首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Siriwasan carbonatite-sill along with associated alkaline rocks and fenites is located about 10 km north of the well-known Amba Dongar carbonatite-alkaline rocks diatreme, in the Chhota Udaipur carbonatite-alkaline province. Carbonatite has intruded as a sill into the Bagh sandstone and overlying Deccan basalt. This resulted in the formation of carbonatite breccia with enclosed fragments of basement metamorphics, sandstone and fenites in the matrix of ankeritic carbonatite. The most significant are the plugs of sövite with varied mineralogy that include pyroxene, amphibole, apatite, pyrochlore, perovskite and sphene. REE in sövites is related to the content of pyrochlore, perovskite and apatite. The carbon and oxygen isotopic compositions of some sövite samples and an ankeritic carbonatite plot in the “mantle box” pointing to their mantle origin. However, there is also evidence for mixing of the erupting carbonatite magma with the overlying Bagh limestone. The carbonatites of Siriwasan and Amba Dongar have the same Sr and Nd isotopic ratios and radiometric age, suggesting the same magma source. On the basis of available chemical analyses this paper is aimed to give some details of the Siriwasan carbonatites. The carbonatite complex has good potential for an economic mineral deposit but this is the most neglected carbonatite of the Chhota Udaipur province.  相似文献   

2.
P. Prins 《Lithos》1973,6(2):133-143
Apatite from three African carbonatites (sövites) are of the carbonate-hyoxy-fluorapatite type with a marked similarity in composition and structural formula. However, apatite from an apatite-magnetite dyke, associated with a carbonatite complex, differs in Ca, P and trace element content. Calculated and observed cell dimensions and ω refractive indices of these apatite phases correspond very well and support the validity of such calculations. The minor element content in apatite from these samples is fairly constant but differs from that of apatite of igneous or metamorphic origin.  相似文献   

3.
K-A ages from a variety of alkaline rocks, carbonatites (sövites) and alnöites from the Alnö complex range between 370 and 605 m.y. but the most meaningful ages concentrate between 546 and 578 m.y. Most nephelinites, phonolites and alkali trachytes that occur in a dike complex surrounding the main intrusion give a middle Cambrian RbSr whole-rock isochron age of 553±6 m.y. (2σ). Some samples (deleted from the age regression) were contaminated by radiogenic strontium. Plutonic pyroxenites, ijolites and nepheline syenites that form most of the core of the intrusion formed at about the same time and from the same parental magma as the dike rocks. Sövites and alnöites that crosscut the dike and core rocks did not intrude significantly later and may have formed from the same parent magma or mantle source. Many samples show evidence of either mixing or isotopic exchange of the magma with the country rocks during intrusion (fenitisation?) or open system behavior after crystallization. These processes resulted in some scatter of the data points about the best-fit RbSr isochron lines and in some anomalous K-A ages. Fenites have higher Rb/Sr and 87Sr/86Sr ratios than the alkaline rocks, making it unlikely that the latter were the remobilized products of extreme fenitization, as suggested by von Eckermann (1948). The Alnö intrusion is about the same age as the Fen complex of southern Norway, but is significantly older or younger than many other apparently similar intrusions in Scandinavia.  相似文献   

4.
Wakefieldite-(Ce,La) and vanadinite in coarse-grained calciocarbonatites (sövites) are for the first time reported from the northeastern part of the worldwide largest fluorite deposit at the Amba Dongar carbonatite ring dike, India. Sövite in this part of the carbonatite ring dike is rich in pyrochlore, calcite and magnetite. Pyrochlore makes up almost 50% of some sövite samples and shows core-to-rim compositional changes. The core of pyrochlore consists of primary fluorcalciopyrochlore with high F and Na contents while the margins gained elevated amounts of Pb, La and Ce with the associated loss of F and Na due to circulation of hydrothermal solutions. The presence of wakefieldite-(Ce,La) and vanadinite points to an exceptionally high V abundance in hydrothermal solutions formed towards the end of the carbonatite magma activity. This investigation thus opens new promising areas for Nb and REE prospection in the eastern part of the Amba Dongar carbonatite body.  相似文献   

5.
are-earth (REE) and yttrium abundances were determined, by an ion-exchange-X-ray fluorescence procedure, for whole-rock (14) and mineral (87) samples from the Oka carbonatite complex. Whole-rock and mineral data indicate a trend of total REE + Y enrichment, and relative enrichment in light REE, in the order: ultrafenites < ijolites < okaites. The sövites may show wide variations in total REE + Y concentrations, but relative REE abundance patterns will be similar. The greatest REE and Y concentrations occur in apatite, niocalite, perovskite and pyrochlore. Many of the minerals show europium anomalies (both positive and negative), and these are believed to be the result of closed system competition between the various minerals for divalent Eu. The partition coefficients for mineral pairs are quite variable, indicating that the Oka rocks were emplaced through a wide-range of physicochemical and/or nonequilibrium conditions. A reasonable model for the origin of the complex involves a limited partial melting of mantle material, emplacement of the melt in a magma chamber, crystallization of mafic minerals resulting in a residual liquid which produced ijolite and subsequently okaite, and crystallization of the carbonatites from a volatile-rich, possibly immiscible, phase.  相似文献   

6.
Summary Two bimodal carbonatite complexes in Namibia of Cretaceous age are explored as to the presence and composition of a coexisting carbonatitic fluid. The Kalkfeld and Ondurakorume complexes contain both Ca- and Mg/Fe-carbonatites, composed of calcite alone or calcite with ferroan dolomite, fluorapatite and strontianite. The major element evolution in the bulk rocks from s?vites to beforsites is due to crystallization of calcite and fluorapatite. All carbonatites show a negative Y anomaly in normalised REE plots. Fractionation is accompanied by successively lower HREE contents between Tb and Yb, expressed by the ratios Nd/Ho and Ho/Lu. The evolution of this downward-facing hump goes along with decreasing Y contents in bulk rocks and minerals. All this requires an additional phase coexisting with the carbonate liquid during fractionation. Comparison between the bulk rocks and the expelled fluid shows that the latter had preferentially accumulated the HREE and Y. Further evidence for this process are hydrothermal, HREE, Y-rich fluorites in other carbonatite complexes which reflect the composition of the expelled fluid. The high strength of fluoride complexes suggests that fluoride complexing in the carbonatitic fluid is the process responsible for extracting HREE and Y from the carbonatite magma, leaving fractionated carbonatite rocks depleted in these elements. The geochemical evolution of carbonatite magmas along fractionation has therefore to be considered in a melt-mineral-fluid system. Correspondence: B. Bühn, Instituto de Geociências, Universidade de Brasilia, Campus Universitário Darcy Ribeiro, Brasilia 70910-900, Brazil  相似文献   

7.
陕西省华阳川铀铌铅矿床是小秦岭成矿带中成矿特征最为独特的矿床,碳酸岩脉的破碎带是重要的成矿空间。未矿化的碳酸岩中矿物以方解石为主,其他矿物很少;发育铀矿化的碳酸岩脉中矿物种类繁多,大部分为方解石,其次为角闪石、金云母、榍石、褐帘石、铌钛铀矿、重晶石、磷灰石、石英、磁铁矿、碱性长石等矿物。碳酸岩的LREE含量异常高,δ13CV-PDB和δ18OV-SMOW值显示典型的火成碳酸岩特征。基于碳酸岩脉的Sr、Nd、Pb同位素比值(87Sr/86Sr-206Pb/204Pb、207Pb/204Pb-206Pb/204Pb-143Nd/144Nd-87Sr/86Sr)的关系图,初步判断华阳川铀铌铅碳酸岩脉是源于EMI的碱性硅酸盐-碳酸盐熔体-溶液结晶分异的产物。  相似文献   

8.
Based upon the composition of carbonatites of the Fen Complex in Norway and the Alnö Complex in Sweden, the following nomenclature of carbonatitic rocks is suggested: Carbonatites (> 70 % carbonate minerals), sub-divided into the calcitic sövites and alvikites, the dolomitic to ankeritic rauhaugites and beforsites and the alkali-carbonatitic lengaite. Silico-carbonatites are rocks with 50–70 % carbonate minerals. They are subdivided into silico-sövites, silico-alvikites, silico-rauhaugite and silico-beforsite.  相似文献   

9.
The distribution of radioactive elements in alkaline rocks from Polar Siberia and Ukraine shows that U and Th are markedly concentrated in carbonatite complex and nepheline syenite as final products of magma fractionation. Peralkaline nepheline syenites from Polar Siberia are characterized by very high contents of radioactive elements, which are close to the economic level. Radioactive elements are also concentrated in rocks of the carbonatite complex. For example, some soevites contain up to 294 × 10?4%U and 916 × 10?4% Th. In late dolomite carbonatites, the contents of radioactive elements are appreciably lower. The Th/U ratio in alkaline rocks of Polar Siberia is close to the chondrite value in primary high-Mg rocks and increases in late derivatives: phoscorite, calcite and dolomite carbonatites. The main amount of radioactive elements is contained in rare-metal accessory minerals: perovskite, pyrochlore, calzirtite, and apatite. Rock-forming minerals are distinguished by very low concentrations of radioactive elements. In alkaline series of the Chernigovka massif (Ukraine), U and Th also accumulate in the course of crystal fractionation, especially in phoscorites from the carbonatite complex. Mantle xenoliths and alkaline rocks from Ukraine reveal uranium specialization. Most likely, the discrepancy in fractionation of radioactive elements between Polar Siberia and Ukraine is caused by different geodynamic regimes of these provinces. The Mesozoic alkaline magmatism of Polar Siberia is a part of the Siberian superplume, whereas the Proterozoic alkaline complex in Ukraine is related to subduction of the oceanic crust.  相似文献   

10.
The evolution of a carbonated nephelinitic magma can be followed by the study of a statistically significant number of melt inclusions, entrapped in co-precipitated perovskite, nepheline and magnetite in a clinopyroxene- and nepheline-rich rock (afrikandite) from Kerimasi volcano (Tanzania). Temperatures are estimated to be 1,100°C for the early stage of the melt evolution of the magma, which formed the rock. During evolution, the magma became enriched in CaO, depleted in SiO2 and Al2O3, resulting in immiscibility at ~1,050°C and crustal pressures (0.5–1 GPa) with the formation of three fluid-saturated melts: an alkali- and MgO-bearing, CaO- and FeO-rich silicate melt; an alkali- and F-bearing, CaO- and P2O5-rich carbonate melt; and a Cu–Fe sulfide melt. The sulfide and the carbonate melt could be physically separated from their silicate parent and form a Cu–Fe–S ore and a carbonatite rock. The separated carbonate melt could initially crystallize calciocarbonatite and ultimately become alkali rich in composition and similar to natrocarbonatite, demonstrating an evolution from nephelinite to natrocarbonatite through Ca-rich carbonatite magma. The distribution of major elements between perovskite-hosted coexisting immiscible silicate and carbonate melts shows strong partitioning of Ca, P and F relative to FeT, Si, Al, Mn, Ti and Mg in the carbonate melt, suggesting that immiscibility occurred at crustal pressures and plays a significant role in explaining the dominance of calciocarbonatites (sövites) relative to dolomitic or sideritic carbonatites. Our data suggest that Cu–Fe–S compositions are characteristic of immiscible sulfide melts originating from the parental silicate melts of alkaline silicate–carbonatite complexes.  相似文献   

11.
A dike–vein complex of potassic type of alkalinity recently discovered in the Baikal ledge, western Baikal area, southern Siberian craton, includes calcite and dolomite–ankerite carbonatites, silicate-bearing carbonatite, phlogopite metapicrite, and phoscorite. The most reliable 40Ar–39Ar dating of the rocks on magnesioriebeckite from alkaline metasomatite at contact with carbonatite yields a statistically significant plateau age of 1017.4 ± 3.2 Ma. The carbonatite is characterized by elevated SiO2 concentrations and is rich in K2O (K2O/Na2O ratio is 21 on average for the calcite carbonatite and 2.5 for the dolomite–ankerite carbonatite), TiO2, P2O5 (up to 9 wt %), REE (up to 3300 ppm), Nb (up to 400 ppm), Zr (up to 800 ppm), Fe, Cr, V, Ni, and Co at relatively low Sr concentrations. Both the metapicrite and the carbonatite are hundreds of times or even more enriched in Ta, Nb, K, and LREE relative to the mantle and are tens of times richer in Rb, Ba, Zr, Hf, and Ti. The high (Gd/Yb)CN ratios of the metapicrite (4.5–11) and carbonatite (4.5–17) testify that their source contained residual garnet, and the high K2O/Na2O ratios of the metapicrite (9–15) and carbonatite suggest that the source also contained phlogopite. The Nd isotopic ratios of the carbonatite suggest that the mantle source of the carbonatite was mildly depleted and similar to an average OIB source. The carbonatites of various mineral composition are believed to be formed via the crystallization differentiation of ferrocarbonatite melt, which segregated from ultramafic alkaline melt.  相似文献   

12.
The behavior of tantalum in carbonatites and related rocks of alkaline complexes was analyzed. In particular, we considered factors favorable for its accumulation in carbonatites, both in absolute amount and relative to its companion element niobium.The contents of both elements show moderate variations in earlier alkaline silicate rocks and more significant variations in carbonatites; this difference is especially pronounced for tantalum.Their simultaneous accumulation in carbonatites is controlled mainly by the affiliation to certain temperature facies, when tantalate-niobate phases with high Ta2O5 contents (up to 26 wt %) are formed. The accumulation of these elements with the formation of almost purely niobian pyrochlores and Ta-U pyrochlores (hatchettolites) occurs efficiently only during the formation of metasomatic zoning with the separation of purely Nb and Nb-Ta mineralization between the zones of the metasomatic column. This process is characteristic mainly of relatively deep-seated massifs, where the metasomatic processes of carbonatite formation are dominant, at least for the given temperature facies.  相似文献   

13.
In the Amba Dongar diatreme, “ferrocarbonatite” is not a single unit of late differentiate of calciocarbonatite magma but it is a family with variation on field occurrence, mineralogy and chemistry of each unit. The family includes dikes of ankeritic carbonatites (phase I and II), plugs of ankeritic carbonatite within sövite ring dike, dikes of sideritic carbonatite in ankeritic carbonatite plug and rödberg veins. Their intrusive relations are very clear in the field and each phase has characteristic mineralogy and trace and REE geochemistry. According to the nomenclature suggested by Harmer and Gittins (1997) majority of “ferrocarbonatites” of Amba Dongar plot in field of “ferruginous calciocarbonatite” and only siderite and rödberg plot in the field of “ferrocarbonatite”. Within these family members, their trace and REE show clear increase from early phase to last phase of sideritic carbonatite. The present short communication discusses various aspects of “ferrocarbonatites”.  相似文献   

14.
岩浆(型)碳酸岩研究进展   总被引:19,自引:0,他引:19  
主要从岩石学,矿物学,岩石分类,C,O,Sr同位素,碳酸岩与矿化的关系等各方面对(碱性)碳酸岩的研究进行了较为全面的总结,并结合近20年来实验岩石等,流体包裹体研究,CO2^- H2O-NaCl流体体系的性质的研究,对碳酸岩岩浆的来源及成因,岩浆-热液的演化进行了分析和探讨,碳酸岩形成至少经历了三个阶段,即岩浆阶段,岩浆期后阶段(气相碳酸岩/岩浆热液阶段),交代碳酸岩阶段,而作为与碳酸岩在空间和成因上有密切联系的基性,超基性岩,碱性岩杂岩体,则经历了碳酸岩成岩阶段以前的岩浆不混熔作用,结晶分异作用,岩浆结晶作用以及碳酸岩形成之后的围岩蚀变(霓长岩化)作用。  相似文献   

15.
报道了阿尔金东段北缘的古元古代晚期壳源火成碳酸岩全岩地球化学和锆石SHRIMP定年结果.它们明显切割围岩, 以岩株状、岩脉状产出, 包裹不同类型围岩包体.岩石主要由方解石、透辉石组成, 含石英、长石等长英质矿物.岩石高CaO(20.56%~39.80%), SiO2含量变化较大(23.33%~54.06%), 稀土总量低(TREE=28.36×10-6~63.01×10-6)、弱负铕异常(Eu/Eu*=0.69~0.83)、轻重稀土分离不强((La/Yb)N=9.20~16.85), 相对富集大离子亲石元素Sr、Rb、Ba、Th, 亏损高场强元素Nb、Ti、P.锆石具核-边结构, 边部锆石普遍存在不明显的环带, 具变质深熔锆石的结构特征, 其207Pb/206Pb加权平均年龄为1 931±18 Ma.它们是高级变质作用条件下米兰岩群不纯大理岩深熔作用的产物.   相似文献   

16.
The origin and sources of the Il’mensky-Vishnevogorsky miaskite-carbonatite complex, one of the world’s largest alkaline complexes, with unique rare-metal and colored-stone mineralization and Nb, Zr, and REE deposits, are discussed in this paper. Geochemical and isotopic studies, including of Nd, Sr, C, and O isotopes, as well as estimation of PT formation conditions, of miaskites and carbonatites from various deposits of the Il’mensky-Vishnevogorsky Complex have been carried out. The Vishnevogorsky, Potaninsky, and Buldym Nb-REE deposits and the Il’mensky, Baidashevo, and Uvil’dy occurrences related to carbonatites were investigated. Their geological setting, composition, and ore resource potential are characterized. The genetic models and typical features of the Il’mensky-Vishnevogorsky Complex are considered. The rocks of the Il’mensky-Vishnevogorsky Complex were formed at T = 1000?230°C and P = 2–5 kbar. Carbonated miaskite melt was divided into immiscible silicate and carbonate liquids at T = 1000°C and P = 5 kbar. Miaskite crystallized at T = 850?700°C and P = 3.5–2.5 kbar. The formation temperature of carbonatite I of the Vishnevogorsky pluton was close to the temperature of miaskite crystallization (700–900°C). The crystallization temperature of carbonate-silicate rock and carbonatite I in the Central alkaline tract was 650–600°C. The formation temperature of carbonatite II varied from 590 to 490°C. Dolomite-calcite carbonatite III and dolomite carbonatite IV of the Buldym massif were formed at T = 575?410°C and T = 315?230°C, respectively. The geochemical features of carbonatites belonging to the Il’mensky-Vishnevogorsky Complex differ from those of carbonatites related to alkaline ultramafic rocks and are close to those of carbonatites related to nepheline syenite or carbonatites localized in linear fracture zones. A high Sr content in early carbonatites along with relatively low Ba, Nb, Ta, Ti, Zr, and Hf contents and a certain enrichment in HREE (a low La/Yb ratio) in comparison with carbonatites of the alkaline ultramafic association are typical. The geochemistry of carbonatites of the Il’mensky-Vishnevogorsky Complex corresponds to the trend of geochemical evolution of carbonatitic melts and their fluid derivatives. The Sr, Nd, C, and O isotopic compositions indicate a mantle magmatic source of the Il’mensky-Vishnevogorsky Complex and participation of moderately depleted mantle (DM) and enriched mantle EM1 in magma generation. Carbonatite and miaskite of the Vishnevogorsky pluton are related to the DM magma source, and carbonatite of the Buldym massif, to the EM1 source, probably, involved in the plume ascent.  相似文献   

17.
Carbonatites that are hosted in metamorphosed ultramafic massifs in the roof of miaskite intrusions of the Il’mensky-Vishnevogorsky alkaline complex are considered. Carbonatites have been revealed in the Buldym, Khaldikha, Spirikha, and Kagan massifs. The geological setting, structure of carbonatite bodies, distribution of accessory rare-metal mineralization, typomorphism of rock-forming minerals, geochemistry, and Sr and Nd isotopic compositions are discussed. Dolomite-calcite carbonatites hosted in ultramafic rocks contain tetraferriphlogopite, richterite, accessory zircon, apatite, magnetite, ilmenite, pyrrhotite, pyrite, and pyrochlore. According to geothermometric data and the composition of rock-forming minerals, the dolomite-calcite carbonatites were formed under K-feldspar-calcite, albite-calcite, and amphibole-dolomite-calcite facies conditions at 575–300°C. The Buldym pyrochlore deposit is related to carbonatites of these facies. In addition, dolomite carbonatites with accessory Nb and REE mineralization (monazite, aeschynite, allanite, REE-pyrochlore, and columbite) are hosted in ultramafic massifs. The dolomite carbonatites were formed under chlorite-sericite-ankerite facies conditions at 300–200°C. The Spirikha REE deposit is related to dolomite carbonatite and alkaline metasomatic rocks. It has been established that carbonatites hosted in ultramafic rocks are characterized by high Sr, Ba, and LREE contents and variable Nb, Zr, Ti, V, and Th contents similar to the geochemical attributes of calcio-and magnesiocarbonatites. The low initial 87Sr/86Sr = 0.7044?0.7045 and εNd ranging from 0.65 to ?3.3 testify to their derivation from a deep mantle source of EM1 type.  相似文献   

18.
Earlier, a belt of alkali-granite plutons and a carbonatite province were discovered in the South Gobi Desert, Mongolia. The Lugingol pluton of pseudoleucitic syenites with carbonatites was assigned to the alkali-granite belt. However, new dating showed that it is 40 Myr younger than the Khan-Bogdo pluton and a large fault separates it from the alkali-granite belt. In the same part of the South Gobi Desert, a dike series of alkaline K-shonkinites with a rare-metal carbonatite vein was found by V.I. Kovalenko west of the Lugingol pluton, near Mt. Baruun Hasar Uula, and a dike series of alkali and nepheline syenites was found by us northeast of the Lugingol pluton. These data give grounds to distinguish an intrusive complex of K-alkaline shonkinites and leucitic syenites with Late Paleozoic REE-bearing carbonatites. Thus, three alkaline-rock complexes of different ages are distinguished in the South Gobi Desert. We present refined geological maps of these complexes. The plutons of all three complexes are deposits of trace elements (REE, Nb, Zr, Y, P). The chemical composition of the silicate rocks of the complex, rare-metal agpaitic pegmatites, and carbonatite and apatite rare-metal ores was considered in detail. Shonkinites from Mt. Baruun Hasar Uula and the Mountain Pass mine (United States) and their carbonatites, along with the Lugingol carbonatites, belong to a single association of K-alkaline rocks and carbonatites, as evidenced by their identical chemical, mineral, and geochemical rare-metal compositions. Rare-earth element patterns and spidergrams show similarities and differences between the rare-metal rocks of three complexes as well as paragenetic differences between their rare-metal minerals. A rare process is described—the amorphization of rare-metal minerals, related to their high-temperature crystallization in a medium with abnormal silica contents of the Khan-Bogdo pegmatites. The parental magmas of the alkali-carbonatite complexes were generated from the EM-2 contaminated mantle that had undergone recycling, whereas the parental magmas of the Khan-Bogdo agpaitic alkali granites were produced from depleted mantle.  相似文献   

19.
The only significant silicate intrusive rock type in the Dicker Willem carbonatite complex is trachyte, forming, in places, an anastomosing array of minor intrusions cutting basement gneiss close to the carbonatite contact. Bodies are predominantly composite breccias, composed of trachyte clasts, commonly in the form of ellipsoidal pellets, enclosed within, and sharply delineated from, a matrix of carbonatite. Despite close temporal and spatial relationships to carbonatite magmatism, the ultrapotassic, quartz-normative composition and isotope systematics of the trachytes preclude any genetic derivation from the carbonatitic and ijolitic rocks of the central complex. Sr, Nd and Pb isotope ratios of trachytes strongly resemble those of the highest grade, potassic fenites, whose metasomatic trend converges from the unaltered basement gneiss towards the homogeneous signature of the nepheline sövite–sövite–ijolite suite. Trachytes are interpreted as forming by melting of a cupola of high-grade fenite in response to the advective heat flux from rising carbonatite magma or fluid. Mixed carbonatite and trachyte were emplaced in a fluidised system as contemporaneous, but genetically unrelated, immiscible magmas.  相似文献   

20.
The Lesser Qinling carbonatite dykes are mainly composed of calcites. They are characterized by unusually high heavy rare earth element concentrations (HREE; e.g. Yb > 30 ppm) and flat to weakly light rare earth element (LREE) enriched chondrite-normalized patterns (La/Ybn = 1.0–5.5), which is in marked contrast with all other published carbonatite data. The trace element contents of calcite crystals were measured in situ by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). Some crystals show reduced LREE from core to rim, whereas their HREE compositions are relatively constant. The total REE contents and chondrite-normalized REE patterns from the cores of carbonate crystals are similar to those of the whole rock. The carbon and oxygen isotopic compositions of calcites fall within the range of primary, mantle-derived carbonatites. The initial Sr isotopic compositions (0.70480–0.70557) of calcites are consistent with an EM1 source or mixing between HIMU and EM1 mantle sources. However these sources cannot produce carbonatite parental magmas with a flat or slightly LREE enrichment pattern by low degrees of partial melting. Analyses of carbonates from other carbonatites show that carbonates have nearly flat REE pattern if they crystallize from a LREE enriched carbonatite melt. This implies that when carbonates crystallize from a carbonatite melt the calcite/melt partition coefficients (D) for HREE are much greater than the D for the LREE. The nearly flat REE patterns of the Lesser Qinling carbonatites can be explained if they are carbonate cumulates that contain little trapped carbonatite melt. Strong enrichment of HREE in the carbonatites may require their derivation by small degrees of melting from a garnet-poor source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号