated by a decrease of about 2 °C in the C37 alkenone SST and an increase in the pollen of taxa of cooler climates, led to a reduced terrestrial food supply, causing the people to abandon the site. The timing of the abandonment is consistent with the timing (around 4.0–4.3 cal kyr BP) of the decline of civilizations in north Mesopotamia and along the Yangtze River. These findings suggest that a temperature rise of ~2 °C in this century as a result of global warming could have a great impact on the human community and especially on agriculture, despite the advances of contemporary society.  相似文献   

5.
A sea ice record for Barrow Strait in the Canadian Arctic Archipelago (CAA) is presented for the interval 10.0–0.4 cal. kyr BP. This Holocene record is based primarily on the occurrence of a sea ice biomarker chemical, IP25, isolated from a marine sediment core obtained from Barrow Strait in 2005. A core chronology is based on 14C AMS dating of mollusc shells obtained from ten horizons within the core. The primary IP25 data are compared with complementary proxy data obtained from analysis of other organic biomarkers, stable isotope composition of bulk organic matter, benthic foraminifera, particle size distributions and ratios of inorganic elements. The combined proxy data show that the palaeo-sea ice record can be grouped according to four intervals, and these can be contextualised further with respect to the Holocene Thermal Maximum (HTM). Spring sea ice occurrence was lowest during the early–mid Holocene (10.0–6.0 cal. kyr BP) and this was followed by a second phase (6.0–4.0 cal. kyr BP) where spring sea ice occurrence showed a small increase. Between 4.0 and 3.0 cal. kyr BP, spring sea ice occurrence increased abruptly to above the median and we associate this interval with the termination of the HTM. Elevated spring sea ice occurrences continued from 3.0 to 0.4 cal. kyr BP, although they were more variable on shorter timescales. Within this fourth interval, we also provide evidence for slightly lower and subsequently higher spring sea ice occurrence during the Mediaeval Warm Period and the Little Ice Age respectively. Comparisons are made between our proxy data with those obtained from other palaeo-climate and sea ice studies for the CAA.  相似文献   

6.
Exposure dating using cosmogenic 36Cl demonstrates that the summit plateau of Scafell Pike (978 m) in the SW Lake District escaped erosion by glacier ice during the last glacial maximum (LGM; c. 26–21 kyr) and probably throughout the Devensian Glacial Stage (MIS 5d-2). Exposure ages obtained for ice-moulded bedrock on an adjacent col at 750–765 m confirm over-riding and erosion of bedrock by warm-based glacier ice during the LGM. The contrast between the two sites is interpreted in terms of preservation of tors, frost-shattered outcrops and blockfields on terrain above 840–870 m under cold-based ice. An exposure age of 17.3 ± 1.1 kyr for the col at 750–765 m suggests that substantial downwastage of the last ice sheet had occurred by c. 17 kyr, consistent with deglacial exposure ages obtained for other high-level sites in the British Isles. An exposure age of 12.5 ± 0.8 kyr obtained for a glacially transported rockfall boulder within the limits of later corrie glaciation confirms that the final episode of local glaciation in the Lake District occurred during the Loch Lomond Stade (c. 12.9–11.7 kyr). This research also demonstrated the difficulties of obtaining reliable exposure ages from rhyolite and andesite bedrock that has proved resistant to glacial abrasion.  相似文献   

7.
This article aims at discussing the ecological response of the terrestrial and fresh water dependant environments to the installation of arid conditions at the end of the Holocene Humid Period in the Atlantic and Indian monsoon domains. It is mainly focused on dry environments from Chad, Oman and Pakistan where new, high-resolution pollen sequences have been provided. Pollen data show that local hydrological conditions have played a major role in the destruction or survival of tropical tree populations at the end of the Holocene Humid Period, as well as partly explaining the asynchronous pattern of recorded environmental changes in most tropical regions. In desert areas, the response of the fresh water dependant systems to the shift from humid to arid climate conditions appears to have followed a threshold-like pattern. In contrast, terrestrial ecosystems have gradually adapted to increased drought, as shown by the progressive decrease of tropical tree species at Yoa or the gradual expansion in dry plant types in Oman and Pakistan from 6000 cal yrs BP to the present. A remarkable synchroneity in environmental change is recorded at the northern edge of the Atlantic and Indian monsoon systems, with the extreme end of the Holocene Humid Period corresponding to the last occurrence of tropical trees in the desert and the last record of prolonged SW monsoon rainfall over north-western Asia around 4700–4500 cal yrs BP.  相似文献   

8.
Two deep cores (SSDP 102 and SSDP 105) from the southeastern inner shelves of Korea were examined in order to reconstruct the paleoenvironmental history of the Korea Strait during postglacial sea-level fluctuations. The results of the lithofaces, organic geochemical components, foraminiferal assemblages, and stable isotopes show that the Korea Strait was influenced in different ways by river discharges and open-ocean currents, according to their temporal and spatial variability.The results of core SSDP 105 indicate that the southeastern coast of Korea was probably a shallow coastal environment, such as a shoreface or beach, by about 17.5 cal ka. The area remained a coastal environment that was affected by high energy conditions and partly by freshwater input during the transgressive period of 17.5–8.1 cal ka. The area has changed to a modern-type shelf environment influenced by the inflow of the Tsushima Current and by the high supply of fine-grained sediments derived from the Nakdong River since 8.1 cal ka.Meanwhile, the results of core SSDP 102 taken from the Nakdong River mouth reveal that the river mouth area was most likely a terrestrial or fluvial environment at least before 13.9 cal ka. It then changed to the estuarine (deltaic) environment that was directly affected by the Nakdong River between 13.9 and 7.0 cal ka, and established a modern-type shelf (prodeltaic) environment, which is similar in many respects to the southeastern coast of Korea after temporarily undergoing erosion between 7.0 and 6.1 cal ka.  相似文献   

9.
《Quaternary Science Reviews》2007,26(3-4):287-299
High-resolution seismic data from Lake Tana, the source of the Blue Nile in northern Ethiopia, reveal a deep sedimentary sequence divided by four strong reflectors. Data from nearshore cores show that the uppermost strong reflector represents a stiff silt unit, interpreted as a desiccation surface. Channel cuts in this surface, bordered by levee-like structures, are apparent in the seismic data from near the lake margin, suggesting fluvial downcutting and over-bank deposition during seasonal flood events. Periphytic diatoms and peat at the base of a core from the deepest part of the lake overlie compacted sediments, indicating that desiccation was followed by development of shallow-water environments and papyrus swamp in the central basin between 16,700 and 15,100 cal BP. As the lake level rose, open-water evaporation from the closed lake caused it to become slightly saline, as indicated by halophytic diatoms. An abrupt return to freshwater conditions occurred at 14,750 cal BP, when the lake overflowed into the Blue Nile. Further reflection surfaces with downcut structures are identifiable in seismic images of the overlying sediments, suggesting at least two lesser lake-level falls, tentatively dated to about 12,000 and 8000 cal BP. Since Lake Victoria, the source of the White Nile, was also dry until 15,000 cal BP, and did not reach overflow until 14,500 cal BP, the entire Nile system must have been reduced to intermittent seasonal flow until about 14,500 cal BP, when baseflow was re-established with almost simultaneous overflow of the headwater lakes of both the White and Blue Nile rivers. Desiccation of the Nile sources coincides with Heinrich event 1, when cessation of northward heat transport from the tropical Atlantic disrupted the Atlantic monsoon, causing drought in north tropical Africa. The strong reflectors at deeper levels in the seismic sequence of Lake Tana may represent earlier desiccation events, possibly contemporaneous with previous Late Pleistocene Heinrich events.  相似文献   

10.
《Quaternary Science Reviews》2007,26(3-4):279-286
A stable isotope record from a stalagmite collected from Antro del Corchia cave (Apuan Alps, Central Italy), supported by 17 uranium-series ages, indicates enhanced regional rainfall between ca 8.9 and 7.3 kyr cal. BP at the time of sapropel S1 deposition. Within this phase, the highest rainfall occurred between 7.9 and 7.4 kyr cal. BP. Comparison with different marine and lake records, and in particular with the Soreq Cave record (Israel), suggests substantial in-phase occurrence of enhanced rainfall between the Western and Eastern Mediterranean basins. There is no convincing evidence for major climatic change at the time of the “8.2 kyr event”.  相似文献   

11.
Variations in long chain alkenone-based sea surface temperature (SST) from a piston core (M04-PC1A) collected from the Korea Plateau in the East Sea (Sea of Japan) were investigated to understand paleoceanographic variations over the last 300,000 years. By combining sedimentological and geochemical proxies (the lithological marker of crudely laminated mud, alkenone SST, foraminiferal oxygen isotope values, and 14C age determination) and by comparison with previous works, we examined paleoceanographic variations back to Marine Isotope Stage (MIS) 8, approximately 300,000 years B.P. In particular, analysis of alkenones suggests that SSTs were about 8 °C and 11 °C lower during MIS 8 and MIS 6 than that in the present-day SST, respectively. Furthermore, SST was estimated to be 5 °C lower during the Last Glacial Maximum. These significant SST differences among MIS 8, 6, and 2 may be attributable to not only the formation of distinctive water masses, but also to differential alkenone synthesis under different environmental conditions. These results suggest that SSTs in the East Sea during the last three glacial periods (MIS 8, 6, and 2) were different, but rather were closely linked with regional oceanographic conditions overlapped with sensitive responses to the intensity of the East Asian monsoon. Surface-water freshening was a local paleoceanographic consequence that was imprinted in the core during MIS 2 and MIS 6, and potentially during MIS 4. Furthermore, alkenone-based SST data suggested that surface water circulation and biological productivity were strongly associated with the inflow of the Tsushima Warm Current during interglacial periods.  相似文献   

12.
Based on analysis of geothermal data from the Ural superdeep borehole (SG-4) and Onega parametric borehole, the first reconstructions of ground surface heat flux changes for the last 40 kyr have been made. The increase in heat flux during the Pleistocene-Holocene warming (20-10 ka) proceeded ~ 2 kyr earlier than the growth in surface temperature; reaching the maximum value of 0.08-0.13 W/m2 at ~ 13 ka, the heat flux was reduced. The coordinated changes in heat flux and average annual insolation at 60° N at 5-24 ka indicate that the orbital factors were the main cause of climatic changes in this period. The correlations between the changes in heat flux and CO2 content in the Antarctic ice cores and the temperature changes are analyzed.© 2014, V.S. Sobolev IGM, Siberian Branch of the RAS. Published by Elsevier B.V. All rights reserved.  相似文献   

13.
The Chulym and Kargat Rivers flow through chains of saucer-shaped depressions, which are swampy meadows or drainage lakes. In the past, all of them were lakes short-lived in different Holocene periods. These depressions accumulated a significant amount of the Chulym and Kargat runoff and thus influenced the water balance of Lake Chany. Our studies have reconstructed the history of these depressions. A model describing their filling with sediments is proposed. The lacustrine sediments penetrated by boreholes and pits are dated by the radiocarbon method at 6.3-2.0 cal. kyr BP. The data obtained explane the long existence of Lake Chany as a shallow basin and rise in its level at ~ 2 kyr BP.  相似文献   

14.
《Quaternary Science Reviews》2004,23(3-4):261-281
The organic carbon content of marine sediments is commonly used as a proxy for export production. However, in continental margin sediments a large fraction of the organic matter may be of terrestrial origin, and it is necessary to correct the total organic carbon data accordingly. Radiocarbon dating of bulk organic carbon, organic geochemistry and isotope data (δ13C and δ15N) are used here to characterize the type of organic matter present in Core JT96-09 collected at a water depth of 920 m on the slope off Western Canada. The quantities of marine and terrestrial organic carbon are then estimated using the δ13C data. The 16 kyr record obtained from Core JT96-09 suggests that accumulation of total organic carbon was highest during the late glacial and deglacial, but geochemical data indicate that as much as 70% of this carbon is terrestrial in origin. When the palaeo-record is corrected for this terrigenous input it is observed that accumulation of marine organic matter, and presumably marine export production, increased at the end of the last glacial contemporaneous with the Bølling, and that it peaked during the Allerød. Data from other palaeoproductivity proxies (i.e., bio-barium, opal and alkenones) also indicate relatively high productivity during the deglacial. These results indicate a return to modern upwelling conditions and high marine export production at ∼14.3 calendar kyr BP and a period of enhanced upwelling, relative to the present, during the Allerød.  相似文献   

15.
The amphibolite facies grade North Qinling metamorphic unit forms the centre of the Qinling orogenic belt. Results of LA-ICP-MS U-Pb zircon, 40Ar/39Ar amphibole and biotite dating reveal its Palaeozoic tectonic history. U-Pb zircon dating of migmatitic orthogneiss and granite dykes constrains the age of two possible stages of migmatization at 517 ± 14 Ma and 445 ± 4.6 Ma. A subsequent granite intrusion occurred at 417 ± 1.6 Ma. The 40Ar/39Ar plateau ages of amphibole ranging from 397 ± 33 Ma to 432 ± 3.4 Ma constrain the cooling of the Qinling complex below ca. 540 °C and biotite 40Ar/39Ar ages at about 330–368 Ma below ca. 300 °C. The ages are used to construct a cooling history with slow/non-exhumation during 517– 445 Ma, a time-integrated cooling at a rate < 2.5 °C/Ma during the period of 445–410 Ma, an acceleration of cooling at a rate of 8 °C/Ma from 397 Ma to 368 Ma, and subsequently slow/non-cooling from 368 to 330 Ma. The data show a significant delay in exhumation after peak metamorphic conditions and a long period of tectonic quiescence after the suturing of the North China and South China blocks along the Shangdan suture. These relationships exclude classical exhumation models of formation and exhumation of metamorphic cores in orogens, which all imply rapid cooling after peak conditions of metamorphism.  相似文献   

16.
《Quaternary Science Reviews》2007,26(5-6):759-772
Quantitative reconstruction of the climatic history of the Chinese Loess Plateau is important for understanding present and past environment and climate changes in the Northern Hemisphere. Here, we reconstructed mean annual temperature (MAT) and mean annual precipitation (MAP) trends during the last 136 ka based on the analysis of phytoliths from the Weinan loess section (34°24′N, 109°30′E) near the southern part of the Loess Plateau in northern China. The reconstructions have been carried out using a Chinese phytolith–climate calibration model based on weighted averaging partial least-squares regression. A series of cold and dry events, as indicated by the reconstructed MAT and MAP, are documented in the loess during the last glacial periods, which can be temporally correlated with the North Atlantic Heinrich events. Our MAT and MAP estimations show that the coldest and/or driest period occurred at the upper part of L2 unit (Late MIS 6), where MAT dropped to ca 4.4 °C and MAP to ca 100 mm. Two other prominent cold-dry periods occurred at lower Ll-5 (ca 77–62 ka) and L1-1 (ca 23–10.5 ka) where the MAT and MAP decreased to about 6.1–6.5 °C and 150–370 mm, respectively, ca 6.6–6.2 °C and 400–200 mm lower than today. However, the highest MAT (average 14.6 °C, max. 18.1 °C) and MAP (average 757 mm, max. 1000 mm) occurred at Sl interval (MIS 5). During the interstadial of L1-4–L1-2 (MIS 3) and during the Holocene warm-wet period, the MAT was about 1–2 °C and MAP 100–150 mm higher than today in the Weinan region. The well-dated MAT and MAP reconstructions from the Chinese Loess Plateau presented in this paper are the first quantitatively reconstructed proxy record of climatic changes at the glacial–interglacial timescale that is based on phytolith data. This study also reveals a causal link between climatic instability in the Atlantic Ocean and climate variability in the Chinese Loess Plateau.  相似文献   

17.
This research aims at uncovering the stand-scale Holocene fire history of balsam fir forest stands from two bioclimatic zones of the boreal forest and assessing the existence of a sub-continental shift in past fire activity that could have triggered a change in the Holocene zonal pattern. In eastern Canada, the extant closed-crown boreal forest corresponds to two ecological regions separated along 49°N, the northern black spruce zone and the southern balsam fir zone. We sampled balsam fir stands from the southern fir zone (n = 7) and among the northernmost patches of fir forest located far beyond the fir zone boundary, into the spruce zone (n = 6). Macrofossil analysis of charcoal in mineral soils was used to reconstruct both the stand-scale and regional Holocene fire histories. Data were interpreted in the context of published palaeoecological evidence. Stands of the balsam fir zone were submitted to recurrent fire disturbances between c. 9000 and 5000 cal. yr B.P. Local fire histories suggested that four sites within the fir zone escaped fire during the Holocene. Such fire protected sites allowed the continuous maintenance of the balsam fir forest in the southern boreal landscape. Stands of the spruce zone have been affected by recurrent fires from 5000 cal. yr B.P. to present. Local fire histories indicated that no site escaped fire in this zone. Published palaeoecological data suggested that balsam fir migrated to its current northern limit sometime between 7300 and 6200 cal. yr B.P. A change of the fire regime 5000 years ago caused the regional decline of an historical northern balsam fir forest and its replacement by black spruce forest. The consequence was a sub-continental reshuffling of the fir and spruce zones within the closed-crown boreal forest. The macrofossil analysis of charcoal in mineral soils was instrumental to the reconstruction of stand-scale Holocene fire history at sites where no other in situ fire proxies were available.  相似文献   

18.
Vegetation and climate since the LGM in eastern Hokkaido were investigated based on a pollen record from marine core GH02-1030 from off Tokachi in the northwestern Pacific. We also examined pollen spectra in surface samples from Sakhalin to compare and understand the climatic conditions of Hokkaido during the last glacial period. Vegetation in the Tokachi region in the LGM (22–17 ka) was an open boreal forest dominated by Picea and Larix. During the last deglaciation (17–10 ka), vegetation was characterized by abundant Betula. In the Kenbuchi Basin, central Hokkaido, a remarkable increase of Larix and Pinus occurred in the LGM and the last deglaciation, which was assigned as the “Kenbuchi Stadial.” Comparison of climatic data between the core GH02-1030 and that of Kenbuchi Basin demonstrates that variations in temperature and precipitation were larger in inland Hokkaido than in the maritime area of the Pacific coast. During the LGM in the Tokachi region, the August mean temperature was about 5 °C lower, and annual precipitation was about 40% lower than today. In the Kenbuchi Basin, central Hokkaido, the August mean temperature was about 8 °C lower, and annual precipitation was half that of today. During the last deglaciation, August mean temperatures were about 3 °C lower, and annual precipitation was about 30% lower than today in the Tokachi region. In the Kenbuchi Basin, August mean temperatures were about 5–8 °C lower, and annual precipitation was about 40–60% lower than today. Cold ocean water and a strengthened summer monsoon after 15 ka may have resulted in the formation of advection fogs, reduced summer temperatures, and a decrease in the seasonal temperature difference in the Tokachi district, which established favorable maritime conditions for Betula forests.  相似文献   

19.
Palynological and sedimentological studies of a series of slimes collected from a 284 m-long drill-well from the Kathmandu Basin reveal paleoclimatic records and environmental changes within the Kathmandu Valley during the last 2.5 myr. The slimes are composed of fluvio-deltaic and lacustrine sediments comprising sand beds of 66.3 m and mud beds of 218 m in length. Pollen analyses show Quercus and Cyclobalanopsis are predominant, with frequencies exceeding 70%. Pinus, Alnus and Gramineae are the next dominant taxa. Three fossil pollen zones were discriminated; each zone reflects major climatic change: Zone I, the oldest stage, indicates a cool and rather wet climate during 400 kyr from ca. 2.5 to 2.1 Ma; Zone II, the middle stage, reflects a warm and relatively dry climate without remarkable fluctuation; Zone III is characterized by seven cycles of warm-and-wet and cold-and-dry climate, which reflect the alternation of glacial and interglacial periods. The last cold maximum, 11 m deep, corresponds to the last glacial age around 20 kyr bp, judging from the 14C dating of the uppermost part of the lacustrine sediments.The Paleo-Kathmandu Lake is likely to have been initiated at around 2.1 Ma and to have been filled with black organic mud, the Kalimati Clay. The top of the Kalimati Clay is eroded and was overlain by fluvial sand after the last glacial age. The abrupt appearance of a 4 m-thick fossiliferous sand bed at the top of the middle member suggests a lowering of water level at around 1 Ma.  相似文献   

20.
Two coeval stalagmites from Katerloch Cave show pronounced intervals of low δ18O values around 8.2, 9.1, and 10.0 kyr (all ages are reported before the year 2000 AD) and represent an inorganic U–Th dated climate archive from the southeast of the European Alps, a region where only very few well-dated climate records exist. The O isotope curves, providing near-annual resolution, allow a direct comparison to the Greenland ice core records, as temperature was the primary factor controlling the O isotopic composition of Katerloch speleothems.The 8.2 kyr climate anomaly lasted about one century, from 8196 to 8100 yr, with a maximum amplitude of 1.1‰ at 8175 yr. The event is characterized by a rapid onset and a more gradual demise and U–Th data as well as annual lamina counting support a rapid climate change towards cooler conditions within 10–20 yr. There is no strong evidence that the 8.2 kyr anomaly was superimposed on a pronounced longer-term cooling episode, nor do the new data support two separate cooling events within the 8.2 kyr event as reported by other studies. Our record also shows a distinct climate anomaly around 9.1 kyr, which lasted 70–110 yr and showed a maximum amplitude of 1.0‰, i.e. it had a similar duration and amplitude as the (central) 8.2 kyr event. Compared to the 8.2 kyr event, the 9.1 kyr anomaly shows a more symmetrical structure, but onset and demise still occurred within a few decades only. The different progression of the 8.2 (asymmetrical) and 9.1 kyr anomaly (symmetrical) suggests a fundamental difference in the trigger and/or the response of the climate system. Moreover, both stalagmites show evidence of a climate anomaly around 10.0 kyr, which was of comparable magnitude to the two subsequent events.Using a well constrained modern calibration between air temperature and δ18O of precipitation for the study area and cave monitoring data (confirming speleothem deposition in Katerloch reflecting cave air temperature), a maximum cooling by ca 3 °C can be inferred at 8.2 and 9.1 kyr, which is similar to other estimates, e.g., from Lake Ammersee north of the Alps. The O isotopic composition of meteoric precipitation, however, is a complex tracer of the hydrological cycle and these temperature estimates do not take into account additional effects such as changes in the source area or synoptic shifts. Apart from that, the relative thickness of the seasonally controlled lamina types in the Katerloch stalagmites remains rather constant across the intervals comprising the isotopic anomalies, i.e. the stalagmite petrography argues against major shifts in seasonality during the early Holocene climate excursions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号