首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The soil in the Rif, Morocco, is at serious risk because increasing anthropogenic pressures are gradually transforming large natural areas into farmland. The distribution of magnetic minerals within the soil profile can be used to assess soil development and degradation. The soils in the study area are severely eroded because of a combination of highly erodible soils, intense rainstorms and scarce vegetation cover. To sample of representative soil profiles, lithology, slope gradient and land use were considered. The ranges of magnetic susceptibility in the soil profiles distinguished between two primary soil groups. Magnetic susceptibility varied in the soil profile and along the soil toposequence, and the variations were related to the differences in the original magnetic composition and the influence of main erosion factors. Lithology is the main factor contributing to the variation in magnetic susceptibility. The magnetic susceptibility values in soils on Tertiary marls (χ = 13·5 × 10?8 m3 kg?1) differed significantly from those on Quaternary terraces (χ = 122·1 × 10?8 m3 kg?1). Slope affected the distribution of magnetic susceptibility because of the continuous loss of topsoil in some parts of the slope and the deposition of eroded soil in others. Elimination of the natural vegetation cover and a shift to cultivated land for cereals has had a negative impact on soil development and, on similar slopes and substrates, magnetic susceptibility decreased significantly in cultivated soils. The soils on steep slopes that had natural vegetation cover retained the magnetic minerals better than did those on gentler slopes that were under cultivation. Grazing, clearing and, especially, tilling has weakened the soil and made it much more vulnerable to erosion. An analysis of the main factors causing erosion will help to promote rational use of the land and to establish conservation strategies in such fragile agroecosystems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
杭州城区土壤的磁性与磁性矿物学及其环境意义   总被引:18,自引:0,他引:18       下载免费PDF全文
对杭州城区四个不同功能区块土壤进行了系统的环境磁学测定,结果表明城市土壤的磁化率平均值为128×10-8m3·kg-1,频率磁化率平均值3.6%(样品数=182),城市土壤呈现明显的磁性增强. 城市土壤的磁化率与频率磁化率呈极显著指数负相关,表明城市土壤磁性增强明显区别于自然成土过程引起的以超顺磁性(SP)颗粒为主的表土磁性增强机理. 统计分析表明,城市土壤磁化率与软剩磁和饱和等温剩磁(SIRM)呈显著直线正相关,说明亚铁磁性矿物是城市土壤剩余磁性的主要载体. 综合等温剩磁获得曲线、热磁曲线、磁滞回线等岩石磁学测定和SEM/EDX分析,城市土壤的磁性矿物以磁铁矿和赤铁矿为主,磁性矿物以假单畴-多畴(PSD-MD)颗粒存在,粒度明显大于成土过程形成的磁性颗粒,这些磁性颗粒主要来自燃料燃烧、汽车尾气等环境污染物. 因此,城市土壤磁测可作为城市土壤污染监测、污染空间分布和污染物来源判断的新手段.  相似文献   

3.
Magnetic susceptibility (MS) of natural specimens of hematite and goethite is studied under continuous heating with various additives: with carbon (sugar), nitrogen (carbamide), and elemental sulfur. It is found that heating of hematite with carbon above 450°C results in the formation of single-domain magnetite, while the magnetic susceptibility rises by a factor of 165. The increase in magnetic susceptibility on heating of hematite with nitrogen above 540°C reflects the generation of a single-domain maghemite with the Curie point of about 650°C, which is stable to heating. After the first heating, the magnetic susceptibility increases by 415 times. The subsequent cycle of thermal treatment results in the transition of maghemite to hematite, a decrease of MS, and an increase of coercivity. Heating with sulfur produces a stable single-domain magnetite at a temperature above the Curie point, which is manifested in the cooling curves. Here, the MS increases by a factor of 400. The heating curves for goethite exhibit a sharp drop in susceptibility to a temperature of 350–360°C, which reflects the transition of hematite to goethite. Heating of hematite with carbon produces stable maghemite at above 530°C, and with sulphur and nitrogen, it produces magnetite. When heated with pyrite, hematite reduces to magnetite under the action of sulfur released from pyrite.  相似文献   

4.
《国际泥沙研究》2023,38(5):739-753
Soil erosion is a significant threat in the Rif region in northern Morocco. Hence, accurate cartography of the phenomenon, magnitude, and extent of erosion in the area needs a simple, rapid, and economical method such as magnetic susceptibility (MS). The current study aims to: (i) determine the factors influencing the variation of soil MS, (ii) exploit MS to estimate soil loss using two approaches in different homogenous units characterized by the same climatic conditions with different edaphic characteristics (land use, slope, and lithology), and (iii) highlight the potential for using MS as a cheap and rapid tracer of a long term erosion and deposition processes. Mass-specific magnetic susceptibility at low (χlf) and high (χhf) frequencies were measured for 182 soil samples collected in the study area. A tillage homogenization (T-H) model and a simple proportional model (SPM) were applied on an undisturbed soil profile to predict the eroded soil depths for given cores. The results confirm that χlf is influenced by land use, slope, and soil type. Pedogenesis is the main factor affecting soil MS enhancement, indicated by homogenous magnetic mineralogy with a dominance of super-paramagnetic (SP) and stable single domain (SSD) magnetic grains. The study results show that higher soil losses have occurred in almost all the soil samples when applying the T-H model compared to application of the SPM. The SPM underestimates erosion due to its ignorance of the MS of the plow layers after erosion. The current study implies the high efficacy of magnetic susceptibility as the quick, easily measurable, simple, and cost-effective approach that can be used as an alternative technique for evaluating soil redistribution.  相似文献   

5.
A preliminary magnetic study around Meishan steel mill in Nanjing (SE China) was carried out combining geochemical analysis with scanning electron microscopy (SEM) to prove that paddy soil can be a suitable target for environmental study on heavy metal pollution. Magnetic background investigation showed a strong variation in this area due to different land uses and soil types. Magnetic susceptibilities (MS) measured on forest soils are much higher than in paddy fields, and values below 20 cm of the soil surface in forest with parent material of Xiashu loess are several times higher than in paddy soil with parent material of fluvisol. Measurements on vertical profiles show that paddy soil has a very low and stable magnetic background with mass-specific MS around 15 × 10− 8 m3 kg− 1. A strong enhancement of MS values is found in the upper ~ 20 cm of paddy soil predominated by multidomain and pseudo single domain magnetite. However, relatively low S-ratios (0.57 to 0.85) reveal a significant contribution of imperfect anti-ferromagnetic minerals. Detailed research on a paddy soil core at site C719 near the steel mill indicates strong correlation between magnetic mineral concentration-related parameters (χ, ARM, SIRM) and heavy metal concentrations of Cu, Pb and Zn. In addition, typical anthropogenic Fe-spherules are detected in top paddy soil by means of SEM, which indicates that the increase of susceptibility in upper soil is mainly caused by steel mill emission. Mapping of MS in paddy fields across the steel mill area shows a decrease of MS with the distance to the major emission zone. Positive correlation between χ and Zn is found by measuring surface soil samples around the steel mill. Because of low background and high homogeneity of the ~ 20 cm uppermost mixing layer paddy fields are especially suitable for magnetic surface mapping of heavy metal pollution.  相似文献   

6.
Ecological-hydrological analysis of erosion processes on the key watersheds of Southern Ural steppe was used to determine the surface runoff as a function of the physico-geographic and anthropogenic conditions, i.e., snow storage and soil moisture reserves before winter, whose contribution reaches 68–81%. The rate of humus losses in chernozems and dark chestnut soils was calculated for different periods in accordance with erosion stress and the extent of the economic development of the territory. Agroecological types of arable lands with different surface runoff characteristics, rates of natural soil formation, and erosionrelated soil losses are identified. Measures aimed to reduce humus losses in soils are proposed. Relationships between the rates of soil formation and erosion losses are proposed to be used as ecological-hydrological criterion (index) of soil stability.  相似文献   

7.
Measurements of magnetic susceptibility of soils, reflecting magnetic enhancement of topsoils due to atmospherically deposited magnetic particles of industrial origin, are used recently in studies dealing with outlining polluted areas, as well as with approximate determination of soil contamination with heavy metals. One of the natural limitations of this method is magnetic enhancement of soils caused by weathering magnetically rich parent rock material. In this study we compare magnetic properties of soils from regions with different geological and environmental settings. Four areas in the Czech Republic and Austria were investigated, representing both magnetically rich and poor geology, as well as point-like and diffuse pollution sources. Topsoil and subsoil samples were investigated and the effect of geology and pollution was examined. Magnetic data including mass and volume magnetic susceptibility, frequency-dependent susceptibility, and main magnetic characteristics such as coercivity (Hc and Hcr) and magnetization (Ms and Mrs) parameters are compared with heavy metal contents. The aim of the paper is to assess the applicability of soil magnetometry under different geological-environmental conditions in terms of magnetic discrimination of dominant lithogenic/anthropogenic contributions to soil magnetic signature. Our results suggest that lithology represents the primary effect on soil magnetic properties. However, in case of significant atmospheric deposition of anthropogenic particles, this contribution can be clearly recognized, independent of the type of pollution source (point-like or diffuse), and discriminated from the lithogenic one. Different soil types apparently play no role. Possible effects of climate were not investigated in this study.  相似文献   

8.
Magnetic susceptibility is a non‐conventional way that can be used for evaluating proxy soil heavy metals pollution. The paper monitors available heavy metals (Cu, Fe, Zn, and Mn) present in cultivated soils around iron–steel plant by soil magnetic susceptibility. Our study was located in an area with high pollution with small grid density of 250 m in China. Results showed that low field magnetic susceptibility was significantly correlated with available Cu, Zn, and Mn. No clear association exists between magnetic susceptibility and available Fe, soil organic matter, pH. Frequency dependent susceptibility >5% suggests the possible presence of super‐paramagnetic particles, fly ashes produced during coal combustion.  相似文献   

9.
陕西交道全新世黄土-黑垆土磁化率的CBD研究   总被引:16,自引:7,他引:9  
根据黄士高原中部交道剖面全新世黄土-黑垆土剖面的非磁滞磁化率和CBD提取前后的磁化率、频率磁化率以及热磁分析结果,分析了磁性矿物的种类和磁畴状态,讨论了古土壤的磁化率增强,指出CBD技术强有力的支持古土壤磁化率增强的土壤成因观点.虽然CBD能非常有效地溶解土壤成因的磁赤铁矿,但并不是完全选择性地溶解土壤成因的磁铁矿颗粒.此外,通过对样品CBD处理前后磁化率数据的分析,从土壤化学角度为黄土的风成说提供了新证据。  相似文献   

10.
The paper concerns the complex study of pedogenic and magnetic characteristics of unpolluted soil profiles from Ukraine (3 profiles, of which two represent chernozem and one kastanozem) and Poland (1 profile of chernozem), all with loess parent material. Two of the profiles were situated further south than the other two. The “southern” zone is characterized by lower precipitation rate and higher annual temperatures than the “northern” zone. Depth variations of magnetic properties obtained with various methods were compared with pedogenic characteristics. The common characteristic of all profiles is enhancement of susceptibility in their upper parts related to the presence of superparamagnetic/ single-domain grains of maghemite/oxidized magnetite of pedogenic origin. However, variations of magnetic characteristics measured down depth profiles differ between profiles probably due to differences in climatic conditions and, perhaps, parent loess.  相似文献   

11.
粉煤灰经工厂废气排放进入大气,对人类健康和生态系统都造成了无法弥补的破坏.本文选取具有高空间分辨率优势的树叶作为收集粉煤灰的载体,对临汾市大气中可吸入颗粒物进行磁学参数和重金属含量监测.结果表明,磁化率最大值出现在工厂污染源附近,磁化率空间分布呈现随污染源距离增加而降低的趋势.工业区收集到的磁性颗粒以低矫顽力、粗粒度的磁铁矿为主.夏季磁性矿物来源单一,主要为人为影响.冬季大气中悬浮的磁性颗粒有部分来自于西北风/北风的自然尘降.同一采样点磁化率随时间变化特征表明,树叶的磁学性质可以灵敏和有效地反映较短时期内大气污染的现状.统计分析表明磁化率和重金属元素(铁,铬,镍,铜,铅,钴)之间存在显著相关性.污染负荷指数用于评估研究区域内重金属各元素综合污染的程度.结果显示,在废弃的旧工业区附近无大气污染指示,但在运营中的工厂集中的地区,大气均受到严重污染.污染负荷指数与表征磁性矿物含量的磁化率呈相关性(r2=0.66),因此树叶的磁性参数可以作为大气重金属污染的替代指标.  相似文献   

12.
Magnetic properties of hydrocarbon (HC) containing soils and sediments from two sites (Site A and B) of the former oil-field H?nigsen were analyzed in order to determine whether magnetic methods can be employed to delineate HC contamination of soils and sediments. Magnetic parameters such as magnetic susceptibility and induced isothermal remanent magnetizations, as well as soil and sediment properties such as pH, iron content and water content, HC content and most probable number counts of iron-metabolizing microorganisms were determined. The magnetic concentration-dependent parameters for HC contaminated samples were 25 times higher in soils from Site A than in sediment samples from Site B. However, at Site B the magnetic susceptibility was still four times higher in comparison to lithologically similar non-contaminated sediment samples from a third Site C. Newly formed magnetite containing mainly single domain particles was responsible for the magnetic enhancement, whereas superparamagnetic grains represented only a minor component. Site A had an acidic pH compared to neutral pH at Site B, and a higher crystalline and bioavailable total iron content. Nevertheless, Site B samples contained significant numbers of both iron(II)-oxidizing and iron(III)-reducing microorganisms indicating that microbial iron cycling might have taken place at this site and potentially played a role for iron mineral transformation, including magnetite (trans)formation. The content of total non-polar hydrocarbons (TNPH) at Site A was one order of magnitude higher than at Site B. Only at Site A magnetic susceptibility correlated well with TNPH. Our results demonstrate that HC contaminated samples had an enhanced magnetite content compared to non-contaminated soils and sediments. Therefore, magnetic methods may provide a quick and cost-effective way to assess HC contamination in soils and sediments. However, more field sites and laboratory investigations are needed to reveal the complex nature of the processes involved.  相似文献   

13.
Accelerated erosion of fine‐grained sediment is an environmental problem of international dimensions. Erosion control strategies and targeting of mitigation measures require robust and quantitative identification of sediment sources. Here, we use magnetic ‘fingerprinting’ to characterize soils, and examine their affinity with and contribution to suspended sediments transported within two subcatchments feeding Bassenthwaite Lake, northwest England. A high‐resolution soil magnetic susceptibility survey was made using a field susceptometer (ZH Instruments, SM400 probe). Combining the spatial and vertical (down‐profile) soil magnetic data, a subset of soil profiles was selected for detailed, laboratory‐based magnetic remanence analyses. The magnetic properties of the catchment soils are highly particle size‐dependent. Magnetic analyses were performed on the 31–63 µm fraction, for particle size‐specific comparison both with the suspended sediments and lake sediments. Fuzzy cluster analysis groups the soil magnetic data into six clusters, apparently reflecting variations in parent material and horizon type, with three magnetically hard soils as unclassified outliers. Examination of the cluster affinity of the soils, suspended sediments and lake sediments indicates that topsoils of the upper Newlands Valley and subsoils around Keskadale Beck are a major source of the Newlands Beck suspended load, and the recent (post‐nineteenth century) sediments in the deep lake basin. Older lake sediments show strong affinity with a small number of the Derwent suspended sediments and one of the Glenderamackin soils. A large number of Derwent suspended sediments show no affinity with any of the soils or lake sediments, instead forming a coherent, discrete and statistically unclassified group, possibly resulting from mixing between the magnetically hard subsoils of the medium to high‐altitude Glenderamackin and Troutbeck areas and softer, lower altitude Glenderamackin soils. The lack of any affinity of these suspended sediments with the lake sediments may indicate deposition along the Derwent flood plain and/or in the shallow delta of Lake Bassenthwaite. Particle size‐specific magnetic fingerprinting is thus shown to be both highly discriminatory and quantitatively robust even within the homogeneous geological units of this catchment area. Such a methodological approach has important implications for small–large scale catchment management where sources of sediment arising from areas with uniform geology have been difficult to determine using other approaches, such as geochemical or radionuclide analyses. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Windsor–Essex County is a major cross-border truck and transportation route, with significant localized industrialization as well as rural and farming areas. Magnetic property measurements (in-field and laboratory susceptibility, frequency-dependent susceptibility, hysteresis properties, thermomagnetic and thermosusceptibility curves, anhysteretic and isothermal magnetizations) were made in order to determine the potential for using such variables to distinguish between natural and anthropogenic pollutants. In-field magnetic susceptibility measured on 324 soil sampling sites on a 0.5–2 km grid spacing through Windsor–Essex County ranged from 3.7 × 10− 6 to 305.2 × 10− 6 SI (average 36.2 ± 35.8 × 10− 6 SI), and showed that high magnetic susceptibility values were obtained on soil sampling sites in and around the cities/towns of Windsor, Harrow, Olinda and Oakland and near the beaches of Point Pelee National Park (PPNP) and Deerbrook, whereas lower susceptibility values were observed in near the towns of Lakeshore and Essex. On this grid spacing, Highway 401 (the major truck route) did not show anomalous susceptibility values; however, closer (1–3 m) sampling on other roads did show anomalously high values, suggesting that the coarser grid spacing may have missed anomalies. Laboratory measurements indicated that the dominant magnetic mineral in the Windsor–Essex County soils is magnetite; however, the grain size is variable. Pseudo-single domain (PSD)–multidomain (MD) magnetite is generally found on beaches and in PPNP, whereas single domain (SD)–PSD magnetite has been found near the City of Windsor and other towns. While certain correlations exist between some anthropogenic activities and the measured magnetic susceptibility and magnetic property values, no overall correlation can be made. A variety of geologic and anthropogenic factors must be considered when interpreting the origin of the magnetic signal in a particular area.  相似文献   

15.
In this work, we carried out a preliminary study of traffic-derived pollutants from primary sources (vehicles), and on roads (paved area), road borders and surroundings areas. The study is focussed on the identification, distribution and concentration of pollutants and magnetic carriers. Magnetic parameters and their analyses suggest that the magnetic signal of vehicle-derived emissions is controlled by a magnetite-like phase. Magnetic grain size estimations reveal the presence of fine particles (0.1–5 μm) that can be inhaled and therefore are dangerous to human health. Magnetic susceptibility results (about 175 × 10−5 SI) show a higher magnetic concentration — magnetic enhancement — in the central area of the tollbooth line that is related to higher traffic. In addition, magnetic susceptibility was computed on several roadside soils along a length of 120 km and used to generate a 2-D contour map, which shows higher magnetic values (100–200 10−5 SI) near the edge of the road. The observed distribution of magnetic values indicates that magnetic particles emitted by vehicles are accumulated and mainly concentrated within a distance of several meters (1–2 m) from the edge of the road. In consequence, the magnetic susceptibility parameter seems to be a suitable indicator of traffic-related pollution. Non-magnetic studies show an enrichment of some trace elements, such as Ba, Cr, Cu, Zn and Pb, that are associated with traffic pollution. Furthermore, statistical correlations between the content of toxic trace metals and magnetic variables support the use of magnetic parameters as potential proxies for traffic-related pollution in this study area.  相似文献   

16.
Determining sources, quantities and travel distances of eroding soil is of increasing importance given its impact on‐ and off‐site, the sediment‐associated transport of nutrients, metals and micro‐organisms and the ongoing need to provide data for soil erosion model development and validation. Many soil tracers have been developed; however, most comprise foreign materials, such as fluorescent beads and rare earth oxides, which cast doubts on the validity of tracing results given their different physical characteristics. To avoid these problems, we have investigated the potential of soil, which has been heated under reducing conditions to enhance its ferrimagnetic content, as a soil erosion tracer; while the technique has been used successfully to trace river sediment it has not been successfully applied to soil erosion studies. For a suite of 16 magnetic concentration‐dependent properties, values were found to be significantly greater, by at least one order of magnitude, after heating, both for the bulk soil and nine individual particle size fractions. Individual size fractions could be differentiated using two different magnetic properties, thus illustrating the technique's potential to provide information on particle size‐specific erosion. Soil box experiments demonstrated the potential for both in situ measurement of magnetic susceptibility and laboratory measurement of the magnetic properties of eroded sediment, to trace and quantify soil erosion. Thus, heated soil, with artificially‐enhanced ferrimagnetic properties, is successfully demonstrated to have great potential as a size‐specific, cost‐effective and representative soil erosion tracer. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Pitambar  Gautam  Ulrich  Blaha  Erwin  Appel 《Island Arc》2005,14(4):424-435
Abstract Soil profiles of the Kathmandu urban area exhibit significant variations in magnetic susceptibility (χ) and saturation isothermal remanence (SIRM), which can be used to discriminate environmental pollution. Magnetic susceptibility can be used to delineate soil intervals by depth into normal (< 10?7 m3/kg), moderately enhanced (10?7–< 10?6 m3/kg) and highly enhanced (≥ 10?6 m3/kg). Soils far from roads and industrial sites commonly fall into the ‘normal’ category. Close to a road corridor, soils at depths of several centimeters have the highest χ, which remains high within the upper 20 cm interval, and decreases with depth through ‘moderately magnetic’ to ‘normal’ at approximately 30–40 cm. Soils in the upper parts of profiles in urban recreational parks have moderate χ. Soil SIRM has three components of distinct median acquisition fields (B1/2): soft (30–50 mT, magnetite‐like phase), intermediate (120–180 mT, probably maghemite or soft coercivity hematite) and hard (550–600 mT, hematite). Close to the daylight surface, SIRM is dominated by a soft component, implying that urban pollution results in enrichment by a magnetite‐like phase. Atomic absorption spectrometry of soils from several profiles for heavy metals reveals remarkable variability (ratio of maximum to minimum contents) of Cu (16.3), Zn (14.8) and Pb (9.3). At Rani Pokhari, several metals are well correlated with χ, as shown by a linear relationship between the logarithmic values. At Ratna Park, however, both χ and SIRM show significant positive correlation with Zn, Pb and Cu, but poor and even negative correlation with Fe (Mn), Cr, Ni and Co. Such differences result from a variety of geogenic, pedogenic, biogenic and man‐made factors, which vary in time and space. Nevertheless, for soil profiles affected by pollution (basically traffic‐related), χ exhibits a significant linear relationship with a pollution index based on the contents of some urban elements (Cu, Pb, Zn), and therefore it serves as an effective parameter for quantifying the urban pollution.  相似文献   

18.
岩石磁化率特征可以帮助判断岩石的形成环境,对地震过程中滑动摩擦伴随高温的物理-化学变化具有显著反应.本研究以钻穿龙门山中段构造带的汶川地震断裂科学钻探2号孔(WFSD-2)岩心为研究对象,使用Bartington MS2K磁化率仪对500~2283.56 m深度的岩心进行高分辨率无损磁化率测试,并结合岩性特征和显微结构探讨了龙门山构造带主要岩石单元的磁化率特征及其地震断裂活动的磁学响应.磁化率测试结果表明,由花岗岩和火山碎屑岩组成的彭灌杂岩体的磁化率值(数十到数千个10~(-6)SI)普遍高于上三叠统须家河组沉积岩的磁化率值(数个到数十个10~(-6)SI).从WFSD-2岩性分布来看,彭灌杂岩上下出露四段,其磁化率值特征反映它们属于不同的岩石单元,它们与下伏须家河组地层呈断层接触,构成叠瓦状构造,指示了龙门山构造带具有强烈的地壳缩短作用.断裂带中处于滑动带的断层泥和假玄武玻璃具有高磁化率特征,而断层角砾岩和碎裂岩不具有高磁化率值特征,表明断层岩磁化率增高的原因可能主要与地震断裂滑动摩擦过程中高温作用下发生的磁性矿物转换有关,断层岩中高磁化率异常可作为大地震活动的证据.WFSD-2岩心中的映秀—北川断裂带(600~960 m)可识别出约80条高磁化率异常的断层岩带,揭示映秀—北川断裂带是一条长期活动的断裂带,龙门山构造带形成演化过程中伴随着大地震活动.  相似文献   

19.
Soil loss is a global environmental problem resulting from the erosion process caused by many factors,including land use and slope position. Estimation of total soil loss from agricultural fields is useful for understanding the consequences of historical and current erosion. The main purposes of the current study are to explore the application of magnetic measurements in the mapping and measuring soil redistribution in cultivated(MZ13) and forested(MZ17) transects in a Moroccan subcatchment, to ...  相似文献   

20.
Expansion of a Plane Wave into Gaussian Beams   总被引:6,自引:0,他引:6  
Magnetic susceptibility measurements on topsoils have often been used during the last few years to detect anthropogenic pollution. In most cases, a Bartington susceptibility meter for field measurements was used. However, up to now, no standard procedure has been developed for carrying out such investigations. The purpose of our study was to test the compatibility of different set-ups of instruments used for this purpose and the possible influences of subjective (human) factors. Field magnetic susceptibility measurements, carried out with four different Bartington MS2D instruments in strictly defined positions, are very consistent both for low and high values. The correlation coefficient between the magnetic susceptibility values recorded with different Bartington MS2D probes reached 97–98%. A test area was mapped independently by two groups, without any restrictions concerning the choice and distribution of the measured points, but respecting a few standard conditions (e.g., measuring at a distance from tree trunks; on the flattest place possible; recording between 10–30 values per point). The resulting susceptibility maps show the same general features in both cases, suggesting that the measuring strategy applied is suitable for topsoil magnetic screening. The methodology proposed can be used to map magnetic susceptibility on a larger scale—for example Europe—providing large sets of representative data and eliminating border-transition biases and human errors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号