首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The tropical riparian zone has a high diversity of plant species that produce a wide variety of chemical compounds, which may be released into streams. However, in recent decades there has been an extensive replacement of tropical native vegetation by Eucalyptus monocultures. Our objective was to compare fungal colonization of Eucalyptus camaldulensis leaves with fungal colonization of native plant species from riparian zones in Brazilian Cerrado (savannah) streams. The fungal colonization and enzymatic activity significantly influenced leaf litter decomposition. Fungal sporulation rates from leaf litter varied significantly with leaf species, with E. camaldulensis showing the highest sporulation rate (1226 conidia mg−1AFDM day−1) and leaf mass loss (23.2 ± 0.9%). This species has the lowest lignin content and highest N concentration among the studied species. Among the studied native species, we observed the highest sporulation rate for Protium spruceanum (271 conidia mg−1AFDM day−1), Maprounea guianensis (268 conidia mg−1AFDM day−1) and Copaifera langsdorffii (196 conidia mg−1AFDM day−1). Overall, native plant species of the Brazilian Cerrado exhibited recalcitrant characteristics and a higher lignin:N ratio. Therefore, variations in the physical and chemical characteristics of the leaf litter could explain the higher decay rate and reproductive activity observed for E. camaldulensis. However, the detritus of this species were colonized almost exclusively by Anguillospora filiformis (99.6 ± 0.4%) and exhibited a reduction in aquatic hyphomycetes species diversity. Our results suggest that the disturbance in the composition of riparian vegetation and consequently, in the diversity of leaf litter input into streams, could change the patterns and rates of leaf litter utilization by microbial decomposers. These changes may have important consequences in the processing of organic matter and, consequently, in the functioning of freshwater ecosystems.  相似文献   

2.
We investigated the dynamics of organic matter and type of detritus in a riparian zone of the Atlantic Rain Forest domain, and specifically determined the inputs and stock of detritus contributed by plant species, and their relationship to temperature and precipitation. Our hypotheses tested were: (1) the species composition of riparian vegetation influences the amount and type of detritus delivered to a stream in an Atlantic Rain Forest, and (2) the dynamics of litterfall in the riparian zone is influenced by climate factors. The plant community was formed principally by pioneer and early successional species such as Apuleia leiocarpa, Erytrina velutina, Erytrina verna, Eucalyptus torelliana, Ficus glabra, Ficus insipida, Guarea guidonea, Guarea guidonia, Maprounea guianensis and Psidium guajava. There was a large number of G. guidonea (318 individuals/ha), followed by Cupania oblongifolia (91), Trichilia pallida (52), Piptadenia gonoacantha (26) and E. torelliana (14). G. guidonea contributed >50% of the total litterfall; however, some species which were present in high density in the plant community and did not yield significant biomass, indicating that detritus production was based on the contribution of a few species. We found 697, 856 and 804 g/m2/year from vertical, terrestrial, and lateral inputs, respectively, whereas to the annual benthic standing stock was 3257 g/m2. Detritus was formed by leaves (60%), branches (32%), reproductive parts (3%), and unidentifiable fragments of organic-matter (5%). Inputs and benthic stock were markedly seasonal, with an increase of leaf litter during the dry season. Our results indicate that litterfall dynamics is basically composed of a few species that contribute with higher values of biomass. Moreover, ecological characteristics together with environmental factors can be viewed as the principal factors determining the energy balance of riparian ecosystems. The biological implications of the dynamics of organic matter have high importance for the maintenance and restoration of riparian zones. However, the amount of litterfall required to maintain the balance of the riparian community remains unclear in the tropical zone.  相似文献   

3.
Culvert styles are being replaced on many road-stream crossings to provide long-term (>2 years) benefits, but these projects may result in short-term (0–2 years) biological impacts. We quantified the short-term effects of replacing steel-pipe culverts with open-arch structures on the benthic-macroinvertebrate communities of 6 streams in the Klamath National Forest of Northern California USA. Physical habitat showed notable site-specific effects in channel form and sedimentation, but no significant change among sites. In contrast, we observed small though significant impacts of the culvert style replacement on benthic macroinvertebrates among sites, including a statistically significant reduction in both taxa richness (p = 0.012) and abundance of intolerant taxa (p = 0.004). Moreover, there was also modest evidence of slightly elevated variability in the benthic-macroinvertebrate communities downstream following the replacement of culvert style. The long-term benefits of culvert style replacement that have been observed in other studies may outweigh the minor, short-term biological impacts observed in these streams.  相似文献   

4.
《Marine pollution bulletin》2012,64(5-12):195-200
Submarine groundwater discharge (SGD) on the reef flat of Bolinao, Pangasinan (Philippines) was mapped using electrical resistivity, 222Rn, and nutrient concentration measurements. Nitrate levels as high as 126 μM, or 1–2 orders of magnitude higher than ambient concentrations, were measured in some areas of the reef flat. Nutrient fluxes were higher during the wet season (May–October) than the dry season (November–April). Dissolved inorganic nitrogen (DIN = NO3 + NO2 + NH4) and soluble reactive phosphorus (SRP) fluxes during the wet season were 4.4 and 0.2 mmoles m−2 d−1, respectively. With the increase population size and anthropogenic activities in Bolinao, an enhancement of SGD-derived nitrogen levels is likely. This could lead to eutrophic conditions in the otherwise oligotrophic waters surrounding the Santiago reef flat.  相似文献   

5.
We characterized the seasonal cycle of productivity in Reloncaví Fjord (41°30′S), Chilean Patagonia. Seasonal surveys that included measurements of gross primary production, community respiration, bacterioplankton secondary production, and sedimentation rates along the fjord were combined with continuous records of water-column temperature variability and wind forcing, as well as satellite-derived data on regional patterns of wind stress, sea surface temperatures, and surface chlorophyll concentrations. The hydrography and perhaps fjord productivity respond to the timing and intensity of wind forcing over a larger region. Seasonal changes in the direction and intensity of winds, along with a late-winter improvement in light conditions, may determine the timing of phytoplankton blooms and potentially modulate productivity cycles in the region.Depth-integrated gross primary production estimates were higher (0.4–3.8 g C m?2 d?1) in the productive season (October, February, and May), and lower (0.1–0.2 g C m?2 d?1) in the non-productive season (August). These seasonal changes were also reflected in community respiration and bacterioplankton production rates, which ranged, respectively, from 0.3 to 4.8 g C m?2 d?1 and 0.05 to 0.4 g C m?2 d?1 during the productive and non-productive seasons and from 0.05 to 0.6 g C m?2 d?1 and 0.05 to 0.2 g C m?2 d?1 during the same two periods. We found a strong, significant correlation between gross primary production and community respiration (Spearman, r=0.95; p<0.001; n=12), which suggests a high degree of coupling between the synthesis of organic matter and its usage by the planktonic community. Similarly, strong correlations were found between bacterioplankton secondary production and both gross primary production (Spearman, r=0.7, p<0.05, n=9) and community respiration (Spearman, r=0.8, p<0.05, n=9), indicating that bacterioplankton may be processing an important fraction (8–59%) of the organic matter produced by phytoplankton in Reloncaví Fjord. In winter, bacterial carbon utilization as a percentage of gross primary production was >100%, suggesting the use of allochthonous carbon sources by bacterioplankton when the levels of gross primary production are low. Low primary production rates were associated with a greater contribution of small cells to autotrophic biomass, highlighting the importance of small-sized plankton and bacteria for carbon cycling and fluxes during the less productive winter months. Fecal pellet sedimentation was minimal during this period, also suggesting that most of the locally produced organic carbon is recycled within the microbial loop. During the productive season, on the other hand, the area exhibited a great potential to export organic matter, be it to higher trophic levels or vertically towards the bottom.  相似文献   

6.
《Advances in water resources》2005,28(10):1122-1132
During the last 25 years there has been a great interest in deriving aquifer characteristics from outflow data. This analysis has been mainly based of the drainage of a horizontal aquifer after sudden drawdown, using the Boussinesq approximation. Following the general approach of Brutsaert and Lopez [Brutsaert W, Lopez, JP. Basin-scale geohydrologic drought flow features of riparian aquifers in the southern Great Plains. Water Resour Res 1998;34(2):233–40], it was determined that for this geometry the aquifer behavior could be characterized by dQ/dt  Q3 for small t and by dQ/dt  Q3/2 for large t. It was remarked that dQ/dt  Q for large t is often observed. In practice, it is also difficult to determine if dQ/dt  Q3 for small t because this behavior can only be observed over a very short period.Here, we present a similar analysis of aquifer behavior based on the more fundamental Laplace solution for penetrated aquifers. It has been shown that also when the drain does not fully penetrate the aquifer, the solution still produces good results [Szilagyi, J. Sensitivity analysis of aquifer parameter estimations based on the Laplace equation with linearized boundary conditions. Water Resour Res 2003;39(6)]. The Laplace solution quickly shows that dQ/dt  Q for t  ∞ and dQ/dt  Q for t  0, after sudden drawdown. This analysis reconfirms previous findings concerning long-time behavior. More importantly, the analysis shows that the exponent B in dQ/dt  QB does not have a fixed limited value for short times for the given geometry. Further analysis, however, shows that under certain conditions the relation dQ/dt  Q3 is retained for 0  t < 1. Detailed examination of the Laplace solution also shows under which types of recharge dynamics a well-identifiable transition takes place between short- and long-term behavior. As long as such a clear transition exists, the aquifer characterization method proposed earlier by Brutsaert and Lopez [Brutsaert W, Lopez, JP. Basin-scale geohydrologic drought flow features of riparian aquifers in the southern Great Plains. Water Resour Res 1998;34(2):233–40] can be applied. It is shown that for a sharp pulse input, the Laplace solution gives similar results as presented by Brutsaert and Lopez [Brutsaert W, Lopez, JP. Basin-scale geohydrologic drought flow features of riparian aquifers in the southern Great Plains. Water Resour Res 1998;34(2):233–40]. For a smooth pulse, the transition becomes unclear. What is “smooth” and “sharp” depends on input and aquifer characteristics, whereby shallow aquifers give clearer transitions than deep aquifers for the same input. The analysis shows that when rain ceases suddenly after the aquifer has come into equilibrium with a steady rain input, a usable transition in the relation between dQ/dt and Q can be found as well. Researchers can use the present analysis to assess whether specific aquifers and recharge events can be used for the previously suggested characterization method.  相似文献   

7.
Seasonal patterns in factors that affect primary producers are an important part of defining the structure and function of aquatic ecosystems. However, defining seasonality is often more difficult in aquatic than in terrestrial ecosystems, particularly in subtropical and tropical environments. In this study, a long-term data set for a shallow subtropical lake (Lake George, Florida, USA) was used to investigate seasonality using a range of physical, chemical and hydrological parameters. K-means cluster analysis of monthly averages among 11 selected environmental factors across 18 years suggested the overall annual pattern consists of three different seasonal clusters: a cold season (January–April), a warm season (May–August) and a flushing season (September–December). High dissolved oxygen and increased Secchi depth are key features of the cold season, while the warm season is characterized by high mean light irradiances, temperature, rainfalls, total nitrogen and phytoplankton biomass (as chlorophyll a level). The flushing season is characterized by high river discharge rates and high levels of dissolved nutrients and colored organic matter. Multiple response permutation procedures indicated that these seasonal cluster arrangements were significantly different than randomly permuted clusters (A-statistics = 0.3314, significance of delta = 0.0160, based on 1000 permutations). Results from principal component analyses supported the presence of the three seasons in the lake. Linear models explaining chlorophyll a levels using the 3-season system generally indicated better ratios of explained variance compared to the models without seasonal alignments, further indicating that even for sub-tropical systems defining seasons provides a better understanding of phytoplankton dynamics. The approaches used in this study provide statistically-based multivariate tools for the definition of seasonality in aquatic ecosystems. The ability to accurately define seasons is a key step in modeling the structure and dynamics of aquatic ecosystem, which is essential to the development of effective management strategies in a rapidly changing world.  相似文献   

8.
《Marine pollution bulletin》2014,78(1-2):274-281
Nine macroalgal blooms were studied in five coastal lagoons of the SE Gulf of California. The nutrient loads from point and diffuse sources were estimated in the proximity of the macroalgal blooms. Chlorophyll a and macroalgal biomass were measured during the dry, rainy and cold seasons. Shrimp farms were the main point source of nitrogen and phosphorus loads for the lagoons. High biomasses were found during the dry season for phytoplankton at site 6 (791.7 ± 34.6 mg m−2) and during the rainy season for macroalgae at site 4 (296.0 ± 82.4 g m−2). Depending on the season, the phytoplankton biomass ranged between 40.0 and 791.7 mg m−2 and the macroalgal biomass between 1 and 296.0 g m−2. The bulk biomass (phytoplankton + macroalgal) displayed the same tendency as the nutrient loads entering the coastal lagoons. Phytoplankton and macroalgal biomass presented a significant correlation with the atomic N:P ratio.  相似文献   

9.
Our study summarizes data from six small water reservoirs in West Slovakia and analyzes the occurrence of zooplankton groups in relation to physico-chemical and catchment variables. The reservoirs are in two different catchments – of the Morava and Váh rivers. A total of 103 species were identified; 64 crustaceans (in both the pelagic and littoral zones) and 39 planktonic Rotifera in the pelagic zones. Significant differences were observed in species richness, abundance and biomass of planktonic crustaceans: 48 species were characteristic of the Váh catchment, while 53 were found in the Morava catchment. The density of zooplankton in the three reservoirs of the Váh River catchment ranged from 102 ind L?1 to 21,488 ind L?1 and the zooplankton biomass ranged from 0.12 mg L?1 to 103.29 mg L?1. The density of zooplankton in three Morava River catchment reservoirs ranged from 2 ind L?1 to 3928 ind L?1 and the zooplankton biomass ranged from 0.1 mg L?1 to 27.3 mg L?1. The differences were found to be related to catchment (altitude and catchment affiliation), chemical (BOD5, DO) and biological (Chromophyta, Chlorophyta) factors. Eutrophication of reservoirs in the Váh catchment was mainly due to agriculture and fish management, resulting in high nutrient concentrations. Species richness showed an unimodal response to BOD5 and N-NH4 with near optimum low values, 4.6 and 0.19 respectively. The relationship to oxygen content reflects preferences for less eutrophic waters and species richness tended to decrease with increasing DO and to decrease with increasing nutrient content.  相似文献   

10.
Biomonitoring methods based on macrophytes have been used mandatorily in the assessment of freshwaters since the implementation of the Water Framework Directive (WFD). The Macrophyte Index for Rivers (MIR) was developed in Poland for the monitoring of running waters under the WFD requirements. This index shows the degree of river degradation under the influence of water pollutants, especially nutrients. The aim of the present study was to determine the relationship between the MIR and various hydrochemical parameters using artificial neural networks (ANNs). Physico-chemical parameters of water (monthly results for the whole year), which were derived from 147 lowland river survey sites, all located in Poland, were applied to model the MIR values. Water quality variables were determined over three timeframes: the annual average; the average for the vegetation period; and the average for the summer period. Quality of the networks was assessed using coefficient of determination (R2), Nash-Sutcliffe efficiency (NSE) and root mean square error (RMSE). The best modeling quality was obtained for yearly average values of water quality parameters. The quality statistics were: R2 = 0.722, NSE = 0.721 and RMSE = 0.056 (training dataset); R2 = 0.555, NSE = 0.533 and RMSE = 0.101 (validation dataset); R2 = 0.650. NSE = 0.600 and RMSE = 0.089 (testing dataset). This indicates that macrophytes reflect the whole year impact of pollution, whereas summer.  相似文献   

11.
《Marine pollution bulletin》2012,64(5-12):516-522
Surface and core sediments collected from six mariculture farms in the Pearl River Delta (PRD) were analyzed to evaluate contamination levels of polychlorinated biphenyls (PCBs). The ∑PCBs (37 congeners) concentrations ranged from 5.10 to 11.0 ng g−1 (mean 7.96 ng g−1) in surface and 3.19 to 22.1 ng g−1 (mean 7.75 ng g−1) in core sediments, respectively. The concentrations were significantly higher than that measured in the sediments of their corresponding reference sites, whereby the average enrichment percentages were 62.0% and 42.7% in surface and core sediments, respectively. Significant correlations (R2 = 0.77, p < 0.05) of PCB homologue group proportions between fish feeds and surface mariculture sediments suggested that fish feed input was probably the main source for the enrichment of PCBs. Due to the fact that PCBs could be transferred along food chains, PCB contamination in fish feeds and mariculture sediments should not be overlooked.  相似文献   

12.
The horizontal and vertical distribution of jellyfish was assessed in the Chiloé Inland sea, in the northern area of the Chilean Patagonia. A total of 41 species of cnidarians (8 siphonophores, 31 hydromedusae, 2 scyphomedusae) were collected. Eleven jellyfish species were recorded for the first time in the area. Species richness was higher in spring than in winter (37 vs. 25 species, respectively). Species such as Muggiaea atlantica, Solmundella bitentaculata, and Clytia simplex were extremely abundant in spring. The total abundance (408,157 ind 1000 m?3) was 18 times higher in spring than in winter (22,406 ind 1000 m?3).The horizontal distribution of the most abundant species (four in winter, five in spring) showed decreasing abundances in the north–south direction in winter and spring. Peak abundances occurred in the northern microbasins (Reloncaví Fjord, Reloncaví and Ancud gulfs), where the water column stability, phytoplankton and zooplankton abundance were higher, compared with the southern microbasins (Corcovado Gulf, Boca del Guafo). During the spring higher jellyfish abundance season, the vertical distribution of the dominant species (except M. atlantica) showed peak values at mid-depth (30–50 m) and in the deepest sampled layer (50–200 m). This vertical distribution pattern reduced seaward transport in the shallowest layer through estuarine circulation and also limited mortality by predation in the more illuminated shallow layers. Thus, jellyfish were able to remain in the interior waters during the season of maximum biological production.  相似文献   

13.
The spatial pattern and seasonal variation of denitrification were investigated during 2010–2011 in the Jiulong River Estuary (JRE) in southeast China. Dissolved N2 was directly measured by changes in the N2:Ar ratio. The results showed that excess dissolved N2 ranged from ?9.9 to 76.4 μmol L?1. Tidal mixing leads to a seaward decline of dissolved gaseous concentrations and water–air fluxes along the river-estuary gradient. Denitrification at freshwater sites varied between seasons, associated with changes in N input and water temperature. The denitrification process was controlled by the nitrate level at freshwater sites, and the excess dissolved N2 observed at the tidal zone largely originated from upstream water transport. Compared to other estuaries, JRE has a relative low gaseous removal efficiency (Ed = 12% of [DIN]; annual N removal = 24% of DIN load), a fact ascribed to strong tidal mixing, coarse-textured sediment with shallow depth before bedrock and high riverine DIN input.  相似文献   

14.
Lakes Chivero and Manyame are amongst Zimbabwe’s most polluted inland water bodies. MEdium Resolution Imaging Spectrometry level 1b full resolution imagery for 2011 and 2012 were used to derive chlorophyll-a (chl_a) and phycocyanin (blue-green algae) concentrations using a semi-empirical band ratio model; total suspended matter (TSM) concentrations were derived from the MERIS processor. In-situ measured chl_a was used to validate the remotely sensed values. Results indicate that remote sensing measurements are comparable with in situ measurements. A strong positive correlation (R2 = 0.91; MAE = 2.75 mg/m3 (8.5%)) and p < 0.01 (highly significant)) between measured and modeled chl_a concentrations was obtained. Relationships between optically active water constituents were assessed. Measured chl_a correlated well with MERIS modeled phycocyanin (PC) concentration (R2 = 0.9458; p < 0.01 (highly significant)) whilst chl_a and TSM gave (R2 = 0.7344; p < 0.05 (significant)). Modeled TSM and PC concentrations manifested a good relationship with each other (R2 = 9047; p < 0.001 (very highly significant)). We conclude that remote sensing data allow simultaneous retrieval of different water quality parameters as well as providing near real time and space results that can be used by water managers and policy makers to monitor water bodies.  相似文献   

15.
《Marine pollution bulletin》2011,62(7-12):399-412
In order to quantify the spatial and seasonal variations of sediment oxygen consumption and nutrient fluxes, we performed a spatial survey in the south west lagoon of New Caledonia during the two major seasons (dry and wet) based on a network of 11 sampling stations. Stations were selected along two barrier reef to land transects representing most types of sediments encountered in the lagoon. Fluxes were measured using ex-situ sediment incubations and compared to sediment characteristics. Sediment oxygen consumption (SOC) varied between 500 and 2000 μmol m−2 h−1, depending on season and stations. Nutrient effluxes from sediment were highly variable with highest fluxes measured in muddy sediments near the coast. Inter-sample variability was as high as seasonal differences so that no seasonally driven temperature effect could be observed on benthic nutrient fluxes in our temperature range. Nutrient fluxes, generally directed from the sediment to the water column, varied between −5.0 and 70.0 μmol m−2 h−1 for ammonia and between −2.5 and +12.5 μmol m−2 h−1 for PO4 and NO2+3. SOC and nutrient fluxes were compared to pelagic primary production rates in order to highlight the tight coupling existing between the benthic and pelagic compartments in this shallow tropical lagoon. Under specific occasions of low pelagic productivity, oxygen sediment consumption and related carbon and nutrient fluxes could balance nearly all net primary production in the lagoon. These biogeochemical estimates point to the functional importance of sediment biogeochemistry in the lagoon of New Caledonia.  相似文献   

16.
《Marine pollution bulletin》2012,65(12):2650-2655
In the present work, fat, skin, liver and muscle samples from Leptonychotes weddellii (Weddell seal, n = 2 individuals), Lobodon carcinophagus (crabeater seal, n = 2), Arctocephalus gazella (Antarctic fur seal, n = 3) and Mirounga leonina (southern elephant seal, n = 1) were collected from King George Island, Antarctica, and analysed for POPs (PCBs, organochlorine pesticides and PBDEs) and stable isotopes (δ13C and δ15N in all tissues but fat). PBDEs could be found in only one sample (L. weddellii fat). Generally, PCBs (from 74 to 523 ng g−1 lw), DDTs (from 14 to 168 ng g−1 lw) and chlordanes (from 9 to 78 ng g−1 lw) were the prevailing compounds. Results showed a clear stratification in accordance with ecological data. Nonetheless, stable isotope analyses provide a deeper insight into fluctuations due to migrations and nutritional stress. Correlation between δ15N and pollutants suggests, to some degree, a considerable ability to metabolize and/or excrete the majority of them.  相似文献   

17.
In general, the rate and timing of calcite precipitation is in part affected by variations in cave air CO2 concentrations. Knowledge of cave ventilation processes is required to quantify the effect variations in CO2 concentrations have on speleothem deposition rates and thus paleoclimate records. In this study we use radon-222 (222Rn) as a proxy of ventilation to estimate CO2 outgassing from the cave to the atmosphere, which can be used to infer relative speleothem deposition rates. Hollow Ridge Cave, a wild cave preserve in Marianna, Florida, is instrumented inside and out with multiple micro-meteorological sensor stations that record continuous physical and air chemistry time-series data. Our time series datasets indicate diurnal and seasonal variations in cave air 222Rn and CO2 concentrations, punctuated by events that provide clues to ventilation and drip water degassing mechanisms. Average cave air 222Rn and CO2 concentrations vary seasonally between winter (222Rn = 50 dpm L? 1, where 1 dpm L? 1 = 60 Bq m? 3; CO2 = 360 ppmv) and summer (222Rn = 1400 dpm L? 1; CO2 = 3900 ppmv). Large amplitude diurnal variations are observed during late summer and autumn (222Rn = 6 to 581 dpm L? 1; CO2 = 360 to 2500 ppmv).We employ a simple first-order 222Rn mass balance model to estimate cave air exchange rates with the outside atmosphere. Ventilation occurs via density driven flow and by winds across the entrances which create a ‘venturi’ effect. The most rapid ventilation occurs 25 m inside the cave near the entrance: 45 h? 1 (1.33 min turnover time). Farther inside (175 m) exchange is slower and maximum ventilation rates are 3 h? 1 (22 min turnover time). We estimate net CO2 flux from the epikarst to the cave atmosphere using a CO2 mass balance model tuned with the 222Rn model. Net CO2 flux from the epikarst is highest in summer (72 mmol m? 2 day? 1) and lowest in late autumn and winter (12 mmol m? 2 day? 1). Modeled ventilation and net CO2 fluxes are used to estimate net CO2 outgassing from the cave to the atmosphere. Average net CO2 outgassing is positive (net loss from the cave) and is highest in late summer and early autumn (about 4 mol h? 1) and lowest in winter (about 0.5 mol h? 1). Modeling of ventilation, net CO2 flux from the epikarst, and CO2 outgassing to the atmosphere from cave monitoring time-series can help better constrain paleoclimatic interpretations of speleothem geochemical records.  相似文献   

18.
New geochemical and isotopic data are presented from the oldest part of the Cumbre Vieja volcano, La Palma (Canary Islands), located near the assumed emergence of the Canary mantle plume. The volcanics comprise a suite dominated by basanite flows with subordinate amounts of phono-tephrite, tephri-phonolite and phonolite flows and intrusives. Two compositionally different basanite groups have been identified, both with HIMU (high-μ)-type incompatible trace element characteristics: Primitive high-MgO basanites (10.7–12.1% MgO), found only at the base of a stratigraphic profile near Fuencaliente on the south coast, and intermediate-MgO basanites (6.0–7.3% MgO), exposed in the upper part of the profile and widespread on the east coast of La Palma. The high-MgO basanites are interpreted as near-primary mantle melts (primary composition 14–15% MgO) derived by progressive melting (2.9% to 4.5%) of a common lithospheric mantle source. Model calculations indicate that it is not possible to generate the intermediate-MgO basanites from the high-MgO group by crystal fractionation of observed phenocrysts. Relative to intermediate-MgO basanites, the high-MgO flows have lower concentrations of LIL and HFS elements, except for Ti, which is markedly enriched in the primitive rocks (3.7–4.7% TiO2 vs 3.4–3.9% TiO2). Fuencaliente volcanics display limited temporal isotopic variations suggested to be a result of mixing of melts originating from the rising plume and the metazomatized lithospheric mantle. 87Sr / 86Sr and 143Nd / 144Nd ratios range 0.70305–0.70311 and 0.51285–0.51291, respectively, while the corresponding ranges in Pb-isotope ratios are 206Pb / 204Pb = 19.46–19.64, 207Pb / 204Pb = 15.55–15.61, and 208Pb / 204Pb = 39.16–39.53. The overall variation of the Cumbre Vieja isotopic data can be accounted for by mixtures of three mantle components in the proportions 72–79% plume source (LVC = low velocity component), 9–16% depleted mantle (DM) and up to 12% enriched mantle (EMI). Negative Δ7 / 4 Pb (− 0.6 to − 5.4) in the Cumbre Vieja volcanics suggest derivation from a young HIMU mantle source. The relative abundance of plume source material increase in younger rocks in the Fuencaliente section, suggesting waning plume–lithosphere interaction during the emplacement of this part of the Cumbre Vieja volcano. The high-MgO volcanics define regular and systematic geochemical trends, interpreted as partial melting trends, when plotted against abundances of highly incompatible elements (P, Ce). Evaluation of minor and trace element variation in consecutive melts suggests control by residual amphibole, phlogopite, garnet and a Ti-bearing phase, possibly ilmenite. The melting mode changed gradually, allowing increasing input from residual phlogopite during partial melting. The residual mineralogy constrains the source region of the high-MgO basanites to the lowermost oceanic lithospheric mantle, presumably around 100 km depths.  相似文献   

19.
《Marine pollution bulletin》2014,78(1-2):218-223
The Antarctic region is one of the best preserved environments in the world. However, human activities such as the input of sewage result in the alteration of this pristine site. We report baseline values of faecal sterols in Admiralty Bay, Antarctica. Four sediment cores were collected during the 2006/2007 austral summer at the Ezcurra (THP and BAR), Mackelar (REF) and Martel (BTP) inlets. Concentrations of faecal sterols (coprostanol + epicoprostanol) were <0.16 μg g−1, suggesting no sewage contamination and probable “biogenic” contributions for these compounds. Baseline values, calculated using the mean concentration of faecal sterols in core layers for THP, BAR, REF and BTP, were 0.04 ± 0.02, 0.03 ± 0.01, 0.07 ± 0.01 and 0.04 ± 0.02 μg g−1, respectively. These results established as natural contributions of faecal sterols, suggesting that these markers can be useful indicators of human-derived faecal input and contributing to monitoring programs to prevent anthropogenic impacts.  相似文献   

20.
The preliminary results of observation of the lightning electrical characteristics during tropical summer thunderstorms locally known as “Nor-Wester”, at a hilly place in North-East India (23.50°N, 91.25°E) are reported here. Some distinct peaks are observed in the VLF range between 1.5 to 6 kHz. Average cloud conductivity is found to be 8.12×10?10 S m?1. Specific characteristics of integrated field intensity of sferics (IFIS) at 14 and 17 kHz are also studied. Average enhancement of electrical activity during thunderstorms is found to be 170 dB kHz?1 compared to the normal weather sferics intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号