首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 955 毫秒
1.
As an approach to understand how diurnal and seasonal plant water potentials (Ψ) are related to soil water-content and evaporative demand components, the responses of six thornscrub shrubs species (Havardia pallens, Acacia rigidula, Eysenhardtia texana, Diospyros texana, Randia rhagocarpa, and Bernardia myricaefolia) of the north-eastern region of Mexico to drought stress were investigated during the course of 1 year. All study species showed the typical diurnal pattern of variation in Ψ. That is, Ψ decreased gradually from predawn (Ψpd) maximal values to reach minima at midday (Ψmd) and began to recover in the late afternoon. On a diurnal basis and with adequate soil water-content (>0.20 kg kg−1), diurnal Ψ values differed among shrub species and were negatively and significantly (p<0.001) correlated with air temperature (r=−0.741 to −0.883) and vapor pressure deficit (r=−0.750 to −0.817); in contrast, a positive and significant (p<0.001) relationship was found to exist with relative humidity (r=0.758–0.842). On a seasonal basis, during the wettest period (soil water-content>0.20 kg kg−1), higher Ψpd (−0.10 MPa) and Ψmd (−1.16 MPa) values were observed in R. rhagocarpa, whereas lower figures (−0.26 and −2.73 MPa, respectively) were detected in A. rigidula. On the other hand, during the driest period (soil water-content<0.15 kg kg−1), Ψpd and Ψmd values were below −7.3 MPa; i.e. when shrubs species faced severe water deficit. Soil water-content at different soil layers, monthly mean relative humidity and monthly precipitation were significantly correlated with both Ψpd (r=0.538–0.953; p<0.01) and Ψmd (r=0.431–0.906; p<0.05). Average soil water-content in the 0–50 cm soil depth profile explained between 70% and 87% of the variation in Ψpd. Results have shown that when gravimetric soil water-content values were above 0.15 kg kg−1, Ψpd values were high and constant; below this threshold value, Ψ declined gradually. Among all shrub species, A. rigidula appeared to be the most drought tolerant of the six species since during dry periods it tends to sustain significantly higher Ψpd in relation to B. myricaefolia. The remaining species showed an intermediate pattern. It is concluded that the ability of shrub species to cope with drought stress depends on the pattern of water uptake and the extent to control water loss through the transpirational flux.  相似文献   

2.
Rainfall interception by sand-stabilizing shrubs related to crown structure   总被引:2,自引:0,他引:2  
On the edge of the Tengger Desert in northern China,revegetation has changed the landscape from moving dunes to stabilized dunes covered by shrubs,which further modifies the pattern of rainfall redistribution.To study rainfall interception loss by shrubs and its relationship to rainfall properties and crown structure,throughfalls passing through crowns of Artemisia ordosica Krash.and Caragana korshinskii Kom.were measured using nine PVC cups under the canopy of each of the two shrubs during 73 rain events over a three-year period,with total rainfall of 260.9 mm.Interception losses of gross rainfall by A.ordosica and C.korshinskii account for 15% and 27% of the total on a crown area basis,and 6% and 11% on a ground area basis,respectively.Individual throughfall(T) and interception(I) were significantly related to rainfall amount(Pg),duration(D),and intensity(R).Ratios of throughfall to rainfall(T/Pg) and interception to rainfall(I/Pg) were not only significantly related to Pg,D,and R,but also to shrub species,and interactions of species with crown volume(CV) and leaf area index(LAI).Under most rain events,interceptions by C.korshinskii with greater CV and LAI were significantly higher than those by A.ordosica,and more rainfall interception occurred at locations closer to the stems of the two shrubs.For C.korshinskii,I/Pg had a significant positive linear relation with CV and LAI,while T/Pg had a significant negative linear relation with them.CV has a greater influence on T/Pg and I/Pg than does LAI.Using a regression method,canopy water storage capacities are estimated to be 0.52 and 0.68 mm,and free throughfall coefficient to be 0.62 and 0.47 for A.ordosica and C.korshinskii,respectively.  相似文献   

3.
杨淇越  赵文智 《中国沙漠》2014,34(2):419-425
C4植物以其较高的水分利用效率而表现出较强利用荒漠环境有限降水的能力,但对其气孔行为和气体交换对降水响应的理解并不深入。本研究选择荒漠区沙丘上6~7年生的梭梭(Haloxylon ammodendron),利用自制的降水拦截设施,将每次降水事件后样地中接受的降水量分别减少和增加10%、20%和30%,形成包括对照在内的7个降水梯度,研究梭梭气孔导度(Gs)与净光合速率(Pn)对典型降水事件的响应。结果表明:6~12mm的降水对土壤水分的补给集中在50cm土壤深度范围内。降水量每增加10%,Gs和Pn分别增加9.17%和4.17%;Gs和Pn在降水前后呈现先增加后降低的单峰型趋势,峰值出现在降水后第1天,两者与土壤水分含量(SVWC)、空气相对湿度(RH)以及水汽压差(VPD)显著相关。降水后梭梭黎明前叶水势在-2.08~-2.74 MPa时叶片气体交换主要受气孔因素影响,而当叶水势降至-3.16MPa以下时主要受非气孔因素控制。  相似文献   

4.
A greenhouse experiment was conducted to explore whether additional nitrogen (N) supply could enhance carbon (C) accumulation, and phosphorus (P) use efficiency (NUEP) of Sophora davidii seedlings under dry conditions. Two-month-old seedlings were subjected to a completely randomized design with three water (80, 40 and 20% water field capacity (FC)) and three N supply (N0: 0, Nl: 92 and Nh: 184 mg N kg−1 soil) regimes. Water stress decreased C, N and P accumulation, NUEP, N and P uptake efficiency (NUtEN and NUtEP) regardless of N supply. The S. davidii seedlings exhibited strong responses to N supply, but the responses were not consistent with the various N supply levels. Nl increased C, N and P accumulation, and improved NUEP, NUtEN and NUtEP in the same water treatment. In contrast, Nh did few or even depress effects on C, N and P accumulation, and NUEP, although NUtEN and NUtEP increased with Nh in the same water treatment. Even so, NUEN decreased with increase of N supply in the same water treatment. The results suggested that appropriate or low N supply should be recommended for S. davidii seedling establishment in dry environment by improving C accumulation and NUEP.  相似文献   

5.
Forage availability for mule deer (Odocoileus hemionus) in the Sonoran Desert depends on plant biomass, which is influenced by rainfall. We determined how rainfall, temperature and plant characteristics affected biomass of deer forage. We measured forage biomass, rainfall and temperature every 3 months from April 2000 to December 2002. Quarterly rainfall ranged from <1 to 57 mm, and forage biomass in desert washes fluctuated between 6 and 34 g m−2. There was a positive relationship between forage biomass and rainfall the previous six months (p<0.001), and a negative relationship between biomass and average temperature the previous 3 months (p<0.001). Quarterly forage growth was positively influenced by rainfall (p<0.001) and negatively influenced by forage biomass (p<0.001). The relationships between deer forage and environmental factors established here will be useful in understanding population ecology of mule deer as part of an interactive model of plant–herbivore dynamics in arid environments.  相似文献   

6.
In-stream macrophytes are typically abundant in nutrient-rich chalk streams during the spring and summer months and modify the in-stream environment by altering river flows and trapping sediments. We present results from an inter-disciplinary study of two river reaches in the River Frome catchment, Dorset (UK). The investigation focused on how Ranunculus (water crowfoot), the dominant submerged macrophyte in the study reaches, modified patterns of flow and sediment deposition. Measurements were taken on a monthly basis throughout 2003 to determine seasonal patterns in macrophyte cover, associated changes in the distributions of flow velocities and the character and amount of accumulated fine sediment within stands of Ranunculus.Maximum in-stream cover of macrophytes exceeded 70% at both sites. Flow velocities were less than 0.1 m s− 1 within the stands of Ranunculus and accelerated to 0.8 m s− 1 outside the stands. During the early stages of the growth of Ranunculus, fine sediment mostly accumulated within the upstream section of the plant but the area of fine sediment accumulation extended into the downstream trailing section of the plant later in the growing season. The fine sediment accumulations were dominated by sand (63–1000 μm) with silts and clays (0.37–63 μm) comprising < 10% by volume. The content of organic matter in the accumulated sediments varied within stands, between reaches and through the growing season with values ranging between 9 and 105 mg g− 1 dry weight. At the reach scale the two sites exhibited different growth forms of Ranunculus which created distinctive patterns of flow and fine sediment deposition.  相似文献   

7.
The effects of temperature, water stress, hydration–dehydration cycles and seed priming on the germination of Callitris verrucosa and Callitris preissii, two Australian semi-arid coniferous tree species, were investigated. Optimum germination occurred at 18°C, with a minimum germination time of 8–9 days for both species. At this temperature, germination was inhibited at osmotic potentials lower than −1·0 MPa, but the capacity to germinate at low osmotic stress increased as the temperature decreased. Seed priming and hydration–dehydration cycles did not reduce seed viability, and Callitris seeds appear to retain the physiological changes induced by short-term hydration, as the time to the onset of germination was decreased to about 3 days. The capacity of Callitris seeds for incremental germination is likely to increase overall germination success in a low rainfall environment.  相似文献   

8.
Of all terrestrial ecosystems, the productivity of deserts has been suggested to be the most responsive to increasing atmospheric CO2. The extent to which this prediction holds will depend in part on plant responses to elevated CO2under the highly variable conditions characteristic of arid regions. The photosynthetic responses ofLarrea tridentata , an evergreen shrub, to a step-increase in atmospheric CO2(to 550 μmolmol−1) were examined in the field using Free-Air CO2Enrichment (FACE) under seasonally varying moisture conditions. Elevated CO2substantially increased net assimilation rate (Anet) in Larrea during both moist and dry periods of the potential growing season, while stomatal conductance (gs) did not differ between elevated and ambient CO2treatments. Seasonal and diurnal gas exchange dynamics in elevated CO2mirrored patterns in ambient CO2, indicating that elevated CO2did not extend photosynthetic activity longer into the dry season or during more stressful times of the day. Net assimilation vs. internal CO2(A/Ci) responses showed no evidence of photosynthetic down-regulation during the dry season. In contrast, after significant autumn rains, Amax(the CO2saturated rate of photosynthesis) and CE (carboxylation efficiency) were lower in Larrea under elevated CO2. In situ chlorophyll fluorescence estimation ofLarrea Photosystem II efficiency (Fv/Fm) responded more to water limitation than to elevated CO2. These findings suggest that predictions regarding desert plant responses to elevated CO2should account for seasonal patterns of photosynthetic regulatory responses, which may vary across species and plant functional types.  相似文献   

9.
种培芳  李毅  苏世平 《中国沙漠》2014,34(5):1301-1306
以3个地理种源(武威、张掖、酒泉)蒙古沙拐枣(Calligomum mongolicum)两年生苗木为试材,研究干旱胁迫对其光合及荧光参数的影响,并采用投影寻踪法对其进行了抗旱性评价。结果表明:干旱胁迫导致3个地理种源蒙古沙拐枣光合作用均有所下降,但下降幅度不同,尤其在张掖和酒泉种源间差异显著(p0.05)。在重度干旱时,3个种源的光合速率(Pn)酒泉武威张掖,蒸腾速率(Tr)张掖武威酒泉,气孔导度(Gs)酒泉武威张掖。干旱胁迫下,3个地理种源蒙古沙拐枣的荧光特性表现为初始荧光(Fo)和非光化学淬灭系数(qN)升高,最大光学效率(Fv/Fm)、实际光能转化效率(ФPSⅡ)和光化学淬灭系数(qP)降低。在重度胁迫下,3个种源的Fo和qP大小排序分别为张掖武威酒泉,Fv/Fm、ФPSⅡ和qN为酒泉武威张掖。以投影寻踪法对3个地理种源蒙古沙拐枣的抗旱性排序结果为酒泉武威张掖。  相似文献   

10.
The hypermarine southern Coorong is threatened by proposals to drain relatively fresh surface water and groundwater from adjacent agricultural areas into the Coorong. These influent waters carry moderate loads of heavy metals. Acute toxicity of heavy metals toDiacypris compacta, an abundant ostracod in the Coorong, was measured in the laboratory at 18°C in a static system using Coorong water (pH 7.8 salinity 50 ppt). At 4 days (96 h) the mean values of LC50 for copper, zinc, lead and, cadmium respectively were 0.8, 2.1, 3.1 and 4.3 mg L–1, and at 8 days the respective mean LC50 s were 0.4, 0.7, 2.2 and 1.1 mgL–1. The effect of two or three metals on mortality was additive in some cases and synergistic in other cases, but generally less than additive. However, in all cases mortality was greater in the presence of two or three metals than in the presence of a single metal. According to ANZECC (1992) guidelines, maximum acceptable concentrations of heavy metals should be no higher than 0.01 x the lowest LC50 value. Using the lowest LC50 values forDiacypris compacta obtained at 8 days, maximum acceptable concentrations in the Coorong would be 4, 5, 9 and 22 gL–1 for copper, zinc, cadmium and lead respectively, the values for zinc and copper failling below those recommended by ANZECC (1992) for marine waters. Reported concentrations of copper and zinc in surface water and groundwater in areas adjacent to the Coorong sometimes exceed these values, hence drainage of these waters into the Coorong represents a significant hazard to the Coorong biota.  相似文献   

11.
Charophytes are very common in Australian modern and Quaternary waterbodies, and are quite commonly incorrectly reported as “Chara” sp. or Lamprothamnium papulosum (Wallroth) Groves. This paper is the first attempt at the identification of the widespread euryhaline genus Lamprothamnium in Australia, and its use as a paleoenvironmental indicator. Lamprothamnium is distributed worldwide in all continents, except north and central America. The Australian environment, characterized by increasing aridity during the last 500 ka, has an abundance of saline lakes. We sampled 30 modern lakes and identified extant Lamprothamnium macropogon (A. Braun) Ophel and Lamprothamnium succinctum (A. Braun in Ascherson) Wood. Fossil gyrogonites, from lacustrine sediments ∼65 ka old from Madigan Gulf, Lake Eyre, were identified as Lamprothamnium williamsii sp. nov. We applied statistical analysis (analysis of variance, ANOVA) to the morphometry of the gyrogonites from one fossil and three living Lamprothamnium populations. The ANOVA test suggests all the populations are different, including two separate populations of extant L. macropogon, interpreted in this case as the expression of ecophenotypic variability. Lamprothamnium is a useful paleoenvironmental indicator because it indicates a non-marine environment with varying salinity ranging from fresh (usually 2–3 g l−1) to 70 g l−1, and water bodies holding water for at least 70 consecutive days. Collectively, these parameters provide important information in the study of ephemeral habitats.  相似文献   

12.
We designed, constructed, calibrated and field-tested a lightweight (30 kg), 4.2 m diameter, 16.4 m3 polyethylene-covered dome static chamber ecosystem gas exchange cuvette that can quantify ecosystem CO2 and water vapour fluxes as low as 0.1 μmol CO2 m−2 s−1 and 0.1 mmol H2O m−2 s−1 with little impact on environmental conditions. Fluxes measured in May 2001 in an intact Great Basin sagebrush ecosystem at midday were significantly higher than in an adjacent post-wildfire successional ecosystem, with observed ranges from –0.71 to 1.49 μmol CO2 m−2 s−1 for CO2 and from –0.09 to 0.53 mmol H2O m−2 s−1 for water vapour.  相似文献   

13.
The alleviative effects of exogenous salicylic acid(SA) on plants against drought stress were assessed in Gardenia jasminoides seedlings treated with different concentrations of SA.Drought stress was simulated to a moderate level by 15% polyethylene glycol(PEG) 6000 treatment.Seedlings exposed to 15% PEG for 14 days exhibited a decrease in aboveground and underground dry mass,seedling height,root length,relative water content,photosynthetic pigment content,net photosynthetic rate(Pn),transpiration rate(Tr),stomatal conductance(Gs),and water use efficiency.In PEG-stressed plants,the levels of proline,malondialdehyde(MDA),hydrogen peroxide(H_2O_2),and electrolyte leakage rose significantly,whereas antioxidative activity,including superoxide,peroxidase,and catalase activities,declined in leaves.However,the presence of SA provided an effective method of mitigating PEG-caused physiological stresses on G.jasminoides seedlings,which depended on SA levels.PEG-treated plants exposed to SA at 0.5–1.0 mmol/L significantly eased PEG-induced growth inhibition.Application of SA,especially at concentrations of 0.5–1.0 mmol/L,considerably improved photosynthetic pigments,photosynthesis,antioxidative activity,relative water content,and proline accumulation,and decreased MDA content,H_2O_2 content,and electrolyte leakage.By contrast,the positive effects were not evident,or even more severe,in PEG+SA4 treatment.Based on these physiological and biochemical data,a suitable concentration of SA,potential growth regulators,could be applied to enhance the drought tolerance of G.jasminoides.  相似文献   

14.
Horizontal and vertical zones of influence for root systems of four Mojave Desert shrubs were characterized using 32P as a nutrient tracer. Larrea tridentata's horizontal zone of influence was sparse near the plant's stem base, with a maximum probability of accessing 32P (Pmax) of 41%. However, its horizontal zone of influence extended beyond 5 m, and the distance from the stem base at which the probability of accessing 32P was half Pmax (L503 m) was significantly greater than the other three shrubs. Ambrosia dumosa's zone of influence was dense near the plant's stem base (Pmax78%), but was rare at distances >2 m (L501 m). Zones of influence for Lycium andersonii and Lycium pallidum were intermediate between those of L. tridentata and A. dumosa. For vertical zones of influence, L. tridentata was more likely to obtain 32P from 5 m soil depths than A. dumosa, but L. pallidum was not significantly different from either A. dumosa or L. tridentata. Horizontal zones of influence did not change with treatments that altered soil water and nitrogen availability, but vertical zones of influence increased with a flood irrigation treatment that increased water availability to 5 m soil depth. These differences among species likely reflect compromises between their shoot growth strategies and their need to acquire spatially and temporally limited soil resources, especially through competitive interactions.  相似文献   

15.
The effect of fire on growth of Piptochaetium napostaense, Stipa tenuis, and Stipa gynerioides, three important native perennial grasses in the semi-arid region of central Argentina, was evaluated under different fire temperature regimes: 300–400°C (low temperature regime), 500–600°C (high temperature regime) and no fire (control). Fire treatments were applied with a portable propane plant burner in April and December 1994, May 1995, and January 1996. Overall results indicate that during the first months after fire occurrence, average total green length of S. tenuis, P. napostaense and S. gynerioides tillers was severely reduced (p<0.05) by fire. This effect was more pronounced in plants burned with the high temperature treatment. The observed patterns of response to fire for height of tillers were very similar to those already reported for total green length of tillers. Towards the end of each growth cycle, the number of green leaves per tiller of burned plants of P. napostaense, S. tenuis, and S. gynerioides were similar or greater (p<0.05) than the number of green leaves on tillers of control plants. Relative growth rates for total green length and for height in tillers of burned plants of S. tenuis, P. napostaense and S. gynerioides were greater than in tillers of control plants. Our results indicate that fire affected differentially the growth of the studied species; S. gynerioides was more affected by fire than P. napostaense and S. tenuis. The species most tolerant to fire was P. napostaense.  相似文献   

16.
Variation in growth, physiology and ionic relations patterns of Allenrolfea occidentalis, a perennial halophyte of dry habitats, was studied under field conditions from May 1996 to November 1997. An A. occidentalis community has a characteristic soil pH of 7·3–8·3. During the two years, the population was exposed to great variations in soil salinity, from 29 to 146 dS m−1, and soil moisture, ranging from drought (9·2%) to wet (19%). The salt concentrations were significantly higher in the surface soil layers than in the subsurface layers. Seasonal changes in dry weight are directly related to soil salinity stress. Allenrolfea occidentalis had greater growth and biomass production under saline conditions. Na+and Clions were accumulated in plant tissues in much greater amounts than K+, Ca2+, and Mg2+. Soil salinities were significantly reduced at the end of the growing season. Water potentials of the shoots decreased significantly with increasing salinity. The plant (Fv/Fmratio) was more affected by salinity and irradiation levels during the summer period.  相似文献   

17.
Cactus seedlings often establish under nurse plants which modify environmental conditions by increasing moisture and decreasing solar radiation, which may cause beneficial and detrimental effects, respectively, on seedling growth. Three soil moisture treatments (5%, 25% and 60%) and two solar radiation levels (100% exposure=243 μmol m−2 s−1, and 40%=102 μmol m−2 s−1) were used in a factorial design to analyze seedling growth response of three rare cactus species (Mammillaria pectinifera, Obregonia denegrii and Coryphantha werdermannii). The variables evaluated were relative growth rate (RGR), root/shoot ratio (R/S), and K (RGRroots/RGRshoot), obtained from an initial seedling harvest (6-month-old seedlings) and a final harvest 6 months after treatment application. All three species had slow RGRs (0.002–0.012 g g−1 day−1). O. denegrii had the lowest RGR values, but was the only species for which R/S and K varied with soil moisture. While all seedlings responded markedly to soil moisture, no response was observed to radiation treatments. The latter might have been related to the relatively low solar radiation levels present in the greenhouse. Yet, our results suggest that the main benefit nurse plants offer to seedlings is the increase in soil moisture.  相似文献   

18.
Three-week old soybean (Glycine max) plants were subjected to a factorial combination of four regimes of soil matric water potential (ψm=−0·03, −0·5, −1·0 and −1·5 MPa), two levels of supplementary Zn (O and 20 mgl−1) and two levels of foliar IAA application (O and 10 mgl−1). Under control conditions (no Zn, no IAA), increasing soil drying progressively retarded shoot and root growth (length and dry mass production), reduced leaf relative water content (RWC) and decreased the contents of chlorophyll (Chl) and shoot soluble sugars (SS), but increased soluble sugar content of roots and lowered osmotic water potential of shoots and roots (osmotic adjustment). Total free amino acid (TAA) content increased in shoots but decreased in roots whereas contents of soluble proteins (SP) decreased in shoots and roots. The effect of water stress was statistically significant (p<0·05) and had a major effect (as indicated by η2values) on leaf RWC, shoot and root dry masses and osmotic potential. Supplementary Zn improved root growth at all levels of stress and shoot growth under severe stress. Improvement of growth was positively correlated with the internal tissue Zn concentrations (r=0·91 and 0·86 for shoot and 0·94 and 0·82 for root length and dry mass respectively). Exogenous IAA raised (p<0·05) RWC, Chl, DM (slightly), root SS, and SP, whereas shoot TAA was lowered. Effects on root TAA and shoot SS were more complex: they were lowered at zero stress and raised under severe stress. IAA and Zn in combination had additive effects on Chl, growth and osmotic potential, but their combined effects on SP and TAA were more complex. It is concluded that the treatment of soybean plants grown under conditions of low soil water potentials and Zn deficiency with Zn and IAA solutions counteracted the deleterious effects of stress, especially at high stress levels, and helped stressed plants to grow successfully under these adverse unfavourable conditions.  相似文献   

19.
Changes in dry matter accumulation and allocation, gas exchange, abscisic acid content (ABA) and water use efficiency (WUE) of three contrasting Populus davidiana ecotypes were recorded after exposure to five different soil water contents. The ecotypes used were from dry, middle and wet climate regions, respectively. In the controlled environment study, five different soil water contents which were watered to 100%, 80%, 60%, 40% and 20% field capacity were used, respectively. Significant differences in height growth (HT), total biomass (TB), total leaf area (LA), total leaf number (TLN), specific leaf area (SLA), root/shoot ratio (RS), net photosynthesis (A), transpiration (E), stomatal conductance (C), transpiration efficiency (WUET) and instantaneous water use efficiency (WUEi) between the ecotypes were detected under all soil water contents. Ecotypic differences in ABA and carbon isotope composition (δ13C) were also detected under low soil water contents, but these differences were not significant under high soil water content. Compared with the wet climate ecotype, the dry climate ecotype had lower HT, TB, LA, TLN, SLA, A, E and C, and higher RS, WUET and WUEi under all soil water contents. On the other hand, the dry climate ecotype also exhibited higher ABA and δ13C as affected by low soil water contents than the wet climate ecotype. These morphological and physiological responses to water availability showed that the different ecotypes may employ different survival strategies under drought at the initial phase of seedling growth and establishment. The wet climate ecotype possesses a prodigal water use strategy and quick growth, while the dry climate ecotype exhibits a conservative water use strategies and slow growth.  相似文献   

20.
Soil disturbance is a wildlife habitat management tool that retards succession and promotes early seral vegetation. Our objective was to determine responses of two invasive herbaceous species (Pennisetum ciliare and Salsola iberica) and native perennial grasses to disking on different soils. Two 10 ×40 m plots were delineated within each of 4 blocks on Ramadero loams and 4 blocks on Delmita fine sandy loams. On Delmita soils, canopy cover of P. ciliare, S. iberica, and native perennial grasses averaged across all years was not affected by disking (ANOVA, P>0.05). On Ramadero soils, P. ciliare canopy cover was similar (Tukey's, P>0.05) on control and disked plots for the first 4 years post-disturbance, but P. ciliare cover was 10-fold greater (Tukey's, P=0.02) the 5th year after disking on disked versus control plots. On Ramadero soils, S. iberica canopy cover averaged across all years was 221 times greater (ANOVA, P=0.05) on disked plots than on control plots. Disking did not affect native perennial grass canopy cover. Land managers should consider soil series when disking for wildlife management, as disking disturbance may exacerbate exotic plant ingress and establishment on certain soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号