首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increasing water demands, higher standards of living, depletion of resources of acceptable quality and excessive water pollution due to agricultural and industrial expansions have caused intense social and political predicaments, and conflicting issues among water consumers. The available techniques commonly used in reservoir optimization/operation do not consider interaction, behavior and preferences of water users, reservoir operator and their associated modeling procedures, within the stochastic modeling framework. In this paper, game theory is used to present the associated conflicts among different consumers due to limited water. Considering the game theory fundamentals, the Stochastic Dynamic Nash Game with perfect information (PSDNG) model is developed, which assumes that the decision maker has sufficient (perfect) information regarding the associated randomness of reservoir operation parameters. The simulated annealing approach (SA) is applied as a part of the proposed stochastic framework, which makes the PSDNG solution conceivable. As a case study, the proposed model is applied to the Zayandeh-Rud river basin in Iran with conflicting demands. The results are compared with alternative reservoir operation models, i.e., Bayesian stochastic dynamic programming (BSDP), sequential genetic algorithm (SGA) and classical dynamic programming regression (DPR). Results show that the proposed model has the ability to generate reservoir operating policies, considering interactions of water users, reservoir operator and their preferences.  相似文献   

2.
During the last decade, a number of models have been developed to consider the conflict in dynamic reservoir operation. Most of these models are discrete dynamic models which are developed based on game theory. In this study, a continuous model of dynamic game and its corresponding solutions are developed for reservoir operation. Two solution methods are used to solve the model of continuous dynamic game, namely the Ricatti equations and collocation methods. The Ricatti equations method is a closed form solution, requiring less computational efforts compared with discrete models. The collocation solution method applies Newton's method or a quasi-Newton method to find the problem solution. These approaches are able to generate operating policies for dynamic reservoir operation. The Zayandeh-Rud river basin in central Iran is used as a case study and the results are compared with alternative water allocation models. The results show that the proposed solution methods are quite capable of providing appropriate reservoir operating policies, while requiring rather short computational times due to continuous formulation of state and decision variables. Reliability indices are used to compare the overall performance of the proposed models. Based on the results from this study, the collocation method leads to improved values of the reliability indices for total reservoir system and utility satisfaction of water users, compared to the Ricatti equations method. This is attributed to the flexible structure of the collocation model. When compared to alternative water allocation models, lower values of reliability indices are achieved by the collocation method.  相似文献   

3.
In this paper, optimal operating rules for water quality management in reservoir–river systems are developed using a methodology combining a water quality simulation model and a stochastic GA-based conflict resolution technique. As different decision-makers and stakeholders are involved in the water quality management in reservoir–river systems, a new stochastic form of the Nash bargaining theory is used to resolve the existing conflict of interests related to water supply to different demands, allocated water quality and waste load allocation in downstream river. The expected value of the Nash product is considered as the objective function of the model which can incorporate the inherent uncertainty of reservoir inflow. A water quality simulation model is also developed to simulate the thermal stratification cycle in the reservoir, the quality of releases from different outlets as well as the temporal and spatial variation of the pollutants in the downstream river. In this study, a Varying Chromosome Length Genetic Algorithm (VLGA), which has computational advantages comparing to other alternative models, is used. VLGA provides a good initial solution for Simple Genetic Algorithms and comparing to Stochastic Dynamic Programming (SDP) reduces the number of state transitions checked in each stage. The proposed model, which is called Stochastic Varying Chromosome Length Genetic Algorithm with water Quality constraints (SVLGAQ), is applied to the Ghomrud Reservoir–River system in the central part of Iran. The results show, the proposed model for reservoir operation and waste load allocation can reduce the salinity of the allocated water demands as well as the salinity build-up in the reservoir.  相似文献   

4.
Stochastic dynamic game models can be applied to derive optimal reservoir operation policies by considering interactions among water users and reservoir operator, their preferences, their levels of information availability and cooperative behaviors. The stochastic dynamic game model with perfect information (PSDNG) has been developed by [Ganji A, Khalili D, Karamouz M. Development of stochastic dynamic Nash game model for reservoir operation. I. The symmetric stochastic model with perfect information. Adv Water Resour, this issue]. This paper develops four additional versions of stochastic dynamic game model of water users interactions based on the cooperative behavior and hydrologic information availability of beneficiary sectors of reservoir systems. It is shown that the proposed models are quite capable of providing appropriate reservoir operating policies when compared with alternative operating models, as indicated by several reservoir performance characteristics. Among the proposed models, the selected model by considering cooperative behavior and additional hydrologic information (about the randomness nature of reservoir operation parameters), as exercised by reservoir operator, provides the highest attained level of performance and efficiency. Furthermore, the selected model is more realistic since it also considers actual behavior of water users and reservoir operator in the analysis.  相似文献   

5.
Evaluation of stochastic reservoir operation optimization models   总被引:5,自引:0,他引:5  
This paper investigates the performance of seven stochastic models used to define optimal reservoir operating policies. The models are based on implicit (ISO) and explicit stochastic optimization (ESO) as well as on the parameterization–simulation–optimization (PSO) approach. The ISO models include multiple regression, two-dimensional surface modeling and a neuro-fuzzy strategy. The ESO model is the well-known and widely used stochastic dynamic programming (SDP) technique. The PSO models comprise a variant of the standard operating policy (SOP), reservoir zoning, and a two-dimensional hedging rule. The models are applied to the operation of a single reservoir damming an intermittent river in northeastern Brazil. The standard operating policy is also included in the comparison and operational results provided by deterministic optimization based on perfect forecasts are used as a benchmark. In general, the ISO and PSO models performed better than SDP and the SOP. In addition, the proposed ISO-based surface modeling procedure and the PSO-based two-dimensional hedging rule showed superior overall performance as compared with the neuro-fuzzy approach.  相似文献   

6.
A methodology is developed for optimal operation of reservoirs to control water quality requirements at downstream locations. The physicochemical processes involved are incorporated using a numerical simulation model. This simulation model is then linked externally with an optimization algorithm. This linked simulation–optimization‐based methodology is used to obtain optimal reservoir operation policy. An elitist genetic algorithm is used as the optimization algorithm. This elitist‐genetic‐algorithm‐based linked simulation–optimization model is capable of evolving short‐term optimal operation strategies for controlling water quality downstream of a reservoir. The performance of the methodology developed is evaluated for an illustrative example problem. Different plausible scenarios of management are considered. The operation policies obtained are tested by simulating the resulting pollutant concentrations downstream of the reservoir. These performance evaluations consider various scenarios of inflow, permissible concentration limits, and a number of management periods. These evaluations establish the potential applicability of the developed methodology for optimal control of water quality downstream of a reservoir. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Stochastic optimization methods are used for optimal design and operation of surface water reservoir systems under uncertainty. Chance-constrained (CC) optimization with linear decision rules (LDRs) is an old approach for determining the minimum reservoir capacity required to meet a specific yield at a target level of reliability. However, this approach has been found to overestimate the reservoir capacity. In this paper, we propose the reason for this overestimation to be the fact that the reliability constraints considered in standard CC LDR models do not have the same meaning as in other models such as reservoir operation simulation models. The simulation models have fulfilled a target reliability level in an average sense (i.e., annually), whereas the standard CC LDR models have met the target reliability level every season of the year. Mixed integer nonlinear programs are presented to clarify the distinction between the two types of reliability constraints and demonstrate that the use of seasonal reliability constraints, rather than an average reliability constraint, leads to 80–150 % and 0–32 % excess capacity for SQ-type and S-type CC LDR models, respectively. Additionally, a modified CC LDR model with an average reliability constraint is proposed to overcome the reservoir capacity overestimation problem. In the second stage, we evaluate different operating policies and show that for the seasonal (average) reliability constraints, open-loop, S-type, standard operating policy, SQ-type, and general SQ-type policies compared to a model not using any operation rule lead to 190–460 % (200–550 %), 100–200 % (80–300 %), 0–90 % (0–60 %), 30–90 % (0–20 %), and 10–90 % (0–10 %) excess capacity, respectively.  相似文献   

8.
This paper presents optimization and uncertainty analysis of operation policies for Hirakud reservoir system in Orissa state, India. The Hirakud reservoir project serves multiple purposes such as flood control, irrigation and power generation in that order of priority. A 10-daily reservoir operation model is formulated to maximize annual hydropower production subjected to satisfying flood control restrictions, irrigation requirements, and various other physical and technical constraints. The reservoir operational model is solved by using elitist-mutated particle swarm optimization (EMPSO) method, and the uncertainty in release decisions and end-storages are analyzed. On comparing the annual hydropower production obtained by EMPSO method with historical annual hydropower, it is found that there is a greater chance of improving the system performance by optimally operating the reservoir system. The analysis also reveals that the inflow into reservoir is highly uncertain variable, which significantly influences the operational decisions for reservoir system. Hence, in order to account uncertainty in inflow, the reservoir operation model is solved for different exceedance probabilities of inflows. The uncertainty in inflows is represented through probability distributions such as normal, lognormal, exponential and generalized extreme value distributions; and the best fit model is selected to obtain inflows for different exceedance probabilities. Then the reservoir operation model is solved using EMPSO method to arrive at suitable operational policies corresponding to various inflow scenarios. The results show that the amount of annual hydropower generated decreases as the value of inflow exceedance probability increases. The obtained operational polices provides confidence in release decisions, therefore these could be useful for reservoir operation.  相似文献   

9.
Construction of dams and the resulting water impoundments are one of the most common engineering procedures implemented on river systems globally; yet simulating reservoir operation at the regional and global scales remains a challenge in human–earth system interactions studies. Developing a general reservoir operating scheme suitable for use in large-scale hydrological models can improve our understanding of the broad impacts of dams operation. Here we present a novel use of artificial neural networks to map the general input/output relationships in actual operating rules of real world dams. We developed a new general reservoir operation scheme (GROS) which may be added to daily hydrologic routing models for simulating the releases from dams, in regional and global-scale studies. We show the advantage of our model in distinguishing between dams with various storage capacities by demonstrating how it modifies the reservoir operation in respond to changes in capacity of dams. Embedding GROS in a water balance model, we analyze the hydrological impact of dam size as well as their distribution pattern within a drainage basin and conclude that for large-scale studies it is generally acceptable to aggregate the capacity of smaller dams and instead model a hypothetical larger dam with the same total storage capacity; however we suggest limiting the aggregation area to HUC 8 sub-basins (approximately equal to the area of a 60 km or a 30 arc minute grid cell) to avoid exaggerated results.  相似文献   

10.
Genetic algorithms, founded upon the principle of evolution, are applicable to many optimization problems, especially popular for solving parameter optimization problems. Reservoir operating rule curves are the most common way for guiding and managing the reservoir operation. These rule curves traditionally are derived through intensive simulation techniques. The main aim of this study is to investigate the efficiency and effectiveness of two genetic algorithms (GAs), i.e., binary coded and real coded, to derive multipurpose reservoir operating rule curves. The curves are assumed to be piecewise linear functions where the coordinates of their inflection points are the unknowns and we want to optimize system performance. The applicability and effectiveness of the proposed methods are tested on the operation of the Shih‐Men reservoir in Taiwan. The current M‐5 operating curves of the Shih‐Men reservoir are also evaluated. The results show that the GAs provide an adequate, effective and robust way for searching the rule curves. Both sets of operating rule curves obtained from GAs have better performance, in terms of water release deficit and hydropower, than the current M‐5 operating rule curves, while the real‐coded GA is more efficient than the binary‐coded GA. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
A fuzzy-Markov-chain-based analysis method for reservoir operation   总被引:3,自引:2,他引:1  
In this study, a fuzzy-Markov-chain-based stochastic dynamic programming (FM-SDP) method is developed for tackling uncertainties expressed as fuzzy sets and distributions with fuzzy probability (DFPs) in reservoir operation. The concept of DFPs used in Markov chain is presented as an extended form for expressing uncertainties including both stochastic and fuzzy characteristics. A fuzzy dominance index analysis approach is proposed for solving multiple fuzzy sets and DPFs in the proposed FM-SDP model. Solutions under a set of α-cut levels and fuzzy dominance indices can be generated by solving a series of deterministic submodels. The developed method is applied to a case study of a reservoir operation system. Solutions from FM-SDP provide a range of desired water-release policies under various system conditions for reservoir operation decision makers, reflecting dynamic and dual uncertain features of water availability simultaneously. The results indicate that the FM-SDP method could be applicable to practical problems for decision makers to obtain insight regarding the tradeoffs between economic and system reliability criteria. Willingness to obtain a lower benefit may guarantee meeting system-constraint demands; conversely, a desire to acquire a higher benefit could run into a higher risk of violating system constraints.  相似文献   

12.
Reservoir system reliability is the ability of reservoir to perform its required functions under stated conditions for a specified period of time. In classical method of reservoir system reliability analysis, the operation policy is used in a simple simulation model, considering the historical/synthetic inflow series and a number of physical bounds on a reservoir system. This type of reliability analysis assumes a reservoir system as fully failed or functioning, called binary state assumption. A number of researchers from various research backgrounds have shown that the binary state assumption in the traditional reliability theory is not extensively acceptable. Our approach to tackle the present problem space is to implement the algorithm of advance first order second moment (AFOSM) method. In this new method, the inflow and reservoir storage are considered as uncertain variables. The mean, variance and covariance of uncertain variables are determined using moment values of reservoir state variables. For this purpose, a stochastic optimization model developed based on the constraint state formulation is applied. The proposed model of reliability analysis is used to a real case study in Iran. As a result, monthly probabilities of water allocation were computed from AFOSM method, and the outputs were compared with those from Monte Carlo method. The comparison shows that the outputs from AFOSM method are similar to those from the Monte Carlo method. In term of practical use of this study, the proposed method is appropriate to determine the monthly probability of failure in water allocation without the aid of simulation.  相似文献   

13.
Reservoirs impose many negative impacts on riverine ecosystems. To balance human and ecosystem needs, we propose a reservoir operation method that combines reservoir operating rule curves with the regulated minimum water release policy to meet the environmental flow requirements of riverine ecosystems. Based on the relative positions of the reservoir and the water intakes, we consider three scenarios: water used for human needs (including industrial, domestic and agricultural) is directly withdrawn from (1) the reservoir; (2) both reservoirs and downstream river channels and (3) downstream river. The proposed method offers two advantages over traditional methods: First, it can be applied to finding the optimal reservoir operating rule curves with the consideration of environmental flow requirement, which is beneficial to the sustainable water uses. Second, it avoids a problem with traditional approaches, which prescribe the minimum environmental flow requirements as the regulated minimum environmental flow releases from reservoirs, implicitly giving lower priority to the riverine ecosystem. Our method instead determines the optimal regulated minimum releases of water to sustain environmental flows while more effectively balancing human and ecosystem needs. To demonstrate practical use of the model, we present a case study for operation of the Tanghe reservoir in China's Tang river basin for the three above‐mentioned scenarios. The results demonstrate that this approach will help the reservoir's managers satisfy both human and environmental requirements. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
This study applies implicit stochastic optimization (ISO) to develop monthly operating rules for a reservoir located in Northeast Brazil. The proposed model differs from typical ISO applications as it uses the forecast of the mean inflow for a future horizon instead of the current-month inflow. Initially, a hundred different 100-year monthly inflow scenarios are synthetically generated and employed as input to a deterministic operation optimization model in order to build a database of optimal operating data. Later, such database is used to fit monthly reservoir rule curves by means of nonlinear regression analysis. Finally, the established rule curves are validated by operating the system under 100 new inflow ensembles. The performance of the proposed technique is compared with those provided by the standard reservoir operating policy (SOP), stochastic dynamic programming (SDP) and perfect-forecast deterministic optimization (PFDO). Different forecasting horizons are tested. For all of them, the results indicate the feasibility of using ISO in view of its lower vulnerability in contrast to the SOP as well as the proximity of its operations with those by PFDO. The results also reveal that there is an optimal choice for the forecasting horizon. The comparison between ISO and SDP shows small differences between both, justifying the adoption of ISO for its simplified mathematics as opposed to SDP.  相似文献   

15.
Many reservoirs around the world are being operated based on rule curves developed without considering the evacuation of deposited sediment. Current reservoir simulation and optimization models fall short of incorporating the concept of sustainability because the reservoir storage losses due to sedimentation are not considered. This study develops a new model called Reservoir Optimization‐Simulation with Sediment Evacuation (ROSSE) model. The model utilizes genetic algorithm based optimization capabilities and embeds the sediment evacuation module into the simulation module. The sediment evacuation module is implemented using the Tsinghua university flushing equation. The ROSSE model is applied to optimize the rule curves of Tarbela Reservoir, the largest reservoir in Pakistan with chronic sedimentation problems. In the present study, rule curves are optimized for maximization of net economic benefits from water released. The water released can be used for irrigation, power production, sediment evacuation, and for flood control purposes. Relative weights are used to combine the benefits from these conflicting water uses. Nine sets of rule curves are compared, namely existing rule curves and proposed rule curves for eight scenarios developed for various policy options. These optimized rule curves show an increase of net individual economic benefits ranging from 9 to 248% over the existing rule curves. The shortage of irrigation supply during the simulation period is reduced by 38% and reservoir sustainability is enhanced by 28% through increased sediment evacuation. The study concludes that by modifying the operating policy and rule curves, it is possible to enhance the reservoir's sustainability and maximize the net economic benefits. The developed methodology and the model can be used for optimization of rule curves of other reservoirs with sedimentation problems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
This paper presents a new approach to improving real‐time reservoir operation. The approach combines two major procedures: the genetic algorithm (GA) and the adaptive network‐based fuzzy inference system (ANFIS). The GA is used to search the optimal reservoir operating histogram based on a given inflow series, which can be recognized as the base of input–output training patterns in the next step. The ANFIS is then built to create the fuzzy inference system, to construct the suitable structure and parameters, and to estimate the optimal water release according to the reservoir depth and inflow situation. The practicability and effectiveness of the approach proposed is tested on the operation of the Shihmen reservoir in Taiwan. The current M‐5 operating rule curves of the Shihmen reservoir are also evaluated. The simulation results demonstrate that this new approach, in comparison with the M‐5 rule curves, has superior performance with regard to the prediction of total water deficit and generalized shortage index (GSI). Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
Abstract

An alternative procedure for assessment of reservoir Operation Rules (ORs) under drought situations is proposed. The definition of ORs for multi-reservoir water resources systems (WRSs) is a topic that has been widely studied by means of optimization and simulation techniques. A traditional approach is to link optimization methods with simulation models. Thus the objective here is to obtain drought ORs for a real and complex WRS: the Júcar River basin in Spain, in which one of the main issues is the resource allocation among agricultural demands in periods of drought. To deal with this problem, a method based on the combined use of genetic algorithms (GA) and network flow optimization (NFO) is presented. The GA used was PIKAIA, which has previously been used in other water resources related fields. This algorithm was linked to the SIMGES simulation model, a part of the AQUATOOL decision support system (DSS). Several tests were developed for defining the parameters of the GA. The optimization of various ORs was analysed with the objective of minimizing short-term and long-term water deficits. The results show that simple ORs produce similar results to more sophisticated ones. The usefulness of this approach in the assessment of ORs for complex multi-reservoir systems is demonstrated.

Citation Lerma, N., Paredes-Arquiola, J., Andreu, J., and Solera, A., 2013. Development of operating rules for a complex multi-reservoir system by coupling genetic algorithms and network optimization. Hydrological Sciences Journal, 58 (4), 797–812.  相似文献   

18.
A nonlinear coupled simulation and optimization model is formulated to find the optimal operating policies with a minimal cost for the conjunctive management of hydraulically interacting surface and ground water supplies. The term representing the pumpage cost in the objective function of the management model causes nonlinearity that cannot be put in a quadratic form as in the traditional approach, since drawdown in that term is a function of well pumpage and other parameters. To eliminate the nonlinearity, δ-form approximating model is formulated with a particular emphasis on the concave function of the transformed objective function. The original problem in a nonlinear form is solved by coupling the solver with a random number generator to provide the model with a different initial guess each time. However, the δ-form approximating problem is formulated as a linear mixed integer programming model. Optimal operating policies and the operation costs obtained from both models are found to be in good agreement.  相似文献   

19.
ABSTRACT

A set of linked optimization models was used to evaluate planning and operation of the proposed Pamba-Achankovil-Vaippar (PAV) water transfer project in India. The shortage of water for irrigation in the Vaippar basin has led to the need for water import. The project consists of three reservoirs. The models were applied at three levels. At Level-1, the projections of water requirement for irrigation in the Vaippar basin at Reservoir-1 were estimated using an LP model. Level-2 was operated at three sub-levels: the first was the determination of the export requirements from the Pamba basin (Reservoir-2) to the Achankovil basin (Reservoir-1); the second was determining the capability of Reservoir-2 to export and sizing of the three reservoirs to meet the above targets was the third sub-level. Integrated reservoir operation and canal irrigation water distribution were done at Level-3. DP models were employed at levels-2 and 3. The linked LP, DP and simulation models were found effective for planning water transfers.  相似文献   

20.
In this paper, a new model for a single reservoir operation optimization is proposed. The proposed model can design the optimal operation policy of a reservoir with explicit consideration of drought duration. The authors model this problem by formulating a single-stage loss function as a function of both the reservoir release and drought duration. Thereby the expected loss per period which is calculated based on the above extended single-stage loss function is minimized in infinite time horizon on the basis of Markov decision process (MDP) theory. The reliability indices are estimated as expected loss per period for specified extended loss functions. Finally, the features of the proposed model are illustrated through numerical analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号