首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large-scale solar motions comprise differential rotation (with latitudinal, and perhaps radial gradients), axially symmetric meridional motions, and possible asymmetric motions (giant convective cells or Rossby-type waves or both). These motions must be basic in any satisfactory theory of the changing pattern of solar magnetic fields and of the 22-yr cycle. In the present paper available data are discussed and, as far as possible, evaluated and explained.Rotational measurements are based on the changing positions of discrete features such as sunspots, on Doppler shifts, on geophysical changes and on statistical evaluation of the motions of diffuse objects. The first mentioned, comprising faculae, sunspots, K-corona (to latitudes 45°) and filaments, show agreement better than 0.7 %. A new formula for surface rotation s , based on faculae and sunspot data, is s = 14.52 – 2.48 sin2 b – 2.51 sin6 b deg day–1, where b is latitude, and validity may extend to about 70°. Errors in Doppler shift measurements and statistical treatments are discussed. There is evidence of a much slower coronal rate at high latitudes, and of a slower sub-surface rate at lower latitudes.Ordered meridional motions have been revealed by statistical investigations of the positions of spot groups, of spots and of filaments. All these results seem explicable in terms of an oscillating hydro-magnetic circulation in each hemisphere. These have both 11-yr and 22-yr components, and these periods are provided by a general dipole field of about one gauss, together with a pair of toroidal fields centred at latitudes ±16° and of average strength of order 10 G.Evidence of large-scale (perhaps 3 × 105 km), irregular surface motions is provided by the distribution of surface magnetic flux, the motions of sunspots, and Doppler-shift observations; it is supported by Ward's theory of the equatorial acceleration. The possibility is suggested that these asymmetric motions also drive the oscillatory meridional motions.  相似文献   

2.
Solar cycle according to mean magnetic field data   总被引:1,自引:0,他引:1  
To investigate the shape of the solar cycle, we have performed a wavelet analysis of the large–scale magnetic field data for 1960–2000 for several latitudinal belts and have isolated the following quasi-periodic components: ∼22, 7 and 2 yr. The main 22-yr oscillation dominates all latitudinal belts except the latitudes of ±30° from the equator. The butterfly diagram for the nominal 22-yr oscillation shows a standing dipole wave in the low-latitude domain  (∣θ∣≤ 30°)  and another wave in the sub-polar domain  (∣θ∣≥ 35°)  , which migrates slowly polewards. The phase shift between these waves is about π. The nominal 7-yr oscillation yields a butterfly diagram with two domains. In the low-latitude domain  (∣θ∣≤ 35°)  , the dipole wave propagates equatorwards and in the sub-polar region, polewards. The nominal 2-yr oscillation is much more chaotic than the other two modes; however the waves propagate polewards whenever they can be isolated.
We conclude that the shape of the solar cycle inferred from the large-scale magnetic field data differs significantly from that inferred from sunspot data. Obviously, the dynamo models for a solar cycle must be generalized to include large-scale magnetic field data. We believe that sunspot data give adequate information concerning the magnetic field configuration deep inside the convection zone (say, in overshoot later), while the large-scale magnetic field is strongly affected by meridional circulation in its upper layer. This interpretation suggests that the poloidal magnetic field is affected by the polewards meridional circulation, whose velocity is comparable with that of the dynamo wave in the overshoot layer. The 7- and 2-yr oscillations could be explained as a contribution of two sub-critical dynamo modes with the corresponding frequencies.  相似文献   

3.
We cross-correlate pairs of Mt. Wilson magnetograms spaced at intervals of 24–38 days to investigate the meridional motions of small magnetic features in the photosphere. Our study spans the 26-yr period July 1967–August 1993, and the correlations determine longitude averages of these motions, as functions of latitude and time. The time-average of our results over the entire 26-yr period is, as expected, antisymmetric about the equator. It is poleward between 10° and 60°, with a maximum rate of 13 m s–1, but for latitudes below ±10° it is markedly equatorward, and it is weakly equatorward for latitudes above 60°. A running 1-yr average shows that this complex latitude dependence of the long-term time average comes from a pattern of motions that changes dramatically during the course of the activity cycle. At low latitudes the motion is equatorward during the active phase of the cycle. It tends to increase as the zones of activity move toward the equator, but it reverses briefly to become poleward at solar minimum. On the poleward sides of the activity zones the motion is most strongly poleward when the activity is greatest. At high latitudes, where the results are more uncertain, the motion seems to be equatorward except around the times of polar field reversal. The difference-from-average meridional motions pattern is remarkably similar to the pattern of the magnetic rotation torsional oscillations. The correspondence is such that the zones in which the difference-from-average motion is poleward are the zones where the magnetic rotation is slower than average, and the zones in which it is equatorward are the zones where the rotation is faster.Our results suggest the following characterization: there is a constant and generally prevailing motion which is perhaps everywhere poleward and varies smoothly with latitude. On this is superimposed a cycle-dependent pattern of similar amplitude in which the meridional motions of the small magnetic features are directed away from regions of magnetic flux concentration. This is suggestive of simple diffusion, and of the models of Leighton (1964) and Sheeley, Nash, and Wang (1987). The correspondence between the meridional motions pattern and the torsional oscillations pattern in the magnetic rotation suggests that the latter may be an artifact of the combination of meridional motion and differential rotation.  相似文献   

4.
The standard methods for determining the meridional flow on the Sun from the motions of tracers are shown to give an error related to the latitudinal nonuniformity of the tracer distribution. We suggest a simple method for eliminating this error. Using this method to determine the meridional circulation from the motions of sunspots brings the result into agreement with helioseismological data on the meridional flow. The discussed effects can be important for observations of meridional flows on stars.  相似文献   

5.
The directions and velocities of meridional plasma motions are investigated using Doppler shifts of the magnetically non-split line Fe 557.6 nm. Possible drifts of the spectrograph were controlled by measuring nearly iodine lines from a laboratory source. The scattered light was kept low by using the Capri Coudé refractor mainly around local noon.There is a general scatter of about ±20 to ±50 m s–1 in the yearly mean results. The scatter is up to –200 m s–1 for the year 1985. The results are compared with published data. Although some systematic meridional plasma motions could be detected from the average of the meridional flows within the whole observing period 1982 until 1986, the final analysis suggests, that all meridional motions averaged over half a solar cycle are below ±10 m s–1.Paper presented at the 11th European Regional Astronomical Meetings of the IAU on New Windows to the Universe, held 3–8 July, 1989, Tenerife, Canary Islands, Spain.This paper has also been presented at the IAU Colloquium No. 121Inside the Sun andAstronomy and Astrophysics 229, 224 (1990).  相似文献   

6.
We define for observational study two subsets of all polar zone filaments, which we call polemost filaments and polar filament bands. The behavior of the mean latitude of both the polemost filaments and the polar filament bands is examined and compared with the evolution of the polar magnetic field over an activity cycle as recently distilled by Howard and LaBonte (1981) from the past 13 years of Mt. Wilson full-disk magnetograms. The magnetic data reveal that the polar magnetic fields are built up and maintained by the episodic arrival of discrete f-polarity regions that originate in active region latitudes and subsequently drift to the poles. After leaving the active-region latitudes, these unipolar f-polarity regions do not spread equatorward even though there is less net flux equatorward; this indicates that the f-polarity regions are carried poleward by a meridional flow, rather than by diffusion. The polar zone filaments are an independent tracer which confirms both the episodic polar field formation and the meridional flow. We find:
  1. The mean latitude of the polemost filaments tracks the boundary of the polar field cap and undergoes an equatorward dip during each arrival of additional polar field.
  2. Polar filament bands track the boundary latitudes of the unipolar regions, drifting poleward with the regions at about 10 m s-1.
  3. The Mt. Wilson magnetic data, combined with a simple model calculation, show that the filament drift expected from diffusion alone would be slower than observed, and in some cases would be equatorward rather than poleward.
  4. The observation that filaments drift poleward along with the magnetic regions shows that fields of both polarities are carried by the meridional flow, as would be expected, rather than only the f-polarity flux which dominates the strength. This leads to the prediction that in the mid-latitudes during intervals between the passage of f-polarity regions, both polarities are present in nearly equal amounts. This prediction is confirmed by the magnetic data.
  相似文献   

7.
P. Ambrož 《Solar physics》2004,224(1-2):61-68
Large-scale magnetic field regions are evolving on a time scale of many weeks and months and are also modified during the solar activity cycle. The position of the regions are compared in a pair of consecutive synoptic charts and the horizontal velocity field responsible for their position changes, is inferred. Besides the axially symmetric zonal and meridional drifts, relating to differential rotation and meridional circulation, also non-axially symmetric velocity structures were observed during the last three solar activity cycles. Changes of the position and spatial distribution, as well as temporal variations of the field strength, closely relate to the occurrence and variations of other forms of solar activity such as sunspots, filaments and prominences and coronal structures. In combination with 11-yr cyclic changes of the large-scale velocity field, a new global dynamic regime of the convection zone is described.  相似文献   

8.
We have obtained new consistent versions of the 400-yr time series of the Wolf sunspot number W, the sunspot group number G, and the total sunspot area S (or the total sunspot magnetic flux Φ). We show that the 11-yr cycle did not cease during the Maunder minimum of solar activity. The characteristics of the extrema of individual 11-yr cycles in 1600–2005 have been determined in terms of the total sunspot area index. We provide arguments for using alternating (“magnetic”) time series of indices in investigating the solar cyclicity.  相似文献   

9.
Analysis of cosmic-ray intensity time evolution has led to the identification of intensity variations with several periodicities, most of them correlated with one or another phenomenon of the Sun. Recently Valdés-Galicia, Pérez-Enriquez, and Otaola (1996) reported on a newly-found 1.68-yr variation, which seems to be correlated with periodicities in X-ray long-duration events and low-latitude coronal hole area variations. As those phenomena are related with magnetic flux emergence and transport, in this paper we investigate the possible relationship of the referred cosmic-ray variation with characteristic times of different tracers of meridional circulation. Our results indicate that several of the calculated times might be related to the 1.68-yr cosmic-ray variation. A physical mechanism through which this connection may operate is discussed.  相似文献   

10.
S. Latushko 《Solar physics》1994,149(2):231-241
A method of two-dimensional correlation functions has been applied to a sequence of synoptic maps of the large-scale magnetic field to obtain the meridional drift pattern of field structures. The meridional drift profile obtained is antisymmetric about the equator. The meridional drift is directed from the equator to the poles at latitudes below 45°. A maximum drift velocity of 11–13 m s–1 is attained in the latitude range 30°. A picture of the space-time distribution of meridional drift is also obtained, which may be interpreted as resulting from the effect of azimuthal convective rolls (3 rolls per hemisphere) on the large-scale magnetic field. Rolls originate at high latitudes following the cycle maximum, and migrate equatorwards until the minimum of the next cycle. The picture in the equatorial region can correspond to convective rolls with lifetimes of about two years, or to the process of interaction of rolls from two hemispheres.  相似文献   

11.
G. Lustig  H. Wöhl 《Solar physics》1994,152(1):221-226
Greenwich data (1874–1976) are used for a time-dependent analysis of meridional motions of sunspot groups. We obtain the latitude-dependence of meridional motions of sunspot groups with respect to a mean latitude determined for half-year intervals. The daily meridional motions of groups are also given separately for growing and decaying sunspot groups. The development is determined from changes of sunspot areas. Our results are compared with the reductions performed by Howard (1991b) using the Mt. Wilson sunspot data from 1917 until 1985: Although we have smaller errors, we do not find any significant drift. We also do not find different trends in the meridional motions of growing as compared to decreasing sunspots.  相似文献   

12.
We use the fully coupled, three-dimensional, global circulation Jovian Ionospheric Model (JIM) to calculate the coupling between ions in the jovian auroral ovals and the co-existing neutral atmosphere. The model shows that ions subject to drift motion around the auroral oval, as a result of the E×B coupling between a meridional, equatorward electric field and the jovian magnetic field, generate neutral winds in the planetary frame of reference. Unconstrained by the magnetic field, these neutral winds have a greater latitudinal extent than the corresponding ion drifts. Values of the coupling coefficient, k(h), are presented as a function of altitude and cross-auroral electric field strength, for different incoming electron fluxes and energies. The results show that, with ion velocities of several hundred metres per second to over 1 km s−1, k(h) can attain values greater than 0.5 at the ion production peak. This parameter is key to calculating the effective conductivities required to model magnetosphere-ionosphere coupling correctly. The extent to which angular momentum (and therefore energy) is transported vertically in JIM is much more limited than earlier, one-dimensional, studies have predicted.  相似文献   

13.
Cloud motions were obtained from a number of images acquired in reflected solar ultraviolet light during spring and fall of 1979 from the Pioneer Venus Orbiter Cloud Photopolarimeter (OCPP) to determine the zonal mean circulation of the atmosphere of Venus at the cloud top level. The meridional profile of the zonal component of motion is somewhat different from that previously obtained from Mariner 10 and preliminary Pioneer Venus observations, although the equatorial magnitude is about the same (?94 m/sec). The mean meridional motion is toward the south pole south of about 5° south latitude, and toward the north pole north of this latitude, with peak mean magnitudes of about 7 m/sec polewards of 20° north and 40° south latitudes in the respective hemispheres. From the few measurements obtained at higher latitudes the magnitude of the mean meridional component appears to decrease although it is still directed toward the respective poles. Due to the evolution of the cloud patterns over the duration of the images from which the cloud velocities are obtained, the uncertainties in the mean zonal and meridional components may be as large as 5–10 and 2–4 m/sec, respectively. Preliminary estimates of meridional momentum transport show that the mean circulation dominates the eddy circulation transport completely, in agreement with the estimates obtained from Mariner 10 data, although the uncertainties in both the mean and eddy circulation transports are large. The momentum transports are polewards and their peak magnitudes occur at latitudes between 20° and 40° in both the hemispheres.  相似文献   

14.
The Debrecen Photoheliographic Data catalogue is a continuation of the Greenwich Photoheliographic Results providing daily positions of sunspots and sunspot groups. We analyse the data for sunspot groups focussing on meridional motions and transfer of angular momentum towards the solar equator. Velocities are calculated with a daily shift method including an automatic iterative process of removing the outliers. Apart from the standard differential rotation profile, we find meridional motion directed towards the zone of solar activity. The difference in measured meridional flow in comparison to Doppler measurements and some other tracer measurements is interpreted as a consequence of different flow patterns inside and outside of active regions. We also find a statistically significant dependence of meridional motion on rotation velocity residuals confirming the transfer of angular momentum towards the equator. Analysis of horizontal Reynolds stress reveals that the transfer of angular momentum is stronger with increasing latitude up to about \(40^{\circ}\), where there is a possible maximum in absolute value.  相似文献   

15.
Kuiper (1972) had suggested that the Great Red Spot (GRS) of Jupiter is a giant hurricane. We present further arguments in support of this idea and propose that it may also apply to the smaller vortices such as the white and brown ovals (barges). Our estimates indicate that the spin-down time-constants for these Jovian vortices are significantly shorter than the observed lifetimes. Thus, the motions must be sustained through the continued release of internal energy. In analogy with the CISK mechanism for the terrestrial hurricane, transport of water vapor, which is observed on Jupiter, may provide the latent energy to fuel the motions. The energy the planet emits must be transported upwards; therefore its troposphere should be convectively unstable. In such an atmosphere, the proposed solar driven meridional circulation is multicellular, of the Ferrel-Thomson type. If the energy transport from the planetary interior is accelerated by the upward motions in the circulation, eastward zonal jets develop such as observed in the equatorial region. But if the upward flow of energy is impeded by the prevailing downward motions in the meridional circulation (which occur, for example, near 20 latitude), we propose that the convective instability is amplified. The conditions then are more favorable for the development of hurricanes which may appear in the form of the GRS and the white and brown ovals. The GRS with its large size and long life time (indicating that it is very deep) is unique, and we suggest that it may have been induced by meteor impact.  相似文献   

16.
We have studied the latitude-time distribution of the green (5303 Å) coronal line emission for 1940–1989 from observations by Waldmeier (1957), Kislovodsk, Lomnický tít, Norikura, and Pic-du-Midi - Q.B.S.A. (1955–1987). We have compared these data with the distributions of the weak magnetic field (Stenflo, 1988), of polar faculae and sunspots, and have given our interpretation of the results. We have found that a new cycle of coronal activity commences after the polar field reversal in the form of two components in each hemisphere. We identify the first component with the polar faculae that appear at latitude 40° and migrate polewards. The second component representing sunspots shows up at 40° latitude 5–6 years after and drifts equatorward. Thus the global coronal activity cycle has a duration of 16–17 years and is described by two components that reflect the activity of polar faculae and sunspots.  相似文献   

17.
We derive the poleward migration trajectory diagram of the filament bands for the years 1915–1982 from the H-alpha synoptic charts. We find that the global solar activity commences soon after the polar field reversal in the form of two components in each hemisphere. The first component we identify with the polar faculae that appear at latitudes 40–70° and migrate polewards. The second and the more powerful component representing the sunspots shows up at 40° latitudes 5–6 years later and drifts equatorward giving rise to the butterfly diagram. Thus the global solar activity is described by the faculae and the sunspots that occur at different latitude belts and displaced in time by 5–6 years. This gives rise to the prolonged duration for the global solar activity lasting for 16–18 years as against the 11 years which has come about based only on the spots. The two components match with the pattern of the coronal emission in 5303 Å line. Finally, we show that the two components of activity also match with the pattern of excess shear associated with the torsional oscillations on the Sun and this provides a link between the torsional oscillations and the magnetic activity.  相似文献   

18.
Observations of rapidly rotating solar-like stars show a significant mixture of opposite-polarity magnetic fields within their polar regions. To explain these observations, models describing the surface transport of magnetic flux demand the presence of fast meridional flows. Here, we link subsurface and surface magnetic flux transport simulations to investigate (i) the impact of meridional circulations with peak velocities of  ≤125 m s−1  on the latitudinal eruption pattern of magnetic flux tubes and (ii) the influence of the resulting butterfly diagrams on polar magnetic field properties. Prior to their eruption, magnetic flux tubes with low field strengths and initial cross-sections below  ∼300 km  experience an enhanced poleward deflection through meridional flows (assumed to be polewards at the top of the convection zone and equatorwards at the bottom). In particular, flux tubes which originate between low and intermediate latitudes within the convective overshoot region are strongly affected. This latitude-dependent poleward deflection of erupting magnetic flux renders the wings of stellar butterfly diagrams distinctively convex. The subsequent evolution of the surface magnetic field shows that the increased number of newly emerging bipoles at higher latitudes promotes the intermingling of opposite polarities of polar magnetic fields. The associated magnetic flux densities are about 20 per cent higher than in the case disregarding the pre-eruptive deflection, which eases the necessity for fast meridional flows predicted by previous investigations. In order to reproduce the observed polar field properties, the rate of the meridional circulation has to be of the order of 100 m s−1, and the latitudinal range from which magnetic flux tubes originate at the base of the convective zone (≲50°) must be larger than in the solar case (≲35°).  相似文献   

19.
The gravity potential of an arbitrary bodyT is expanded in a series of spherical harmonics and rigorous evaluations of the general termV n of the expansion are obtained. It is proved thatV n decreases on the sphere envelopingT according to the power law if the body structure is smooth. For a body with analytic structure,V n decreases in geometric progression. The exactness of these evaluations is proved for bodies having irregular and analytic structures. For the terrestrial planetsV n =O (n –5/2).
I I V n IV n I . . IV n I . I. IV n =O(n –5/2 )
  相似文献   

20.
P. R. Wilson 《Solar physics》1972,27(2):354-362
A mechanism is proposed to explain the cooling of a sunspot in terms of the detailed interactions between the magnetic field and the convective motions. The mechanism provides that an axially symmetric concentration of magnetic field deforms the normal supergranule cell pattern below the sunspot into a radial outflow of plasma over a region of diameter 60 Mm.The flow occurs at depths where the magnetic and kinetic energy densities are approximately equal ( 5 Mm) and is described in terms of a Carnot refrigeration cycle. Application of the hydromagnetic equations to a very simple model shows that, because the magnetic field concentration causes the outflow, the field will itself decay in a time short compared with the lifetime of a spot. However, a slightly more sophisticated model does suggest conditions under which this decay is considerably reduced.Observations of the outward drift of magnetic knots around sunspots and of supergranule-type surface motions extending radially outwards from the penumbra of a spot to the nearest faculae are discussed in relation to the mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号