首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Numerical approximation based on different forms of the governing partial differential equation can lead to significantly different results for two-phase flow in porous media. Selecting the proper primary variables is a critical step in efficiently modeling the highly nonlinear problem of multiphase subsurface flow. A comparison of various forms of numerical approximations for two-phase flow equations is performed in this work. Three forms of equations including the pressure-based, mixed pressure–saturation and modified pressure–saturation are examined. Each of these three highly nonlinear formulations is approximated using finite difference method and is linearized using both Picard and Newton–Raphson linearization approaches. Model simulations for several test cases demonstrate that pressure based form provides better results compared to the pressure–saturation approach in terms of CPU_time and the number of iterations. The modification of pressure–saturation approach improves accuracy of the results. Also it is shown that the Newton–Raphson linearization approach performed better in comparison to the Picard iteration linearization approach with the exception for in the pressure–saturation form.  相似文献   

2.
3.
Modeling reactive transport in porous media, using a local chemical equilibrium assumption, leads to a system of advection–diffusion PDEs coupled with algebraic equations. When solving this coupled system, the algebraic equations have to be solved at each grid point for each chemical species and at each time step. This leads to a coupled non-linear system. In this paper, a global solution approach that enables to keep the software codes for transport and chemistry distinct is proposed. The method applies the Newton–Krylov framework to the formulation for reactive transport used in operator splitting. The method is formulated in terms of total mobile and total fixed concentrations and uses the chemical solver as a black box, as it only requires that one be able to solve chemical equilibrium problems (and compute derivatives) without having to know the solution method. An additional advantage of the Newton–Krylov method is that the Jacobian is only needed as an operator in a Jacobian matrix times vector product. The proposed method is tested on the MoMaS reactive transport benchmark.  相似文献   

4.
In this study, we tried to model the processes of moisture and heat transfers in the soil–vegetation–atmosphere system in an integrated comprehensive way. The purpose of the study is to simulate profiles of soil water content and temperature at root active zone (i.e., 0–50 cm), taking the root water uptake, soil evaporation, and canopy transpiration into account. The water and heat transfer equations are solved by an iterative Newton–Raphson technique and a finite difference method is used to solve the governing equations. Soil water content and soil temperature dynamics could be simulated rather accurately in a cropped field on Loess Plateau area. The water and heat transfer flux predicted by the classical theory of Philip and de Vries (Tans Am Geophys Union 38:222–232, 1957) slightly overestimated near the surface and underestimated at the deeper depths, as a result of the overestimated soil evaporation at the top soil layer (0–10 cm) and underestimated crop canopy transpiration at the deeper depths (10–50 cm). Water content tended to be underestimated for the entire profile at the soil surface (from 0 to 50 cm). Soil temperatures during the simulated period was slightly overestimated in the nighttimes and underestimated in the daytimes, as a result of the underestimated soil water content at the top soil layer (0–10 cm) and overestimated at the deeper depths (10–50 cm). Soil temperatures tended to be underestimated for the entire profile at the soil surface (from 0 to 50 cm). While the sum of the water and heat regimes yielded a much better match with the soil water content and soil temperature obtained from the field observations. The results obtained show that the model coupled water and heat transfer is able to capture the dynamics of soil water content.  相似文献   

5.
The efficiency of Australian laterites in arsenic adsorption has been examined using three laterite samples collected from different locations in South Australia. The characteristics such as electrical conductivity, pH, mineral compositions, and isoelectric point of laterite samples have been measured. The laterite samples are mainly composed of iron and aluminum oxides, and rutile (TiO2). Two batch experiments have been performed to compare the efficiencies of different laterites to remove AS (III) from water at two different doses, and to examine whether pH influences arsenic adsorption. For 50 mg/l arsenic solution, at doses 1,000 g (laterite)/l (arsenic solution) and 200 g/l, the laterites removed more than 97% and 87–97%, respectively. At the dose of 200 g/l, adsorption capacity has been found to be 200–243 mg/kg. Out of the laterite samples from three localities, the Kangaroo Island laterite performed the best. This is probably related to its high content of gibbsite. It has been found that arsenic adsorption by laterite is not significantly affected at the examined pH ranges of 4.7–10.0.  相似文献   

6.
Streeter-Phelps模型参数估计的遗传算法   总被引:3,自引:0,他引:3       下载免费PDF全文
提出Streeter-Phelps模型参数估计的新方法--遗传算法(Genetic Algorithm),它不同于常规参数估计方法,其优点在于,从多个初始点开始寻优,并采用交迭和变异运算避免过早地收敛到局部最优解,可获得全局最优解,且不受初始值影响.该方法不必求导计算,编程简单快捷.给出了实例计算及与其他方法相比较的结果.  相似文献   

7.
To explore the local tsunami hazard from the Cascadia subduction zone we (1) evaluate geologically reasonable variability of the earthquake rupture process, (2) specify 25 deterministic earthquake sources, and (3) use resulting vertical coseismic deformations for simulation of tsunami inundation at Cannon Beach, Oregon. Maximum runup was 9–30 m (NAVD88) from earthquakes with slip of ~8–38 m and M w ~8.3–9.4. Minimum subduction zone slip consistent with three tsunami deposits was 14–15 m. By assigning variable weights to the source scenarios using a logic tree, we derived percentile inundation lines that express the confidence level (percentage) that a Cascadia tsunami will not exceed the line. Ninety-nine percent of Cascadia tsunami variation is covered by runup ≤30 m and 90% ≤16 m with a “preferred” (highest weight) value of ~10 m. A hypothetical maximum-considered distant tsunami had runup of ~11 m, while the historical maximum was ~6.5 m.  相似文献   

8.
In this article, an approach for the efficient numerical solution of multi-species reactive transport problems in porous media is described. The objective of this approach is to reformulate the given system of partial and ordinary differential equations (PDEs, ODEs) and algebraic equations (AEs), describing local equilibrium, in such a way that the couplings and nonlinearities are concentrated in a rather small number of equations, leading to the decoupling of some linear partial differential equations from the nonlinear system. Thus, the system is handled in the spirit of a global implicit approach (one step method) avoiding operator splitting techniques, solved by Newton’s method as the basic algorithmic ingredient. The reduction of the problem size helps to limit the large computational costs of numerical simulations of such problems. If the model contains equilibrium precipitation-dissolution reactions of minerals, then these are considered as complementarity conditions and rewritten as semismooth equations, and the whole nonlinear system is solved by the semismooth Newton method.  相似文献   

9.
Construction of predictive reservoir models invariably involves interpretation and interpolation between limited available data and adoption of imperfect modeling assumptions that introduce significant subjectivity and uncertainty into the modeling process. In particular, uncertainty in the geologic continuity model can significantly degrade the quality of fluid displacement patterns and predictive modeling outcomes. Here, we address a standing challenge in flow model calibration under uncertainty in geologic continuity by developing an adaptive sparse representation formulation for prior model identification (PMI) during model calibration. We develop a flow-data-driven sparsity-promoting inversion to discriminate against distinct prior geologic continuity models (e.g., variograms). Realizations of reservoir properties from each geologic continuity model are used to generate sparse geologic dictionaries that compactly represent models from each respective prior. For inversion initially the same number of elements from each prior dictionary is used to construct a diverse geologic dictionary that reflects a wide range of variability and uncertainty in the prior continuity. The inversion is formulated as a sparse reconstruction problem that inverts the flow data to identify and linearly combine the relevant elements from the large and diverse set of geologic dictionary elements to reconstruct the solution. We develop an adaptive sparse reconstruction algorithm in which, at every iteration, the contribution of each dictionary to the solution is monitored to replace irrelevant (insignificant) elements with more geologically relevant (significant) elements to improve the solution quality. Several numerical examples are used to illustrate the effectiveness of the proposed approach for identification of geologic continuity in practical model calibration problems where the uncertainty in the prior geologic continuity model can lead to biased inversion results and prediction.  相似文献   

10.
Arsenate adsorption was studied in three clastic sediments, as a function of solution pH (4.0–9.0) and arsenate concentration. Using known mineral values, protolytic constants obtained from the literature and K ads values (obtained by fitting experimental adsorption data with empirical adsorption model), the constant capacitance surface complexation model was used to explain the adsorption behavior. The experimental and modelling approaches indicate that arsenate adsorption increases with increased pH, exhibiting a maximum adsorption value before decreasing at higher pH. Per unit mass, sample S3 (smectite–quartz/muscovite–illite sample) adsorbs more arsenate in the pH range 5–8.5, with 98% of sites occupied at pH 6. S1 and S2 have less adsorption capacity with maxima adsorption in the pH ranges of 6–8.5 and 4–6, respectively. The calculation of saturation indices by PHREEQC at different pH reveals that the solution was undersaturated with respect to aluminum arsenate (AlAsO42H2O), scorodite (FeAsO42H2O), brucite and silica, and supersaturated with respect to gibbsite, kaolinite, illite and montmorillonite (for S3 sample). Increased arsenate concentration (in isotherm experiments) may not produce new solid phases, such as AlAsO42H2O and/or FeAsO42H2O.  相似文献   

11.
Multiparameter prestack seismic inversion is one of the most powerful techniques in quantitatively estimating subsurface petrophysical properties. However, it remains a challenging problem due to the nonlinearity and ill-posedness of the inversion process. Traditional regularization approach can stabilize the solution but at the cost of smoothing valuable geological boundaries. In addition, compared with linearized optimization methods, global optimization techniques can obtain better results regardless of initial models, especially for multiparameter prestack inversion. However, when solving multiparameter prestack inversion problems, the application of standard global optimization algorithms maybe limited due to the issue of high computational cost (e.g., simulating annealing) or premature convergence (e.g., particle swarm optimization). In this paper, we propose a hybrid optimization-based multiparameter prestack inversion method. In this method, we introduce a prior constraint term featured by multiple regularization functions, intended to preserve layered boundaries of geological formations; in particular, to address the problem of premature convergence existing in standard particle swarm optimization algorithm, we propose a hybrid optimization strategy by hybridizing particle swarm optimization and very fast simulating annealing to solve the nonlinear optimization problem. We demonstrate the effectiveness of the proposed inversion method by conducting synthetic test and field data application, both of which show encouraging results.  相似文献   

12.
Batch experiments were performed to investigate cephapirin (a widely used veterinary antibiotic) adsorption on various size sands of low total organic carbon content (0.08–0.36 wt%). In the aqueous concentration range investigated (11–112 μmol/L cephapirin), adsorption to nearly pure quartz filter sands (0.50–3.35 mm diameter) is low. Isotherms are S-shaped and most display a region of minimum adsorption, where decreased adsorption occurs with increasing solution concentration, followed by increased adsorption at higher concentrations. Cephapirin adsorption to quartz-rich, feldspar-bearing dune sands (0.06–0.35 mm diameter), and the smallest quartz filter sand investigated (0.43–0.50 mm), can be described by linear sorption isotherms over the range of concentrations investigated. Distribution coefficients (K d) range from 0.94 to 3.45 L/kg. No systematic relationship exists between grain size and amount of adsorption for any of the sands investigated. Cephapirin adsorption is positively correlated to the feldspar ratio (K-feldspar/(albite + Ca-plagioclase). Feldspar-ratio normalization of distribution coefficients was more effective than organic carbon normalization at reducing variability of K d values in the dune sands investigated.  相似文献   

13.
The adsorption behaviors of Cr(VI) on laterite from Guizhou Province were studied in this paper, and the adsorption mechanism was discussed as well. Results showed that different mineral compositions in the laterite would cause differences in the capacity of laterite to absorb Cr(VI). Gibbsite, iron oxide minerals and non-crystalloids are the main contributors to enhancing the capacity of laterite to absorb Cr(VI). The pH of the solution is an important factor affecting the adsorption of Cr(VI) on laterite. Acidic environment (pH=2–5) is favorable to the adsorption of Cr(VI). The amount of adsorbed Cr(VI) decreases with increasing pH of the solution. With increasing initial concentrations of Cr(VI), the amount of adsorbed Cr(VI) increases first, and then decreases. The optimal adsorption concentration of Cr(VI) on laterite is 250 μg/mL. The adsorption of Cr(VI) on laterite is a rapid process, about 80% Cr(VI) will be adsorbed within 2 hours. And the adsorption of Cr(VI) on kaolinite is a slow process.  相似文献   

14.
Insolubilized humic acid (IHA) was prepared in the laboratory by heating approach. Through the comparison between the endothermic peaks, optimal heating temperature was determined to be 330°C. The modified IHA then was characterized by TG-DTA, SEM, FTIR, element analysis, and nitrogen adsorption–desorption isotherms. The removal efficiency of p-nitrophenol from the aqueous solution by adsorption onto solid IHA surfaces was shown to be a function of pH, reaction temperature, and p-nitrophenol concentration. Adsorption equilibrium data satisfactorily fitted the Langmuir adsorption isotherm. Under a certain concentration range, the removal rate of p-nitrophenol at pH 3.5 could reach 24, 29, and 35 mg/g at a temperature of 25, 35, and 45±0.1°C. The results suggest that IHA could play a role as a potential efficient absorbent to remove organic contaminants, e.g., utilized to purify water contaminated by organic compounds.  相似文献   

15.
A second-order exact expression for the evolution of probability density function of stress is derived for general, one-dimensional (1-D) elastic–plastic constitutive rate equations with uncertain material parameters. The Eulerian–Lagrangian (EL) form of Fokker–Planck–Kolmogorov (FPK) equation is used for this purpose. It is also shown that by using EL form of FPK, the so called “closure problem” associated with regular perturbation methods used so far, is resolved too. The use of EL form of FPK also replaces repetitive and computationally expensive deterministic elastic–plastic computations associated with Monte Carlo technique. The derived general expressions are specialized to the particular cases of point location scale linear elastic and elastic–plastic constitutive equations, related to associated Drucker–Prager with linear hardening. In a companion paper, the solution of FPK equations for 1D is presented, discussed and illustrated through a number of examples.  相似文献   

16.
17.
A numerical algorithm for simulation of 2-D (axis-symmetric) wave propagation using a multidomain approach is proposed. The method uses a cylindrical coordinate system, Chebyshev and Fourier differential operators to calculate the spatial derivatives along the radial and vertical direction, respectively, and a Runge–Kutta time-integration scheme. The numerical technique is based on the solution of the equations of momentum conservation combined with the stress–strain relations of the fluid (drilling mud) and isotropic elastic media (drill string and formation). Wave modes and radiated waves are simulated in the borehole-formation system. The algorithm satisfies the reciprocity condition and the results agree with an analytical solution and low-frequency simulation of wave-propagation modes reported in the literature. Examples illustrating the propagation of waves are presented for hard and soft formations. Moreover, the presence of casing, cement, and formation heterogeneity have been considered. Since the algorithm is based on a direct (grid) method, the geometry and the properties defining the media at each grid point, can be general, i.e., there are no limitations such as planar interfaces or uniform (homogeneous) properties for each medium.   相似文献   

18.
In this paper, a solution is presented for evolution of probability density function (PDF) of elastic–plastic stress–strain relationship for material models with uncertain parameters. Developments in this paper are based on already derived general formulation presented in the companion paper. The solution presented is then specialized to a specific Drucker–Prager elastic–plastic material model. Three numerical problems are used to illustrate the developed solution. The stress–strain response (1D) is given as a PDF of stress as a function of strain. The presentation of the stress–strain response through the PDF differs significantly from the traditional presentation of such results, which are represented by a single, unique curve in stress–strain space. In addition to that the numerical solutions are verified against closed form solutions where available (elastic). In cases where the closed form solution does not exist (elastic–plastic), Monte Carlo simulations are used for verification.  相似文献   

19.
This article presents a new method for the calculation of elastic–plastic building ground deformations and elastic–plastic building ground failure including wave propagation in the ground. The presented procedure is a hybrid method, based on several common calculation methods. Included is a nonlinear calculation with the finite element method (FEM), a nonlinear HHT-alpha method with full Newton–Raphson iteration and the scaled boundary finite element method (SBFEM). The presented method can be used as a tool for the accurate calculation of building ground deformations and the stability of the subsoil with included dynamic loading.  相似文献   

20.
Slope stability analysis of any natural or artificial slope aims at determining the factor of safety of the slip surface that possesses the lowest factor of safety. In this study, an ant colony optimization (ACO) algorithm is developed to solve this factor-of-safety minimization problem. Factors of safety of slip surfaces are found by using the Morgenstern–Price method, which satisfies both force and moment equilibrium. Nonlinear equations from the Morgenstern–Price method are solved numerically by the Newton–Raphson method. In the proposed ACO algorithm, the initiation point and the shape of the slip surface are treated as the search variables. The proposed heuristic algorithm represents slip surfaces as piecewise-linear curves and solves for the optimal curve yielding the minimum factor of safety. To demonstrate its applicability and to investigate the validity and effectiveness of the algorithm, four examples with varying complexity are presented. The obtained results are compared with the available literature and are found to be in agreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号