首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
向碰撞引起的走滑转换现象,是大陆造山带一种常见的构造样式。金沙江结合带中的斜向走滑构造是最夺目的定型构造。它的形成演化,成为大陆造山带陆内汇聚阶段的主要地质事件。笔者以区域地质调查资料为根基,利用斜向走滑构造的理论,对金沙江结合带拖顶地区的一些地质问题进行讨论。  相似文献   

2.
The geological inventory of the Variscan Bohemian Massif can be summarized as a result of Early Devonian subduction of the Saxothuringian ocean of unknown size underneath the eastern continental plate represented by the present-day Teplá-Barrandian and Moldanubian domains. During mid-Devonian, the Saxothuringian passive margin sequences and relics of Ordovician oceanic crust have been obducted over the Saxothuringian basement in conjunction with extrusion of the Teplá-Barrandian middle crust along the so-called Teplá suture zone. This event was connected with the development of the magmatic arc further east, together with a fore-arc basin on the Teplá-Barrandian crust. The back-arc region – the future Moldanubian zone – was affected by lithospheric thinning which marginally affected also the eastern Brunia continental crust. The subduction stage was followed by a collisional event caused by the arrival of the Saxothuringian continental crust that was associated with crustal thickening and the development of the orogenic root system in the magmatic arc and back-arc region of the orogen. The thickening was associated with depression of the Moho and the flux of the Saxothuringian felsic crust into the root area. Originally subhorizontal anisotropy in the root zone was subsequently folded by crustal-scale cusp folds in front of the Brunia backstop. During the Visean, the Brunia continent indented the thickened crustal root, resulting in the root's massive shortening causing vertical extrusion of the orogenic lower crust, which changed to a horizontal viscous channel flow of extruded lower crustal material in the mid- to supra-crustal levels. Hot orogenic lower crustal rocks were extruded: (1) in a narrow channel parallel to the former Teplá suture surface; (2) in the central part of the root zone in the form of large scale antiformal structure; and (3) in form of hot fold nappe over the Brunia promontory, where it produced Barrovian metamorphism and subsequent imbrications of its upper part. The extruded deeper parts of the orogenic root reached the surface, which soon thereafter resulted in the sedimentation of lower-crustal rocks pebbles in the thick foreland Culm basin on the stable part of the Brunia continent. Finally, during the Westfalian, the foreland Culm wedge was involved into imbricated nappe stack together with basement and orogenic channel flow nappes.  相似文献   

3.
Three Pan-African hypersthene-bearing monzogranitic and quartz–monzonitic plutons from the Eastern terrane of Nigeria have been investigated in detail. New major, trace and REE data, used to constrain their origin and nature, indicate that they display chemical features of ferro-potassic trans-alkaline affinity. Further trace element discrimination suggests (i) production of calc-alkaline medium-K diorite magmas by partial melting of fluid-metasomatised mantle wedge possibly combined with melts from the dehydration partial melting of altered oceanic crust; (ii) simultaneously production of the granite–quartz–monzonite ferro-potassic magmas from partial melting of hornblende-bearing granodioritic crustal sources; (iii) mixing of the two magmas. Sr initial ratios of 0.707 to 0.711 witness that the source of the granite magmas is the lower crust. Ages of the lower crustal granulitic protoliths is bracketed by Nd model ages between 1.9 and 2.2 Ga. Pb evaporation ages on single zircons constrain the emplacement of the three plutons around 580 Ma. 40Ar/39Ar ages of amphiboles at about 560 Ma suggest cooling rates around 15°C/Ma. Extensive field work has established that pluton emplacement occurred during a regional north–south dextral strike-slip tectonics following the 630–610 Ma stage of oblique continent–continent collision in this part of west Africa.  相似文献   

4.
While recycling of subducted oceanic crust is widely proposed to be associated with oceanic island, island arc, and subduction-related adakite magmatism, it is less clear whether recycling of subducted continental crust takes place in continental collision belts. A combined study of zircon U–Pb dating, major and minor element geochemistry, and O isotopes in Early Cretaceous post-collisional granitoids from the Dabie orogen in China demonstrates that they may have been generated by partial melting of subducted continental crust. The post-collisional granitoids from the Dabie orogen comprise hornblende-bearing intermediate rocks and hornblende-free granitic rocks. These granitoids are characterized by fractionated REE patterns with low HREE contents and negative HFSE anomalies (Nb, Ta and Ti). Although zircon U–Pb dating gives consistent ages of 120 to 130 Ma for magma crystallization, occurrence of inherited cores is identified by CL imaging and SHRIMP U–Pb dating; some zircon grains yield ages of 739 to 749 Ma and 214 to 249 Ma, in agreement with Neoproterozoic protolith ages of UHP metaigneous rocks and a Triassic tectono-metamorphic event in the Dabie–Sulu orogenic belt, respectively. The granitoids have relatively homogeneous zircon δ18O values from 4.14‰ to 6.11‰ with an average of 5.10‰ ± 0.42‰ (n = 28) similar to normal mantle zircon. Systematically low zircon δ18O values for most of the coeval mafic–ultramafic rocks and intruded country rocks preclude an AFC process of mafic magma or mixing between mafic and felsic magma as potential mechanisms for the petrogenesis of the granitoids. Along with zircon U–Pb ages and element results, it is inferred that the granitic rocks were probably derived from partial melting of intermediate lower crust and the intermediate rocks were generated by amphibole-dehydration melting of mafic rocks in the thickened lower crust, coupled with fractional crystallization during magma emplacement. The post-collisional granitoids in the Dabie orogen are interpreted to originate from recycling of the subducted Yangtze continental crust that was thickened by the Triassic continent–continent collision. Partial melting of orogenic lithospheric keel is suggested to have generated the bimodal igneous rocks with the similar crustal heritage. Crustal thinning by post-collisional detachment postdated the onset of bimodal magmatism that was initiated by a thermal pulse related to mantle superwelling in Early Cretaceous.  相似文献   

5.
青藏高原东南部作为板块碰撞的前缘地带一直是地球科学研究的热点,为了揭示碰撞前缘地带地壳结构特征,作者 利用布设在中国青藏高原东南部的38个宽频带流动台站记录的2487条远震P波接收函数,采用接收函数CCP叠加(共转换点 叠加)和H-κ叠加两种方法获得了研究区域详细的地壳厚度图像和泊松比值。研究结果显示:两种方法获得的地壳厚度特征 具有较好的一致性;青藏高原东南部地壳厚度存在明显的东西差异和南北差异;喜马拉雅构造区内莫霍面深度变化较大, 介于65~80 km之间;拉萨地体内莫霍面深度介于72~80 km之间;雅鲁藏布缝合带两侧地壳厚度突变,缝合带北侧和南侧地 壳厚度相差约8 km。研究区域平均泊松比值较小,为0.24,和大多数造山带泊松比偏低的特征类似。研究区域中下地壳广 泛存在强转换界面,该界面可能对应中下地壳高速层的上界面,埋深40~70 km,表明壳内发生深熔或部分熔融作用,导致 壳内发生重力分异,在中下地壳形成了高速薄层。  相似文献   

6.
V. B. Sollogub 《Tectonophysics》1970,10(5-6):549-559
The analysis of numerous seismic studies from various geological provinces has demonstrated that variations in crustal thickness depend primarily on the thickness of the “basaltic” layer. In some areas two M discontinuities can be found — the present one and an ancient one. The lower crust, formed in Proterozoic time is apparently still preserved. Roots exist under the former Proterozoic orogens, in spite of the complete denudation of the orogenic mountains. Younger (Paleozoic-Mesozoic) subsurface structures are not so clearly pronounced in the crustal structure. More active reconstruction of the crust seems to have taken place in the course of Alpine orogenesis.  相似文献   

7.
A gravimetric and magnetometric study was carried out in the north-eastern portion of the Cuyania terrane and adjacent Pampia terrane. Gravimetric models permitted to interpret the occurrence of dense materials at the suture zone between the latter terranes. Magnetometric models led to propose the existence of different susceptibilities on either side of the suture. The Curie temperature point depth, representing the lower boundary of the magnetised crust, was found to be located at 25 km, consistent with the lower limit of the brittle crust delineated by seismic data; this unusually thick portion of the crust is thought to release stress producing significant seismicity.

Moho depths determined from seismic studies near western Sierras Pampeanas are significantly greater than those obtained from gravimetric crustal models.

Considering mass and gravity changes originated by the flat-slab Nazca plate along Cuyania and western Pampia terranes, it is possible to reconcile Moho thickness obtained either by seismic or by gravity data. Thus, topography and crustal thickness are controlled not only by erosion and shortening but by upper mantle heterogeneities produced by: (a) the oceanic subducted Nazca plate with “normal slope” also including asthenospheric materials between both continental and oceanic lithospheres; (b) flat-slab subducted Nazca plate (as shown in this work) without significant asthenospheric materials between both lithospheres. These changes influence the relationship between topographic altitudes and crustal thickness in different ways, differing from the simple Airy system relationship and modifying the crustal scale shortening calculation. These changes are significantly enlarged in the study area. Future changes in Nazca Plate slope will produce changes in the isostatic balance.  相似文献   


8.
我国的一些造山带的侧向挤出构造   总被引:9,自引:1,他引:8       下载免费PDF全文
王二七  苏哲  许光 《地质科学》2009,44(4):1266-1288
尽管大陆只占地球表面的三分之一,但是人类生活在大陆上,大部分资源也来自于大陆,因此大陆构造研究有特别的意义,我国的地质前辈们为此做出了重要的贡献。然而,陆壳具有高度的非均质性,因此大陆构造要比大洋构造复杂的多,认识其演化规律极其困难,但是人类正在通过不同的途径朝这个目标前进。地块的侧向挤出是大陆构造的主要形式。尽管大规模的地块侧向挤出是否发生在青藏高原主体存在很大的争议,但是有证据显示地块的侧向挤出广泛地发生在青藏高原周边以及我国其它的一些造山带内,呈现出不同的规模、位移量和变形特征。位于滇西三江断裂带内的兰坪-思茅盆地在印度和华南第三纪的压扭性相互作用下向南挤出; 沿喜马拉雅西构造结发生的地块侧向挤出形成于早第三纪印度与欧亚大陆之间的南北向碰撞,最新的挤出地体是塔里木盆地; 雪峰地块向南的侧向挤出受控于华南地区北西-南东向区域性扭性构造作用; 沿扬子地块北缘发生的地块侧向挤出形成于扬子地块与秦岭造山带中生代晚期的南北向挤压,造成四川盆地发生向西的侧向挤出; 沿秦岭-大别山发生的地块侧向挤出发生在中生代,经历了超高压变质作用的下地壳随扬子地块的挤入向东运动,最后在桐柏-大别山隆升到地表,而中上地壳包括留凤关复理石沉积和碧口地块向西挤出。桐柏-大别山和青藏高原均形成于大陆的碰撞,地壳都曾发生过大规模的增厚。因此,有理由相信青藏高原的下地壳和桐柏-大别山的下地壳结构和构造是一样的,要研究两者物质组成和赋存状态以及运动和变形特征可以互相参考和借鉴。例如: 5·12汶川大地震的发生引发了对高原下地壳流变的关注和争论。上述桐柏-大别山中生代下地壳的侧向挤出就是通道流,由此证明青藏高原下地壳通道流是存在的; 而青藏高原下地壳和桐柏-大别山一样,一定是由壳内花岗岩、活化的前寒武结晶基底、变质核杂岩以及混入的上地幔物质组成。  相似文献   

9.
The Europrobe Seismic Reflection Profiling in the Urals Experiments (ESRU) reflection seismic data from the Middle Urals images c. 10‐km thick band of strong, subhorizontal lower crustal reflectivity and a thinning of the crust that is associated with the East Uralian Zone, a broad strike‐slip fault system containing high‐grade metamorphic rocks and syn‐orogenic to post‐orogenic granitoids. The lower crustal reflectivity consists of discontinuous to continuous, high‐amplitude reflections. Reflections are subparallel to slightly oblique and have a layered to oblate appearance. Geometrical relationships indicate that the reflectivity post‐dates fault activity, suggesting that late‐orogenic processes modified the lower crust. The surface geology indicates that the conditions for lower crustal flow were met in the East Uralian Zone. We suggest that the lower crustal reflectivity imaged by the ESRU data is related to a flow channel that developed at the base of the crust in the interior of the orogen.  相似文献   

10.
Magnetic anomaly maps of the Trans-European Suture Zone (TESZ) highlight the contrast between the highly magnetic crust of Baltica and the less magnetic terranes to the SW of the suture. Although the TESZ is imaged on gravity maps, anomalies related to postcollisional rifting and reactivated rift structures tend to dominate.

Seismic and potential field data have been used to construct 2 -D crustal models along three profiles crossing the Baltica–Avalonia suture in the southern North Sea (SNS). The first of these models lies along a transect assembled from reflection line GECO SNST 83-07 and refraction profile EUGENO-S 2; the other two models are coincident with MONA LISA profiles 1 and 2. Additional structural information and density information for the cover sequence is available from released wells, while magnetic susceptibility values are compatible with values measured from borehole core samples.

Magnetic anomalies related to the suture are interpreted as due to magnetic Baltican basement of the Ringkøbing-Fyn High dipping SW beneath nonmagnetic Avalonian basement underlying the western part of the SNS. Low-amplitude, long-wavelength magnetic anomalies occurring outboard of the suture are interpreted as due to a mid-crustal magnetic body, possibly a buried magmatic complex. This might represent the ‘missing’ arc related to inferred southward subduction of the Tornquist Sea, or an exotic element emplaced during the collision between Avalonia and Baltica. The present model supports an imbricated structure within Baltica as indicated by the latest reprocessing of the MONA LISA seismic data.  相似文献   


11.
The eastern part of the Guiana Shield, northern Amazonian Craton, in South America, represents a large orogenic belt developed during the Transamazonian orogenic cycle (2.26–1.95 Ga), which consists of extensive areas of Paleoproterozoic crust and two major Archean terranes: the Imataca Block, in Venezuela, and the here defined Amapá Block, in the north of Brazil.

Pb-evaporation on zircon and Sm–Nd on whole rock dating were provided on magmatic and metamorphic units from southwestern Amapá Block, in the Jari Domain, defining its long-lived evolution, marked by several stages of crustal accretion and crustal reworking. Magmatic activity occurred mainly at the Meso-Neoarchean transition (2.80–2.79 Ga) and during the Neoarchean (2.66–2.60 Ga). The main period of crust formation occurred during a protracted episode at the end of Paleoarchean and along the whole Mesoarchean (3.26–2.83 Ga). Conversely, crustal reworking processes have dominated in Neoarchean times. During the Transamazonian orogenic cycle, the main geodynamic processes were related to reworking of older Archean crust, with minor juvenile accretion at about 2.3 Ga, during an early orogenic phase. Transamazonian magmatism consisted of syn- to late-orogenic granitic pulses, which were dated at 2.22 Ga, 2.18 Ga and 2.05–2.03 Ga. Most of the εNd values and TDM model ages (2.52–2.45 Ga) indicate an origin of the Paleoproterozoic granites by mixing of juvenile Paleoproterozoic magmas with Archean components.

The Archean Amapá Block is limited in at southwest by the Carecuru Domain, a granitoid-greenstone terrane that had a geodynamic evolution mainly during the Paleoproterozoic, related to the Transamazonian orogenic cycle. In this latter domain, a widespread calc-alkaline magmatism occurred at 2.19–2.18 Ga and at 2.15–2.14 Ga, and granitic magmatism was dated at 2.10 Ga. Crustal accretion was recognized at about 2.28 Ga, in agreement with the predominantly Rhyacian crust-forming pattern of the eastern Guiana Shield. Nevertheless, TDM model ages (2.50–2.38 Ga), preferentially interpreted as mixed ages, and εNd < 0, point to some participation of Archean components in the source of the Paleoproterozoic rocks. In addition, the Carecuru Domain contains an oval-shaped Archean granulitic nucleus, named Paru Domain. In this domain, Neoarchean magmatism at about 2.60 Ga was produced by reworking of Mesoarchean crust, as registered in the Amapá Block. Crustal accretion events and calc-alkaline magmatism are recognized at 2.32 Ga and at 2.15 Ga, respectively, as well as charnockitic magmatism at 2.07 Ga.

The lithological association and the available isotopic data registered in the Carecuru Domain suggests a geodynamic evolution model based on the development of a magmatic arc system during the Transamazonian orogenic cycle, which was accreted to the southwestern border of the Archean Amapá Block.  相似文献   


12.
The Moho topography is strongly undulating in southern Scandinavia and northeastern Europe. A map of the depth to Moho shows similarities between the areas of the Teisseyre–Tornquist Zone (TTZ) in Poland and the Fennoscandian Border Zone (FBZ), which is partly coinciding with the Sorgenfrei–Tornquist Zone (STZ) in Denmark. The Moho is steeply dipping at these zones from a crustal thickness of approximately 32 km in the young Palaeozoic Platform and basin areas to approximately 45 km in the old Precambrian Platform and Baltic Shield. The Moho reflectivity (PMP waveform) in the POLONAISE'97 refraction/wide-angle seismic data from Poland and Lithuania is variable, ranging from ‘sharp’ to strongly reverberating signals of up to 2 s duration. There is little or no lower crustal wide-angle reflectivity in the thick Precambrian Platform, whereas lower crustal reflectivity in the thin Palaeozoic Platform is strongly reverberating, suggesting that the reflective lower crust and upper mantle is a young phenomena. From stochastic reflectivity modelling, we conclude that alternating high- and low-velocity layers with average thicknesses of 50–300 m and P-wave velocity variations of ±3–4% of the background velocity can explain the lower crustal reflectivity. Sedimentary layering affects the reflectivity of deeper layers significantly and must be considered in reflectivity studies, although the reverberations from the deeper crust cannot be explained by the sedimentary layering only. The reflective lower crust and upper mantle may correspond to a zone that has been intruded by mafic melts from the mantle during crustal extension and volcanism.  相似文献   

13.
The compilation of statistical data for 269 seismic crustal sections (total length: 81,000 km) which are available in the U.S.S.R. has shown that the preliminary conclusions drawn on relations between the elevation of the surface relief and Bouguer anomalies on one hand and crustal thickness (depth to the M-discontinuity) on the other hand are not fulfilled for the continental part of the U.S.S.R. The level of isostatic compensation has been found to be much deeper than the base of the earth's crust due to density inhomogeneities of the crust and upper mantle down to a depth of 150 km.

The results of seismic investigations have revealed a great diversity of relations between shallow geological and deep crustal structures:

Changes in the relief of the M-discontinuity have been found within the ancient platforms which are conformable with the Precambrian structures and which can exceed 20 km. In the North Caspian syneclise, extended areas devoid of the “granitic” layer have been discovered for the first time in continents. The crust was found to be thicker in the syneclises and anteclises of the Turanian EpiHercynian plate. In the West Siberian platforms these relations are reversed to a great extent.

Substantial differences in crustal structure and thickness were found in the crust of the Palaeo zoides and Mesozoides. Regions of substantial neotectonic activity in the Tien-Shan Palaeozoides do not greatly differ in crustal thickness if compared to the Kazakhstan Palaeozoides which were little active in Cenozoic time. The same is true for the South Siberian Palaeozoides.

The Alpides of the southern areas in the U.S.S.R. display a sharply differing surface relief and a strongly varying crustal structure. Mountains with roots (Greater Caucasus, Crimea) and without roots (Kopet-Dagh, Lesser Caucasus) were found there.

The Cenozoides of the Far East are characterized by a rugged topography of the M-discontinuity, a thinner crust and a less-pronounced “granitic” layer. A relatively small thickness of the crust was discovered in the Baikal rift zone.

The effective thickness of the magnetized domains of the crust as well as other calculations show that the temperature at the depth of the M-discontinuity (i.e., at depths of 40–50 km) is not higher than 300–400° C for most parts of the U.S.S.R.  相似文献   


14.
新生代以来,中国西部的一系列古老造山带和盆地在印-亚板块汇聚作用下重新复活,在青藏高原外围形成了现今全球最大的陆内挤压构造域,被称为环青藏高原盆山体系,其形成过程与机制对深入认识陆-陆碰撞如何影响大陆内部变形有重要意义。柴达木盆地是中国西部重要的新生代沉积盆地,四周均被巨型造山带所围限,共同构成了环青藏高原盆山体系北东段的主体。本文利用最新的石油地震勘探数据、地表地质和已发表的深反射地震数据,将上地壳变形与岩石圈深部变形有机结合,系统刻画了柴达木盆地与周缘三大造山带之间岩石圈尺度的构造耦合关系,在此基础上探讨环青藏高原盆山体系北东段的盆山汇聚过程与机制。柴达木盆地与南侧祁曼塔格—东昆仑山、北东侧南祁连山之间在上地壳尺度发育一系列倾向造山带的基底卷入高角度逆断裂体系,自新生代早期就开始活动,以垂直的基底抬升为主,水平缩短量有限;在下地壳和岩石圈地幔深度则发育倾向盆地一侧的深大断裂,使得柴达木盆地与周缘造山带之间发生截然的莫霍面错断。这些变形特征揭示柴达木盆地与南侧祁曼塔格—东昆仑山、北东侧南祁连山之间发育岩石圈尺度的构造楔,即盆地的岩石圈楔入至增厚的造山带下地壳,其发育主要受盆地与造山带...  相似文献   

15.
西准噶尔地区晚古生代岩浆活动剧烈,地壳的垂向和侧向增生显著,地壳生长和演化存在多阶段性。本文重点通过Sr-Nd-Pb同位素填图研究,发现西准噶尔地区εNd(t)值为2.29~8.75,(87Sr/86Sr)i值为0.697 397~0.708 336,(206Pb/204Pb)i值为17.4975~19.0352,整体表现为高正εNd(t)、低(87Sr/86Sr)i和年轻的地壳模式年龄特征,源区以古生代新生地壳为主,地幔贡献值整体大于50%,深部地壳几乎不存在古老的结晶基底,可以与区域构造地质、地球物理资料作较好匹配。区域晚古生代主要经历3个时期的造山阶段,分别对应造山带演化的第一阶段(中晚石炭世,岛弧为代表的侧向生长为主)、第二阶段早期(晚石炭世—早二叠世,后碰撞阶段的垂向生长为主)和第二阶段晚期(早二叠世—早三叠世,壳幔混源背景下的垂向生长),区域造山作用结束于早三叠世。  相似文献   

16.
15011993

Abstract

In 1990–1991 the LITHOPROBE project completed 450 km of seismic reflection profiles across the late Archaean crust of the southwestern Superior province. The results define a broad three-fold division of crust: upper crust in the Abitibi greenstone belt is non-reflective and is a 6–8 km veneer of volcanic and plutonic supracrustal rocks, whereas, in the sediment-gneiss dominated Pontiac subprovince, upper crust comprises shallow northwest-dipping turbidite sequences; mid-crust, in both the Abitibi and the Pontiac subprovinces, is interpreted as imbricate sequences of metasedimentary and metaplutonic rocks; lower crust in both subprovinces has a horizontal layer parallel strycture which may represent interleaved mafic-intermediate gneisses. The seismic signature of the northern Abitibi greenstone belt may be represented in an exposed 25 km crustal section in the Kapuskasing stuctural zone.

Preliminary tectonic models based on the seismic data are consistent with a plate-tectonic scenario involving oblique subduction and imbrication of sedimentary, plutonic and volcanic sequences. The northern Abitibi supracrustal sequences either represent an allochthon, or overlie an allochthonous underthrust metasedimentary and plutonic sequence which may be equivalent to a metasedimentary subprovince such as the Pontiac or Quetico.

Seismic velocities have yet to be defined. However, crustal thicknesses are relatively constant at 35–40 km. The thinnest crust is adjacent to the Grenville Front where Moho is very well defined.  相似文献   


17.
P. Giese  C. Morelli  L. Steinmetz   《Tectonophysics》1973,20(1-4):367-379
During the past two decades deep seismic sounding measurements have been carried out in western and southern Europe, mainly using the refraction method. These investigations were performed partly on a national basis but as well within international cooperative programs under the sponsorship of the European Seismological Commission.

In France, a systematic study has been executed to determine the main feature of deep structures under the Central Massif and the Paris Basin. In the Forez and Margeride regions, the sub-crustal velocity is lower (7.2 km/sec) than the normal value (8.0 km/sec) observed in the adjacent areas.

The central and southern part of Western Germany is covered by an extensive network of refraction profiles. The crustal thickness varies, similarly to France, from 25 to 35 km. A great amount of deep reflection data was obtained by commercial and special reflection work. The crust beneath the Rhinegraben area shows the typical “rift system” structure with a low subcrustal velocity (7.4–7.7 km/sec).

Very intensive refraction work has been carried out in the Alpine area. The maximum crustal thickness found near the axis of the negative gravity anomaly is about 55–60 km. Furthermore, a clear lowvelocity layer at a depth between 10 and 30 km has been detected. A key position with regard to the geotectonic structure of the Alps is held by the zone of Ivrea characterized by a pronounced gravity high. From the refraction work it may be concluded that there material of the lower crust and the upper mantle (7.2–7.5 km/sec) is overlying a layer of extremely low velocity (5.0 km/sec) which is interpreted as sialic crust.

Three years ago, a systematic study of crustal structure of the Italian peninsula has been started. Reversed profiles were observed on Sicily, in Calabria, and in Puglia. On Sicily, the structure is very complicated; the crust of the western part looks like a transition between a continental and oceanic structure whereas the eastern side shows a continental-type crust. In Calabria and Puglia, the crustal thickness has been determined to be about 25–35 km.  相似文献   


18.
The main anatectic granite of the Velay complex is unique among major French Massif Central Hercynian granitoids in that rather than having an entirely lower crustal source, it formed by mixing between partial melts of the meta-igneous lower crust and ‘upper crustal’ country rock schists and orthogneisses. The geochemical variations in the Velay main anatectic granites cannot, however, be explained by mixing alone as their compositions range to lower SiO2, with higher Al2O3, Fe2O3 and TiO2 and lower Na2O and CaO, than either end member in mixing. The variations are interpreted as being due to the presence of up to 35% restite in minimum melts of country rock compositions. Primary restites form equilibrium assemblages represented by biotite, ilmenite and surmicaceous enclaves which consist of biotite ± apatite, zircon and almandine. The main anatectic granites more rarely contain schist and gneiss enclaves, quartz resisters and plagioclase restites. Secondary restites are mainly represented by cordierite, and possibly K-feldspar, which formed by recrystallisation of primary biotite-rich restites. The unique characteristics of the Velay main anatectic granites are likely to be due, in part, to its late formation close to the end of the Hercynian orogeny. The metasedimentary lower crust may have become too refractory to yield large volumes of melt following partial melting to form the other major Massif Central granitoids. The heat necessary for partial melting at higher crustal levels was transferred from the lower crust by the intrusion of I-type granites and low volume diorites from the mantle. Upper crustal anatexis was mainly controlled by muscovite breakdown reactions (< 830 to 850 °C) and the liberation of water due to the recrystallisation of biotite to cordierite. The temperatures necessary for biotite breakdown were only achieved locally and resulted in the formation of high-LREE granites.  相似文献   

19.
Crustal structure of mainland China from deep seismic sounding data   总被引:18,自引:0,他引:18  
Since 1958, about ninety seismic refraction/wide angle reflection profiles, with a cumulative length of more than sixty thousand kilometers, have been completed in mainland China. We summarize the results in the form of (1) a new contour map of crustal thickness, (2) fourteen representative crustal seismic velocity–depth columns for various tectonic units, and, (3) a Pn velocity map. We found a north–south-trending belt with a strong lateral gradient in crustal thickness in central China. This belt divides China into an eastern region, with a crustal thickness of 30–45 km, and a western region, with a thickness of 45–75 km. The crust in these two regions has experienced different evolutionary processes, and currently lies within distinct tectonic stress fields. Our compilation finds that there is a high-velocity (7.1–7.4 km/s) layer in the lower crust of the stable Tarim basin and Ordos plateau. However, in young orogenic belts, including parts of eastern China, the Tianshan and the Tibetan plateau, this layer is often absent. One exception is southern Tibet, where the presence of a high-velocity layer is related to the northward injection of the cold Indian plate. This high-velocity layer is absent in northern Tibet. In orogenic belts, there usually is a low-velocity layer (LVL) in the crust, but in stable regions this layer seldom exists. The Pn velocities in eastern China generally range from 7.9 to 8.1 km/s and tend to be isotropic. Pn velocities in western China are more variable, ranging from 7.7 to 8.2 km/s, and may display azimuthal anisotropy.  相似文献   

20.
胡邦超  徐备  孟巍  邢凯 《岩石学报》2023,(5):1339-1352
俯冲和挤压过程将形成具有加厚地壳的岛弧带或造山带,而伸展过程则形成具有减薄地壳的伸展盆地,因此可以通过地壳厚度推测岩石组合形成时的大地构造背景,并揭示它代表的深部地球动力学过程。兴蒙造山带东部大石寨地区以著名的大石寨组火山岩为特征,其岩浆活动的性质、形成过程和构造背景一直备受争议,其中,该套岩石的构造背景的认识存在岛弧和陆内裂谷两种主要观点。本文根据岩性组合及年代学特征,将大石寨地区主要岩石组合从下到上分为晚石炭世火山岩、早二叠世寿山沟组和大石寨组、中二叠世哲斯组,并利用大石寨-霍林郭勒地区的火山岩和碎屑岩锆石的微量元素及火山岩的全岩微量元素数据,估算了晚石炭世-二叠纪地壳厚度的变化趋势。结果表明,360Ma到320Ma时期发生地壳加厚,320~300Ma地壳从加厚转为减薄;而在300~280Ma时期,地壳厚度减薄最明显且厚度最小。综合岩浆活动、沉积环境和地壳厚度变化曲线等特征,可将大石寨-霍林郭勒地区晚石炭世到二叠纪的构造演化分为4个阶段:第一阶段(360~320Ma),碰撞产生的挤压背景导致区域性隆升和早-中古生代造山带物质的堆叠,使地壳厚度增大,导致幔源岩浆上侵,引起部分熔融作用,形成以侵入岩为特征的地壳垂向增生;第二阶段(320~300Ma),由于碰撞后伸展使得地壳处于从加厚到减薄的转换过程,发育与伸展相关的岩浆活动;第三阶段为300~280Ma,软流圈上涌造成地壳发生强烈伸展,导致地壳厚度明显减薄和大规模岩浆活动,以大石寨组岩浆活动进入高峰期为标志。该时期大规模岩浆活动和裂谷沉积特征与地壳厚度减薄的地球动力学背景高度吻合,从而揭示大石寨-霍林郭勒地区早-中二叠世处于地壳伸展而非俯冲-碰撞过程。第四阶段为280~260Ma,由于蒙古-鄂霍茨克造山带和大别-秦岭中央造山带的远距离效应造成地壳加厚,形成陆内造山带。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号