首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The removal of native forest affects stream characteristics, processes, and organisms at the local scale. We compared the structure of fish assemblages between microbasins impacted by deforestation and those in pristine condition in the Amazonian Machado River basin, Brazil. Fish were collected with seine and dip nets along an 80-m stretch of 28 streams. At each site, we recorded physical, chemical, and land-water ecotone variables. We collected 6,586 specimens of 109 species, being 39 and 18 of them exclusively of forested and deforested streams, respectively. Non-significant differences were found for abundance and species richness between forested and deforested streams. A total of four main trophic groups were identified. Carnivores were more abundant in forested streams, whereas herbivores, omnivores and detritivores species were the most abundant in deforested streams. The deforested streams showed higher abundance and richness of algae and periphyton consumers, while forested streams presented higher abundance and richness of invertebrate consumers. Forested streams presented longer foodchains, higher occurrence and abundance of species that have more specialized habits and are intolerant to degraded environments, whereas generalist and tolerant species predominated in deforested streams. We conclude that species composition in Amazonian streams predictably responds to the degree of forest cover.  相似文献   

2.
Agricultural land use is expanding and at an accelerated rate. In Ethiopia, most of this expansion has occurred in highland areas and involve deforestation of natural riparian vegetation. However, the impacts on the water quality of streams are poorly understood, especially with regard to the influence of land use patterns on highland streams. In this study, we investigated the effects of land use modifications on the water quality and riparian condition of highland streams and examined whether the preservation of riparian vegetation would help mitigate the negative impacts of intensive agriculture practices. Our results show significant differences in the water quality of streams with different land use. Several parameters commonly used to indicate water quality, such as the concentrations of orthophosphate, turbidity, and suspended solids were significantly higher in the agricultural streams than in the forest stream. The preservation of riparian vegetation in the surrounding highland streams was associated with overall better riparian condition, floristic quality, and water quality such as lower turbidity, total suspended solids, orthophosphate, and higher dissolved oxygen. We conclude, that increases in vegetation cover improved riparian condition and water quality relative to other non-vegetated areas. Therefore, we strongly recommend the preservation of riparian vegetation in tropical highland streams surrounded by intensive agriculture. More studies on the effects of best management practices in areas dominated by agriculture can greatly improve our capacity to prevent the degradation of water quality in tropical highland streams of Africa.  相似文献   

3.
How much stream temperatures increase within riparian canopy openings and whether stream temperatures cool downstream of these openings both have important policy implications. Past studies of stream cooling downstream of riparian openings have found mixed results including rapid, slow, and no cooling. We collected longitudinal profiles of stream temperatures above, within, and below riparian forest openings along stream segments within otherwise forested riparian conditions to evaluate how sensitivity of stream temperatures to riparian conditions varied across landscape factors. We conducted these temperature surveys across openings in 12 wadeable streams within and near the Upper Little Tennessee River Basin in western North Carolina and northeastern Georgia. Basin areas ranged from 74 to 6,913 ha, and bankfull channel widths varied from 3.4 to 16.4 m. Stream temperatures were collected every 15 min using HOBO® data loggers for 2 weeks in each stream, repeated later in summer in some streams. Reference temperatures were highest in stream reaches at low elevations and with large drainage areas. Stream temperature increases in the middle of riparian gaps were highest when streams drained small high-elevation watersheds, and increases at the end of openings were highest when the opening length was large relative to watershed size. Downstream from openings, cooling rates were greatest in small, high-elevation headwater streams and also increased with larger increases in canopy cover. Stream segments that warmed the most within openings also featured higher cooling rates downstream. The data show that stream temperature sensitivity to canopy change is highly dependent on network position and watershed size. A better understanding of stream temperature responses to riparian vegetation may be useful to land managers and landowners prioritizing riparian forest restoration.  相似文献   

4.
Ecological flows between habitats are vital for predicting and understanding structure and function of recipient systems. Ecological flows across riparian areas and headwater intermittent streams are likely to be especially important in many river networks because of the shear extent of these interfaces, their high edge-to-width ratio, and the alternation of wet and dry conditions in intermittent channels. While there has been substantial research supporting the importance of riparian-stream linkages above-ground, comparatively less research has investigated below-ground linkages. We tested the hypothesis that riparian roots are colonized by invertebrates as a food source within stream beds of intermittent headwater streams. We compared benthic invertebrate assemblages colonizing three types of buried substrates (leaves, roots, and plastic roots) among three intermittent Coastal Plain streams, each with a different riparian management treatment (clearcut, thinned, and reference), over a 1-year period. Invertebrate density was significantly lower in root litterbags than in plastic roots litterbags, but neither differed from densities in leaf litterbags. Total invertebrate abundances, however, were significantly higher in leaf and root litterbags compared to abundances in plastic root litterbags. Invertebrate biomass and richness did not vary among substrates, but invertebrate density, abundance, and richness all declined from the wet phase (September–December) through the dry phase (June–August). Meiofauna and aquatic dipterans were the primary colonizing invertebrates during the wet phase. Relative abundance of terrestrial taxa increased during the dry phase, but their absolute abundance remained lower than aquatic taxa during the wet phase. Invertebrate composition did not differ among substrate types, but was significantly different among streams and time periods. Cumulative number of dry days, degree days, and redox depth all strongly correlated with assemblage structure as indicated by ordination scores. Our results suggest that subsurface invertebrates respond to leaves and roots as food sources, but assemblage composition is not substrate specific. Colonization of leaves and roots within stream beds by aquatic and terrestrial taxa supports the idea that headwater intermittent streams are important interfaces for the reciprocal exchange of energy and materials between terrestrial and aquatic ecosystems.  相似文献   

5.
6.
The high plant richness in riparian zones of tropical forest streams and the relationship with an input of organic matter in these streams are not well understood. In this study, we assessed (i) the annual dynamics of inputs of coarse particulate organic matter (CPOM) in a tropical stream; and (ii) the relationship of species richness on riparian vegetation biomass. The fluxes and stock of CPOM inputs (vertical-VI = 512, horizontal-HI = 1912, and terrestrial-TI = 383 g/m2/year) and the benthic stock (BS = 67 g/m2/month) were separated into reproductive parts, vegetative parts and unidentified material. Leaves that entered the stream were identified and found to constitute 64 morphospecies. A positive relationship between species richness and litterfall was detected. The dynamics of CPOM were strongly influenced by rainfall and seasonal events, such as strong winds at the end of the dry season. Leaves contributed most to CPOM dynamics; leaf input was more intense at the end of the dry season (hydric stress) and the start of the rainy season (mechanical removal). Our study show an increase of litter input of CPOM by plant diversity throughout the year. Each riparian plant species contributes uniquely to the availability of energy resources, thus highlighting the importance of plant conservation for maintaining tropical streams functioning.  相似文献   

7.
Biotic and abiotic factors are filters that prevent invasions in aquatic and terrestrial ecosystems. In this investigation we tested the hypothesis that the success of a non-native Poaceae (Urochloa subquadripara) is positively correlated with the richness of native macrophytes and negatively correlated with wind disturbance (fetch) and presence of riparian vegetation on coarse spatial scales. Our samplings were carried out in a tropical reservoir (Rosana Reservoir, Brazil). We first compared competing models using the Akaike criterion to find the main combinations of explanatory variables (native macrophyte richness, fetch, and presence of riparian vegetation) associated with the success of U. subquadripara. Then, we applied multiple regressions to assess the coefficient of determination of the best models selected according to the Akaike criterion. The probability of occurrence of U. subquadripara increased significantly with increases in the number of native macrophyte species, but decreased with fetch and the presence of riparian vegetation. Stand width and maximum depth of occurrence (indicators of the success of this Poaceae) were also positively related with native richness and negatively with fetch and riparian vegetation. Our results supported our expectation that wave disturbance is an important variable explaining U. subquadripara success. Because the less exposed sites are also more favorable for colonization by natives, positive relationships between the success of non-native species and native diversity emerge at the coarse scale. Taken together, our results support the theory of “biotic acceptance”; that is, favorable sites are more prone to colonization by both native and non-native species.  相似文献   

8.
Lotic ecosystems are highly affected by land use changes such as afforestation of natural areas for management or commercial purposes. The aim of this study was to analyze the effect of pine plantations on benthic invertebrate communities in mountain grassland streams. Additionally, we assessed if the hydrological period modifies the effect of afforestation on stream invertebrates. Three headwater streams draining grasslands (reference streams) and three draining plantations of Pinus elliottii were selected in a mountain watershed of Córdoba province (Argentina). Hydrologic and physicochemical variables were registered and benthic invertebrate samples were collected in each stream at two different hydrological periods. Total invertebrate abundance, richness and diversity were reduced in afforested streams as well as the number of indicator taxa. In addition, invertebrate functional structure (i.e. taxonomic richness and total and relative abundance of functional feeding groups, FFG) showed differences between streams with different riparian vegetation and between hydrological periods. Total abundance of all FFGs was lower in afforested streams and scrapers’ relative abundance was higher in grassland streams at the low water period. In addition, in most FFGs richness was diminished in afforested streams. Changes in light intensity, hydrology and coarse organic matter inputs produced by afforestation alter fluvial habitats and consequently the composition and trophic structure of invertebrate communities in grassland streams of Córdoba mountains.  相似文献   

9.
In recent decades, riparian vegetation has been removed from important ecosystems around the world, in spite of its high ecological importance for aquatic biota. Nevertheless, the effects of catchment land use on zooplankton have been little studied. The present study investigated if replanting riparian vegetation in a tropical reservoir influences the richness and abundance of cladoceran communities, by addressing the question of whether cladocerans show differences in richness and abundance among four levels of riparian vegetation conditions: 1) native forest (NF); 2) 30 years after forest replanting (R1); 3) 10 years after forest replanting (R2); and 4) no forest (No-F). Zooplankton samples were obtained from 9 stations in the Volta Grande Reservoir, Minas Gerais, Brazil. Cladocerans in zones NF and R1 showed higher levels of richness and abundance than in zones No-F and R2. Ceriodaphnia reticulata, Ceriodaphnia laticaudata, and Diaphanosoma spinulosum showed higher abundances in zones NF and R1. Cladoceran community structure was influenced by the different levels of riparian vegetation. This study showed that the presence and age of riparian forest positively influence the abundance, richness and diversity of cladoceran assemblages. Furthermore, our results indicated that C. reticulata, C. laticaudata and D. spinulosum are more efficient than other cladocerans in exploiting allochthonous resources provided by riparian forest. Functional diversity was higher in zones NF and R1, suggesting that the trait composition of cladoceran assemblages responds positively to recovery of riparian forest. Overall, our research suggests that cladocerans are good indicators of riparian vegetation conditions and that restoration of riparian forest positively affects cladoceran assemblages of tropical reservoirs.  相似文献   

10.
Streams and their accompanying riparian environments are intrinsic components of terrestrial carbon cycling. However, they have been understudied in terms of the magnitude of their storage components and the role of disturbance in determining carbon storage capacity. This study presents partial carbon budgets for stream‐riparian corridors along six study reaches in mountain headwater streams of southeast Wyoming to evaluate the impact of tie‐driving, a historic disturbance legacy, on contemporary carbon storage. Detailed measurements of biomass were collected for in‐stream components of carbon including fine and coarse particulate organic matter and in‐stream large wood. Biomass was also estimated for riparian components including standing trees (live and dead), regenerating conifers, shrubs and herbaceous vegetation, downed wood, litter, and duff (partially decayed litter). Biomass was converted to carbon for all components and differences in storage were compared between tie‐driven and non‐driven reaches. Carbon content in riparian soils (to approximately 20 cm) was also measured. Twice the amount of carbon was stored in the riparian areas relative to the streams; most carbon was stored in standing trees (live and dead). While overall carbon storage within the riparian areas and streams were similar between disturbance conditions, the amount of carbon stored in large in‐stream wood and downed wood on the floodplain was significantly higher in systems that were not tie‐driven. The results of this study indicate that legacies of tie‐driving influence carbon storage within the region, while also capturing baseline estimates of carbon storage in the wake of recent bark beetle infestations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
12.
Agricultural practices affect the integrity of riparian areas of small streams. In this study we tested the hypothesis that the increase of agricultural activities influences negatively the functional conditions of the low order streams in the Atlantic forest of southern Brazil. Litter bags with leaves of Nectandra megapotamica (Spreng.) Mez were located in eight streams with different amounts of woody vegetation and agriculture land uses in their riparian zones. After 7, 15 and 30 days, the litter bags were removed for identification of associated invertebrates and determination of decomposition rate. Decomposition rates were negatively influenced by agriculture in the riparian zone while primary production was positively influenced. On the other hand, the decomposition mediated by microorganisms did not vary along the degradation gradient. The abundance of collectors increased in streams adjacent to agricultural land while the abundance of shredders was decreased. Our results showed that algae biomass and leaf decomposition were sensitive to the replacement of native vegetation by agricultural use. However, the trophic structure of invertebrates was moderately sensitive to agricultural land use.  相似文献   

13.
Drastic changes in the composition and physiognomy of riparian vegetation, such as the conversion of grassland to forest, are expected to alter interactions among light availability, primary producers and herbivores. Our aim was to examine in laboratory the influence of a ubiquitous grazer on periphyton grown in a grassland unshaded stream (reference) vs. periphyton from a nearby pine afforested stream. Besides, we evaluated how the community responds to the removal of grazing. Given that grassland streams are exposed to higher light intensity and grazers are more abundant compared to afforested streams, we proposed that if biofilm grown in the afforested stream are dominated by grazing-vulnerable algal species, grazing pressure by Helicopsyche sp. should be stronger. In addition, if biofilm from the afforested stream has low quality or is less abundant as food for consumers, the effects of Helicopsyche sp. may be stronger or weaker depending on their feeding decisions. Helicopsyche sp. caused a decrease in richness and diversity in periphyton grown in the grassland stream and its net grazing effect on chlorophyll a (Chl a) was higher. Algal community composition from grassland stream was strongly changed after grazing, with a decrease in the proportion of overstory algae. In contrast, algal community structure of periphyton from the afforested stream was neither affected by grazing nor by grazing exclusion. Helicopsyche sp. produced significant changes in a short time in structural attributes of algal communities, mainly in periphyton from the grassland stream suggesting that herbivory, as a functional factor, is diminished following afforestation.  相似文献   

14.
Freshwater lichens of selected Carpathian streams were investigated to identify their diversity and distribution patterns. Lichens were investigated along six transects, each running across three different habitats (hydrological zones: submerged, splash and riparian), established in upper, middle and lower reaches of the streams and the data were a subject to statistical analyses. The studied mountain streams provided suitable habitats for a number of aquatic and semi-aquatic lichens and species richness in both streams was very similar. Overall, 52 species of lichens were identified from all sampling plots (γ diversity). Species number for a single plot (α diversity) ranged from 1 to 14 species and differences in species composition between the plots (β diversity) were high. Differences were mainly noted for typical terrestrial lichens occurring in riparian zones. The location along the stream reaches did not have a significant effect on species diversity and distribution. The hydrological zone appeared to be the most important predictor explaining the small-scale occurrence and diversity of lichens with species assembled into distinct, low-diversity communities in the transition from submerged to riparian habitats. The distinction among hydrological zones and their lichen biota were corroborated by nMDS analyses. The method of defined plots provides a way of recording baseline data for a particular river, which can be repeated (monitor) in the future.  相似文献   

15.
Understanding the effectiveness of environmental flow deliveries along rivers requires monitoring vegetation. Monitoring data are often collected at multiple spatial scales. For riparian vegetation, optical remote sensing methods can estimate growth responses at the riparian corridor scale, and field-based measures can quantify species composition; however, the extent to which these different measures are duplicative or complementary is important to understand when planning monitoring programmes with limited resources. In this study, we analysed riparian vegetation growth in the delta of the Colorado River in response to an experimental pulse flow. Our goal was to compare ground-based measurements of vegetation structure and composition with satellite-based Landsat radiometric variables, such as the normalized difference vegetation index (NDVI). We made this comparison in 21 transects following the delivery of 131.8 million cubic meters (mcm) of water in the stream channel during the spring of 2014 as a pulse flow and 38.4 mcm as base flows. Vegetation cover increased 14% and NDVI increased 0.02 (15%) by October 2015, and both variables returned to pre-pulse flow values in October 2016. Observed changes in vegetation structure and composition did not persist after the second year. The highest increase in vegetation cover in October 2014 and October 2015 resulted from species that could respond rapidly to additional water such as reeds (Arundo donax and Phragmites australis), cattail (Typha domingensis), and herbaceous plants. Dominant shrubs, saltcedar (Tamarix spp.) and arrowweed (Pluchea sericea), both indicative of nonrestored habitats showed variable increases in cover, and native trees (Salicaceae family) presented low increases (1%). The strong NDVI–vegetation cover relationship indicates that NDVI is appropriate to detect changes at the riparian corridor scale but needs to be complemented with ground data to determine the contributions by different species to the observed trends.  相似文献   

16.
Small‐order streams have highly variable flows that can result in large temporal and spatial variation of the hyporheic zone. Dam construction along these intermittent headwater streams alters downstream flow and influences the hydrologic balance between stream water and the adjacent riparian zone. A 3‐year site study was conducted along an impounded second‐order stream to determine the water balance between stream, unsaturated zone, groundwater and riparian vegetation. The presence of the upstream impoundment provided near‐perennial water flow in the stream channel. The observed woody plant transpiration accounted for 71% of average annual water loss in the site. The overall contribution of stream water via the hyporheic zone to site water balance was 73 cm, or 44% of total inputs. This exceeded both rainfall and upland subsurface contribution to the site. A highly dynamic hyporheic zone was indicated by high water use from woody plants that fluctuated seasonally with stream water levels. We found leaf area development in the canopy layer to be closely coupled with stream and groundwater fluctuations, indicating its usefulness as a potential indicator of site water balance for small dam systems. The net result of upstream impoundment increased riparian vegetation productivity by influencing movement of stream water to storage in the groundwater system. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Benthic diatoms are often used for assessing environmental conditions, such as water quality and habitat conditions in stream and river systems. Although laboratory experiments have shown that each diatom species have different levels of tolerance to different stressors, few studies have been conducted in laboratory settings that analyze the responses of the diatom assemblage to the effects of multiple simultaneous variables. The aim of this study was to evaluate some structural responses (such as species composition and diversity) of the diatom assemblage on a short time scale to the effects of the simultaneous increase in four variables that are directly linked to the environmental changes affecting the Pampean streams: turbidity, nutrients (phosphorous and nitrogen), water velocity and temperature. To this end we conducted a five-week laboratory experiment using artificial channels where we simulated two environmental conditions (LOW and HIGH) employing epipelic biofilm from a mesotrophic stream. The results obtained in the experiment show that the structure of the diatom assemblage in the epipelic biofilm is affected by the simultaneous modification of temperature, water velocity, nutrient concentration and turbidity. These modifications in the assemblage included moderate decreases in diversity, small decreases in the proportion of species sensitive to eutrophication and saprobity, moderate increases in the IDP (Pampean Diatom Index) values and moderate changes in the percentages of the stalked growth-forms. The relative abundance of species such as Luticola mutica, Navicula cryptocephala and Navicula lanceolata were negatively affected by both treatments; other species such as Planothidium lanceolatum, Caloneis bacillum, Encyonema minutum, Humidophila contenta, Luticola kotschyi, Nitzschia amphibia, Navicula veneta, Pinnularia subcapitata var. subcapitata were positively affected by the HIGH treatment; and Nitzschia fonticola was positively affected by both treatments. The results suggest that, in the very short term of the bioassay conducted, the diatom assemblage can modify its structure to respond in a sensitive manner to the abrupt changes in multiple physical–chemical variables.  相似文献   

18.
Light availability strongly influences stream primary production, water temperatures and resource availability at the base of stream food webs. In headwater streams, light is regulated primarily by the riparian forest, but few studies have evaluated the influence of riparian forest stand age and associated structural differences on light availability. In this study, we evaluated canopy cover and streambed light exposure in four second-order streams within paired reaches of primary old-growth versus second-growth mature riparian forests. Stand age class was used as a proxy here for canopy complexity. We estimated stream canopy cover using a spherical densiometer. Local streambed light exposure was quantified and compared within and between reaches using fluorescein dye photodegradation. Reaches with complex old-growth riparian forests had frequent canopy gaps which lead to greater stream light availability compared to adjacent reaches with simpler second-growth riparian forests. We quantified light exposure at relatively high resolution (every 5 m) and also found greater variability in stream light along the reaches with old-growth riparian forests in three of the four streams. Canopy gaps were particularly important in creating variable light within and between reaches. This work demonstrates the importance of the age, developmental stage, and structure of riparian forests in controlling stream light. The highly variable nature of light on the stream benthos also highlights the value of multiple measurements of light or canopy structure when quantifying stream light.  相似文献   

19.
20.
Artificial drainage of forested wetlands to increase timber production has profoundly altered the hydrology of North-European landscapes during the 20th century. Nowadays, drainage ditches and small dredged streams can comprise most fluvial water bodies there, but the resulting ecological effects are poorly documented. In the current study, we explored, using fish as an indicator group, consequences of the transformation of natural stream networks to a mixture of natural and artificial watercourses. We asked whether the transformation results in impoverishment, enrichment or re-assembling of the communities both at watercourse and the landscape scales. We sampled fish in 98 sites in five well-forested regions in Estonia where ditches formed 83–92%, dredged streams 4–7%, and natural streams 3–10% of the total length of small watercourses. Based on a total of 6370 individual fish of 20 species, we found that, compared to natural streams, ditches had an impoverished fauna at both scales and both in terms of species richness and assemblage composition. Only natural streams hosted characteristic species (with Barbatula barbatula, Lampetra planeri and Lota lota emerging as significant indicators), while dredged streams had intermediate assemblages. The habitat factors explaining those drainage-related differences included a reduced flow velocity, loss of stream channel variability, less transparent water, and abundant aquatic vegetation. Hence, for stream-dwelling fish, drained forest landscapes represent degraded habitats rather than novel ecosystems, which contrasts with the transformation of terrestrial assemblages. Future studies should address whether that reflects the situation for whole aquatic assemblages, and how is the functioning of the hydrological systems affected. We suggest that the critical management issues for environmental mitigation of ditching effects on fish include basin scale spatial planning, protecting of the remaining natural streams, and rehabilitation of ditch channels in flat landscapes lacking beavers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号