首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isotopic compositions of C, O, and Sr in carbonates, as well as Rb-Sr systems in the silicate material from Upper Precambrian and Lower Cambrian rocks exposed by the Chapa River in the northern Yenisei Ridge, are studied. The Late Precambrian part of the section includes the following formations (from the bottom to top): Lopatinskaya (hereafter, Lopatino), Vandadykskaya (hereafter, Vandadyk) or Kar’ernaya, Chivida, Suvorovskaya (hereafter, Suvorovo), Pod”emskaya (hereafter, Podyom), and Nemchanka. They are characterized by alternation of horizons with anomalously high and low δ13C values (such alternation is typical of the ∼700–550 Ma interval). The lower, relatively thin (20 m), positive excursion (δ13C up to 4.3‰) was established in dolomites from the lower subformation of the Vandadyk (Kar’ernaya) Formation (hereafter, lower Vandadyk subformation). The upper positive excursion (δ13C = 2.2 ± 0.6‰) was recorded in the 3-km-thick Nemchanka Formation enriched in terrigenous rocks. The lower negative excursion stands out as uniform, moderately low δ13C values (−2 ± 1‰) and significant thickness. It comprises the upper part of the Vandadyk Formation, as well as Chivida and Podyom formations. The upper negative excursion is related to a thin (∼20 m) marker carbonate horizon of the upper Nemchanka subformation, in which δ13C values fall down to −8.3‰. The lower part of the Lebyazhinskaya (hereafter, Lebyazhino) Formation, which overlies the Nemchanka Formation, shows a step-by-step increase in δ13C from −2.2 to 2.5‰ typical of the Vendianto-Cambrian (Nemakit-Daldyn Horizon/Stage) transitional sequences. The absence of relationships between the carbon and oxygen isotope compositions and other parameters of postsedimentary alterations suggests that the excursions characterized above could form at the sedimentation stage and coincide in general with δ13C fluctuations in seawater. The value of 87Sr/86Sr = 0.7076−0.7078 in limestones of the Podyom Formation points to their early Ediacaran age. Values of 87Sr/86Sr = 0.70841 and 0.70845 in dolomites of the lower Lebyazhino subformation correspond to the Early Cambrian. The Rb-Sr systems of the clay material from the Vandadyk and Chivida formations are approximated by a straight line, parameters of which correspond to the age of 695 ± 20 Ma (87Sr/86Sr0 = 0.7200 ± 0.0013) and probably characterize the epigenetic stage of older sedimentary rocks, which were subjected to very rapid exhumation and “polar” sulfuric acid weathering in the course of glacioeustatic regression.  相似文献   

2.
Study on Modern Plant C-13 in Western China and Its Significance   总被引:2,自引:0,他引:2  
Organic carbon isotopic composition(δ^13C) is one of the important proxies in paleoenvironment studies.In this paper modern plant δ^13C in the arid areas of China and Tibetan Plateau is studied.It is found that most terrestrial plant species in western China are C3 plants with δ^13C values ranging from -32.6‰ to -23.2‰ and only few species are C4 plants with δ^13C values from -16.8‰ to -13.3‰.The δ^13C is closely related to precipitation (or humidity),i.e., light δ^13C is related to high precipitation(or humid climate),while heavy δ^13C to low precipitation (or dry climate),but there is almost no relation between plant δ^13C and temperature.Submerged plants have δ^13C values ranging from -22.0‰ to -12.7‰,like C4 plants,while merged plants have δ^13C values ranging from -28.1‰ to -24.5‰,like C3 C4 plants,while marged plants have δ^13C values ranging from -28.1‰ to -24.5‰,like C3 plants.It can then be concluded that organic δ^13C variations in terrestrial sediments such as loeas and soil in western China can indicate precipitation changes,but those in lake sediments can reflect organic sources and the productivity of different types of aquatic plants.  相似文献   

3.
Stable and radiogenic isotope composition of stratiform Cu–Co–Zn mineralization and associated sedimentary rocks within the Boléo district of the Miocene Santa Rosalía basin, Baja California Sur, constrains the evolution of seawater and hydrothermal fluids and the mechanisms responsible for sulfide and oxide deposition. Stable isotope geochemistry of limestone and evaporite units indicates a strong paleogeographic influence on the chemistry of the water column. Near-shore limestone at the base of the Boléo Formation is characterized by modified marine carbon (δ 13CPDB=−6.0 to +4.4‰) and oxygen (δ 18OSMOW=+19.5 to +26.2‰) isotope composition due to the influx of 13C- and 18O-depleted fluvial water. Sulfate sulfur isotope composition (δ 34SCDT=+17.21 to +22.3‰ and δ 18OSMOW=+10.7 to +13.1‰) for basal evaporite and claystone facies are similar to Miocene seawater. Strontium isotopes are less radiogenic than expected for Miocene seawater due to interaction with volcanic rocks. Low S/C ratios, high Mn contents and sedimentological evidence indicate the basin water column was oxidizing. The oxygenated basin restricted sulfide precipitation to within the sedimentary pile by replacement of early diagenetic framboidal pyrite and pore-space filling by Cu–Co–Zn sulfides to produce disseminated sulfides. Quartz–Mn oxide oxygen isotope geothermometry constrains mineralization temperature between 18 and 118°C. Sulfur isotopes indicate the following sources of sulfide: (1) bacterial sulfate reduction within the sedimentary pile produced negative δ 34S values (<−20‰) in framboidal pyrite; and (2) bacterial sulfate reduction at high temperature (80–118°C) within the sedimentary pile during the infiltration of the metal-bearing brines produced Cu–Co–Zn sulfides with negative, but close to 0‰, δ 34S values. Isotope modeling of fluid-rock reaction and fluid mixing indicates: (1) sedimentary and marine carbonates (δ 13C=−11.6 to −3.2‰ and δ 18O=+19.0 to +21.8‰) precipitated from basin seawater/pore water that variably mixed with isotopically depleted meteoric waters; and (2) hydrothermal calcite (δ 13C=−7.9 to +4.3‰ and δ 18O=+22.1 to +25.8‰) formed by dissolution and replacement of authigenic marine calcite by downward-infiltrating metalliferous brine and brine-sediment exchange, that prior to reaction with calcite, had mixed with isotopically depleted pore water. The downward infiltration of metalliferous brine is inferred from lateral and stratigraphic metal distributions and from the concentration of Cu sulfides along the upper contact of pyrite-bearing laminae. The co-existence and textural relationships among framboidal pyrite, base metal sulfides, carbonate and Mn–Fe oxides (including magnetite) within mineralized units are consistent with carbonate replacement and high-temperature bacterial reduction within the sedimentary pile occurring simultaneously below a seawater column under predominantly oxygenated conditions.  相似文献   

4.
To characterize the isotopic composition of organisms at the base of the food web and the controls on their variability, the concentration and δ13C isotopic composition of dissolved inorganic carbon (DIC) and plankton δ13C, δ15N, and δ34S were measured. The measurements were made during periods of high and low river flow in Apalachicola Bay, Florida, United States, over 3 yr. DIC concentration and δ13C values were related to salinity, indicating that conservative mixing of riverine and marine waters was responsible for the overall distributions. The usefulness of DIC δ13C data for characterizing the trophic processes within the estuary was dependent upon the residence time of water within the season. Plankton δ13C values varied from −22‰ to −30‰ and were directly related to estuarine DIC δ13C, offset by a factor of roughly −20‰. This offset factor varied with salinity. Values of δ34S in estuarine plankton (station means ranged from 11.4‰ to 13.1‰) were depleted relative to marine plankton (17.7±0.4‰) possibly due to the admixture of34S-depleted sedimentary sulfide with estuarine samples. Values of δ34S in plankton were not related to δ13C values of plankton and were only weakly correlated to the salinity of the water from which the plankton were collected, indicating that marine sulfate was the primary source of planktonic sulfur. Values of δ15N in plankton varied from 5.5‰ to 10.7‰ and appeared related to dominance of the sample by phytoplankton or zooplankton. Estuarine plankton was15N enriched relative to offshore plankton and estuarine sediment.  相似文献   

5.
More than 140 middle-small sized deposits or minerals are present in the Weishan-Yongping ore concentration area which is located in the southern part of a typical Lanping strike-slip and pull-apart basin. It has plenty of mineral resources derived from the collision between the Indian and Asian plates. The ore-forming fluid system in the Weishan-Yongping ore concentration area can be divided into two subsystems, namely, the Zijinshan subsystem and Gonglang arc subsystem. The ore-forming fluids of Cu, Co deposits in the Gonglang arc fluid subsystem have δD values between −83.8‰ and −69‰, δ18O values between 4.17‰ and 10.45‰, and δ13C values between −13.6‰ and 3.7‰, suggesting that the ore-forming fluids of Cu, Co deposits were derived mainly from magmatic water and partly from formation water. The ore-forming fluids of Au, Pb, Zn, Fe deposits in the Zijinshan subsystem have δD values between −117.4‰ and −76‰, δ18O values between 5.32‰ and 9.56‰, and Δ13C values between −10.07‰ and −1.5‰. The ore-forming fluids of Sb deposits have δD values between −95‰ and −78‰, δ18O values between 4.5‰ and 32.3‰, and Δ13C values between −26.4‰ and −1.9‰. Hence, the ore-forming fluids of the Zijinshan subsystem must have been derived mainly from formation water and partly from magmatic water. Affected by the collision between the Indian and Asian plates, ore-forming fluids in Weishan-Yongping basin migrated considerably from southwest to northeast. At first, the Gonglang arc subsystem with high temperature and high salinity was formed. With the development of the ore-forming fluids, the Zijinshan subsystem with lower temperature and lower salinity was subsequently formed. Translated from Mineral Deposits, 2006, 25(1): 60–70 [译自: 矿床地质]  相似文献   

6.
The source of metasomatic fluids in iron-oxide–copper–gold districts is contentious with models for magmatic and other fluid sources having been proposed. For this study, δ 18O and δ 13C ratios were measured from carbonate mineral separates in the Proterozoic eastern Mt Isa Block of Northwest Queensland, Australia. Isotopic analyses are supported by petrography, mineral chemistry and cathodoluminescence imagery. Marine meta-carbonate rocks (ca. 20.5‰ δ 18O and 0.5‰ δ 13C calcite) and graphitic meta-sedimentary rocks (ca. 14‰ δ 18O and −18‰ δ 13C calcite) are the main supracrustal reservoirs of carbon and oxygen in the district. The isotopic ratios for calcite from the cores of Na–(Ca) alteration systems strongly cluster around 11‰ δ 18O and −7‰ δ 13C, with shifts towards higher δ 18O values and higher and lower δ 13C values, reflecting interaction with different hostrocks. Na–(Ca)-rich assemblages are out of isotopic equilibrium with their metamorphic hostrocks, and isotopic values are consistent with fluids derived from or equilibrated with igneous rocks. However, igneous rocks in the eastern Mt Isa Block contain negligible carbon and are incapable of buffering the δ 13C signatures of CO2-rich metasomatic fluids associated with Na–(Ca) alteration. In contrast, plutons in the eastern Mt Isa Block have been documented as having exsolved saline CO2-rich fluids and represent the most probable fluid source for Na–(Ca) alteration. Intrusion-proximal, skarn-like Cu–Au orebodies that lack significant K and Fe enrichment (e.g. Mt Elliott) display isotopic ratios that cluster around values of 11‰ δ 18O and −7‰ δ 13C (calcite), indicating an isotopically similar fluid source as for Na–(Ca) alteration and that significant fluid–wallrock interaction was not required in the genesis of these deposits. In contrast, K- and Fe-rich, intrusion-distal deposits (e.g. Ernest Henry) record significant shifts in δ 18O and δ 13C towards values characteristic of the broader hostrocks to the deposits, reflecting fluid–wallrock equilibration before mineralisation. Low temperature, low salinity, low δ 18O (<10‰ calcite) and CO2-poor fluids are documented in retrograde metasomatic assemblages, but these fluids are paragenetically late and have not contributed significantly to the mass budgets of Cu–Au mineralisation.  相似文献   

7.
Environmental and depositional changes across the Late Cenomanian oceanic anoxic event (OAE2) in the Sinai, Egypt, are examined based on biostratigraphy, mineralogy, δ13C values and phosphorus analyses. Comparison with the Pueblo, Colorado, stratotype section reveals the Whadi El Ghaib section as stratigraphically complete across the late Cenomanian–early Turonian. Foraminifera are dominated by high-stress planktic and benthic assemblages characterized by low diversity, low-oxygen and low-salinity tolerant species, which mark shallow-water oceanic dysoxic conditions during OAE2. Oyster biostromes suggest deposition occurred in less than 50 m depths in low-oxygen, brackish, and nutrient-rich waters. Their demise prior to the peak δ13C excursion is likely due to a rising sea-level. Characteristic OAE2 anoxic conditions reached this coastal region only at the end of the δ13C plateau in deeper waters near the end of the Cenomanian. Increased phosphorus accumulations before and after the δ13C excursion suggest higher oxic conditions and increased detrital input. Bulk-rock and clay mineralogy indicate humid climate conditions, increased continental runoff and a rising sea up to the first δ13C peak. Above this interval, a dryer and seasonally well-contrasted climate with intermittently dry conditions prevailed. These results reveal the globally synchronous δ13C shift, but delayed effects of OAE2 dependent on water depth.  相似文献   

8.
Taking limestone soil and yellow soil, the two major soil types in karst areas as examples, analyzing stable carbon isotope composition (δ13C value) of soil organic matter (SOM) in bulk soils and particle-size fractions of four soil profiles under three vegetable forms, the following results are reached: in the limestone soil profile, soil organic carbon contents are all above 1.0%, the highest value is 7.1% in the surface soil; however, they are between 0.3% and 4.6% in the three yellow soil profiles. From the surface to the bottom of the soil profiles, the variation of δ13C value of soil organic carbon for limestone soil profile is only between −24.1‰ and −23.0‰, however, it’s between −24.8‰ and −21.1‰ for yellow soil profiles. The variation range of δ13C value of soil organic carbon associated with particle-size separates is slight for limestone soil but is considerable for yellow soil. The contrast research indicates that the changes between the contents and the δ13C value of soil organic carbon with depth are complex. The vertical patterns of stable carbon isotope in soil organic matter have a distinct regional characteristic in karst areas.  相似文献   

9.
The Marcona–Mina Justa deposit cluster, hosted by Lower Paleozoic metaclastic rocks and Middle Jurassic shallow marine andesites, incorporates the most important known magnetite mineralization in the Andes at Marcona (1.9 Gt at 55.4% Fe and 0.12% Cu) and one of the few major iron oxide–copper–gold (IOCG) deposits with economic Cu grades (346.6 Mt at 0.71% Cu, 3.8 g/t Ag and 0.03 g/t Au) at Mina Justa. The Middle Jurassic Marcona deposit is centred in Ica Department, Perú, and the Lower Cretaceous Mina Justa Cu (Ag, Au) prospect is located 3–4 km to the northeast. New fluid inclusion studies, including laser ablation time-of-flight inductively coupled plasma mass spectrometry (LA-TOF-ICPMS) analysis, integrated with sulphur, oxygen, hydrogen and carbon isotope analyses of minerals with well-defined paragenetic relationships, clarify the nature and origin of the hydrothermal fluid responsible for these contiguous but genetically contrasted deposits. At Marcona, early, sulphide-free stage M-III magnetite–biotite–calcic amphibole assemblages are inferred to have crystallized from a 700–800°C Fe oxide melt with a δ18O value from +5.2‰ to +7.7‰. Stage M-IV magnetite–phlogopite–calcic amphibole–sulphide assemblages were subsequently precipitated from 430–600°C aqueous fluids with dominantly magmatic isotopic compositions (δ34S = +0.8‰ to +5.9‰; δ18O = +9.6‰ to +12.2‰; δD = −73‰ to −43‰; and δ13C = −3.3‰). Stages M-III and M-IV account for over 95% of the magnetite mineralization at Marcona. Subsequent non-economic, lower temperature sulphide–calcite–amphibole assemblages (stage M-V) were deposited from fluids with similar δ34S (+1.8‰ to +5.0‰), δ18O (+10.1‰ to +12.5‰) and δ13C (−3.4‰), but higher δD values (average −8‰). Several groups of lower (<200°C, with a mode at 120°C) and higher temperature (>200°C) fluids can be recognized in the main polymetallic (Cu, Zn, Pb) sulphide stage M-V and may record the involvement of modified seawater. At Mina Justa, early magnetite–pyrite assemblages precipitated from a magmatic fluid (δ34S = +0.8‰ to +3.9‰; δ18O = +9.5‰ to +11.5‰) at 540–600°C, whereas ensuing chalcopyrite–bornite–digenite–chalcocite–hematite–calcite mineralization was the product of non-magmatic, probably evaporite-sourced, brines with δ34S ≥ +29‰, δ18O = 0.1‰ and δ13C = −8.3‰. Two groups of fluids were involved in the Cu mineralization stage: (1) Ca-rich, low-temperature (approx. 140°C) and high-salinity, plausibly a basinal brine and (2) Na (–K)-dominant with a low-temperature (approx. 140°C) and low-salinity probably meteoric water. LA-TOF-ICPMS analyses show that fluids at the magnetite–pyrite stage were Cu-barren, but that those associated with external fluids in later stages were enriched in Cu and Zn, suggesting such fluids could have been critical for the economic Cu mineralization in Andean IOCG deposits.  相似文献   

10.
Dreissena polymorpha is an exotic freshwater bivalve species which was introduced into the Great Lakes system in the fall of 1985 through the release of ballast water from European freighters. Utilizing individual growth rings of the shells, the stable isotope distribution (δ18O and δ13C) was determined for the life history of selected samples which were collected from the western basin of Lake Erie. These bivalves deposit their shell in near equilibrium with the ambient water and thus reflect any annual variation of the system in the isotopic records held within their shells. Observed values for δ18O range from -6.64 to –9.46‰ with an average value of –7.69‰ PDB, while carbon values ranged from –0.80 to –4.67‰ with an average value of –1.76‰ PDB. Dreissena polymorpha shells incorporate metals into their shells during growth. Individual shell growth increments were analyzed for Pb, Fe, Mg, Mn, Cd, Cu, and V concentrations. The shells show increased uptake of certain metals during periods of isotopic enrichment which correspond with warmer water temperatures. Since metals are incorporated into the shells, the organism may be useful as a biomonitor of metal pollution within aquatic environments. Received: 31 October 1996 · Accepted: 21 May 1997  相似文献   

11.
The relation of two well-known ancient carbonate deposits to hydrocarbon seepage was confirmed by this study. Archaea are found to be associated with the formation of Oxfordian seep carbonates from Beauvoisin and with a Miocene limestone from Marmorito ("tube-worm limestone"). Carbonates formed due to a mediation by archaea exhibit extremely positive or extremely negative δ13Ccarbonate values, respectively. Highly positive values (+15‰) reflect the use of 13C-enriched CO2 produced by methanogenesis. Low δ13C values of the Marmorito carbonates (–30‰) indicate the oxidation of seepage-derived hydrocarbons. Likewise, the δ13C content of specific tail-to-tail linked isoprenoids, biomarkers for archaea, was found to be strikingly depleted in these samples (as low as –115‰). The isotopic signatures corroborate that archaea were involved in the cycling of seepage-derived organic carbon at the ancient localities. Another Miocene limestone ("Marmorito limestone") shows a strong imprint of methanotrophic bacteria as indicated by δ13C values of carbonate as low as –40‰ and biomarker evidence. Epifluorescence microscopy and field-emission scanning electron microscopy revealed that bacterial biofilms were involved in carbonate aggregation. In addition to lucinid bivalves previously reported from both localities, we infer that sponges from Beauvoisin and tube worms from Marmorito depended on chemosynthesis as well. Low δ13C values of nodules related to sponge taphonomy (–27‰) indicate that sponges might have been linked to an enhanced hydrocarbon oxidation. Tube worm fossils from Marmorito closely resemble chemosynthetic pogonophoran tube worms from Recent cold seeps and are embedded in isotopically light carbonate (δ13C –30‰). Received: 13 October 1998 / Accepted: 5 February 1999  相似文献   

12.
The Transfiguration Cu–Pb–Zn–Ag deposit, enclosed within reduced grey sandstone, is associated with continental red beds of the Lower Silurian Robitaille Formation in the Quebec Appalachians, Canada. The Robitaille Formation rests unconformably on foliated Cambro-Ordovician rocks. The unconformity is locally cut by barite veins. The basal unit of the Robitaille Formation comprises green wacke and pebble conglomerate, which locally contain calcite nodules. The latter have microstructures characteristic of alpha-type calcretes, such as “floating” fabrics, calcite-filled fractures (crystallaria) and circumgranular cracks. Massive, grey sandstone overlies the basal green wacke and pebble conglomerate unit, which is overlain, in turn, by red, fine-grained sandstone. Mineralisation occurred underneath the red sandstone unit, chiefly in the grey sandstone unit, as disseminated and veinlet sulphides. Chalcopyrite, the most abundant Cu sulphide, replaced early pyrite. Calcrete, disseminated carbonate and vein carbonate have stable isotope ratios varying from −7.5‰ to −1.1‰ δ13C and from 14.7‰ to 21.3‰ δ18O. The negative δ13C values indicate the oxidation of organic matter in a continental environment. Sulphur isotope ratios for pyrite, chalcopyrite and galena vary from −19‰ to 25‰ δ34S, as measured on mineral concentrates by a conventional SO2 technique. Laser-assisted microanalyses (by fluorination) of S isotopes in pyrite show an analogous range in δ34S values, from −21‰ to 25‰. Negative and positive δ34S values are compatible with bacterial sulphate reduction (BSR) in systems open and closed with respect to sulphate. We interpret similarly high δ34S values for sulphide concentrates (25.1‰) and for vein barite (26.2‰) to result from rapid and complete thermochemical reduction of pore-water sulphate. Two early to late diagenetic stages of mineralisation best explain the origin of the Transfiguration deposit. The first stage was characterised by the ponding of groundwater over the Taconian unconformity, recorded by calcrete and early pyrite formation via BSR in grey sandstone. Early pyrite contains up to 2 wt.% Pb, which is consistent with Pb fixation by sulphate-reducing bacteria. The second stage (II) is defined by the replacement of early pyrite by chalcopyrite, as well as by sulphide precipitation via either BSR or thermochemical sulphate reduction (TSR) in grey sandstone. This event resulted from the synsedimentary fault-controlled percolation and mixing of (1) an oxidising, sulphate-bearing cupriferous fluid migrating per descensum from the red-bed sequence and (2) a hydrocarbon-bearing fluid migrating per ascensum from the Cambro-Ordovician basement. Mixing between the two fluids led to sulphate reduction, causing Cu sulphide precipitation. The positive correlation between Cu and Fe3+/Fe2+ bulk rock values suggests that Fe acted as a redox agent during sulphate reduction. Stage II diagenetic fluid migration is tentatively attributed to the Late Silurian Salinic extensional event.  相似文献   

13.
Natural gases of shallow reservoirs with the carbon isotopic compositions of methane ranging from -50‰ to -60‰ (PDB) were considered as mixed gases of biogenic and thermogenic origins previously and some of them were considered as low-mature (or low temperature thermogenic) gases lately. In this paper natural gases with the carbon isotopic compositions of methane in the above range were identified using the molecular and stable carbon isotopic compositions of methane, ethane and propane. The mixed gases of biogenic and mature thermogenic origins display the characteristics of δ 13 C1 ranging from -50‰to -60‰,δ13C2 > -35‰,Δvalues (δ13C3 -δ13C2) < 5‰ and C1/∑C2 ratios < 40. Immature to low-mature gases display the characteristics of δ 13 C1 ranging from - 50‰ to - 60‰, δ13 C2 <- 40‰,Δ values (δ13C3 -δ13C2) >7‰, and C1/∑C 2 ratios >60.  相似文献   

14.
Tourmaline is widespread in metapelites and pegmatites from the Neoproterozoic Damara Belt, which form the basement and potential source rocks of the Cretaceous Erongo granite. This study traces the B-isotope variations in tourmalines from the basement, from the Erongo granite and from its hydrothermal stage. Tourmalines from the basement are alkali-deficient schorl-dravites, with B-isotope ratios typical for continental crust (δ11B average −8.4‰ ± 1.4, n = 11; one sample at −13‰, n = 2). Virtually all tourmaline in the Erongo granite occurs in distinctive tourmaline-quartz orbicules. This “main-stage” tourmaline is alkali-deficient schorl (20–30% X-site vacancy, Fe/(Fe + Mg) 0.8–1), with uniform B-isotope compositions (δ11B −8.7‰ ± 1.5, n = 49) that are indistinguishable from the basement average, suggesting that boron was derived from anatexis of the local basement rocks with no significant shift in isotopic composition. Secondary, hydrothermal tourmaline in the granite has a bimodal B-isotope distribution with one peak at about −9‰, like the main-stage tourmaline, and a second at −2‰. We propose that the tourmaline-rich orbicules formed late in the crystallization history from an immiscible Na–B–Fe-rich hydrous melt. The massive precipitation of orbicular tourmaline nearly exhausted the melt in boron and the shift of δ11B to −2‰ in secondary tourmaline can be explained by Rayleigh fractionation after about 90% B-depletion in the residual fluid. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Petrography and stable isotopes (carbon and oxygen) geochemistry of limestones from the El Abra Formation, Actopan, were studied to identify their digenetic environments. The major petrographic types identified are mudstone, wackestone, grainstone, and boundstone. Most of the studied samples show positive δ13C values, except two samples (2 and 28), which are slightly negative values (−0.27‰ and −0.02‰). The organic remains identified in foraminiferal wackestone type can be responsible for the negative δ13C values. The δ18O values range from −12.41‰ to −4.02‰ and indicate meteoric diagenesis.  相似文献   

16.
The results of study of the isotopic-lithological compositions of carbonate and terrigenous-carbonate rocks in the Soyana River section (northern East European Platform, Arkhangel’sk district) are presented. The results make it possible to identify 10 main lithotypes and show a wide variation range of δ13C (from −2.2 to +3.6‰, PDB) and δ18O (from 22.5 to 30.5‰, SMOW). These lithological features and isotopic compositions suggest that the rocks were formed in a shallow-marine setting characterized by rapidly changing sedimentation conditions in various facies (and/or paleoecological) zones: inlets, lagoons, supralittoral, littoral, and shoals. Periods of aridization and humidization are recorded. The results also indicate numerous synsedimentary short-term hiatuses and stages of increased continental runoff—episodic pulsatory input of clastic material with the continental paleoflows.  相似文献   

17.
This study dealt with the distribution characteristics of soil organic carbon (SOC) and the variation of stable carbon isotopic composition (δ^13C values) with depth in six soil profiles, including two soil types and three vegetation forms in the karst areas of Southwest China. The δ^13C values of plant-dominant species, leaf litter and soils were measured using the sealed-tube high-temperature combustion method. Soil organic carbon contents of the limestone soil profiles are all above 11.4 g/kg, with the highest value of 71.1 g/kg in the surface soil. However, the contents vary between 2.9 g/kg and 46.0 g/kg in three yellow soil profiles. The difference between the maximum and minimum δ^13C values of soil organic matter (SOM) changes from 2.2‰ to 2.9‰ for the three yellow soil profiles. But it changes from 0.8‰ to 1.6‰ for the limestone soil profiles. The contrast research indicated that there existed significant difference in vertical pattems of organic carbon and δ^13C values of SOM between yellow soil and limestone soil. This difference may reflect site-specific factors, such as soil type, vegetation form, soil pH value, and clay content, etc., which control the contents of different organic components comprising SOM and soil carbon turnover rates in the profiles. The vertical variation patterns of stable carbon isotope in SOM have a distinct regional character in the karst areas.  相似文献   

18.
The stable isotopic analyses (δ18O and δ13C) of a coralFavia speciosa spanning forty two years (1948–89 A.D.), collected from the Pirotan island (22.6°N, 70°E) in the Gulf of Kutch have been carried out to assess its potential for retrieving past environmental changes in this region. It is seen that the summer (minima) δ18O variations in the coral CaCO3 are negatively correlated with seasonal (summer) monsoon rainfall in the adjoining region of Kutch and Saurashtra and a qualitative reconstruction of historical rainfall variations in this region can be obtained by analyzing the δ18O in this species of coral. The observed mean seasonal range of δ18O variations is 0.34 ±0.17‰ (n = 42), whereas the expected range calculated (from available SST and measured δ18O of sea water) is ∼ 1.1 ±0.15‰ The difference is due to the coarse resolution of sampling, which can be corrected. The seasonal range in δ13C is ∼ l‰ and is explained by changes in: a) the light intensity related to the cloudiness during monsoons and b) phytoplankton productivity.  相似文献   

19.
The characteristic feature of many Upper Neoproterozoic glacial sequences is their “cap carbonates” (CC) resting without visible unconformity upon glaciogenic diamictites. Such an unusual association, peculiar structures and textures, and negative δ13C values (approximately −4 ± 2‰) that are atypical of marine carbonates provoked long debates about the nature of these carbonates, which play an important role in the Snowball Earth hypothesis. According to this hypothesis, the Earth was entirely covered by ice during large-scale glaciations, and CC accumulation was related to the global change in geochemical processes. In this work, we discuss data on the chemical and isotopic (C, O, Sr) compositions of CCs, which overlie glacial sediments of the Nichatka and Bol’shoi Patom formations accumulated in different parts of the Neoproterozoic Patom paleobasin (Central Siberia). High concentrations of Fe (up to 6400 ppm), Mn (2320 ppm), and radiogenic Sr (87Sr/86Sr0 up to 0.7172) established in CCs indicates a strong influence of the continental flow. Extraordinary Snowball Earth conditions are not necessary for the accumulation of these rocks, geochemical and sedimentological properties of which may be explained by the discharge of thawing waters into partly or completely isolated near-glacier basin, their intermittent freezing, and/or washout of “frozen” carbonates from the surface of thawing glaciers. The peculiar thin-laminated texture of CC may be related to seasonal processes of climatic cycles. They were accumulated in the course of general (relatively long-term) depletion of the atmosphere and hydrosphere in 13C, which has nothing to do with the CC formation as a specific type of carbonate sediments. Amplitude and duration of the negative δ13C excursion in carbonates associated with the Lower Vendian glacial sediments (665–635 Ma) are appreciably lower than the negative anomaly in rocks of the Zhuya Group that likely correspond to the Shuram-Vonoka Event (∼560−580 Ma ago), which probably marks the crucial point in the Precambrian deglaciation: mass destabilization of methane hydrates and degradation of the Early Vendian psychrosphere in oceans.  相似文献   

20.
 Isotopic (δ13C, δ18O) and elemental (Mg, Sr, Mn, Fe) compositions were analysed in sclerochronological profiles of several shells of late Cretaceous rudist bivalves from Greece, Turkey, Somalia and the Arabian Peninsula. The preservation of original compositions of low-Mg calcite of outer shell layers is indicated by constant and high Sr, generally low Fe and Mn, and the preservation of fibrous-prismatic ultrastructures. Cyclic variations in δ18O and Mg are interpreted to reflect seasonal temperature/salinity cycles and, thus, annual growth increments. In shells of Torreites, amplitudes of correlated δ13C and δ18O cycles cannot be related to reasonable palaeotemperatures or salinity. This isotopic pattern reflects vital fractionations of an extent which is unknown from modern bivalves. In contrast, almost identical ranges and amplitudes of δ18O cycles are observed in 13 shells of five species from Santonian-Campanian localities in central Greece and northern Turkey, suggesting that seasonal variations in environmental conditions were recorded without significant vital fractionations. The effect of seasonal salinity changes on δ18O of the shells is evaluated, and mean palaeotemperatures are constrained within the range of 30–32.5  °C. The annual range of temperature was estimated to be 7  °C, assuming a constant salinity. This agrees with other isotopic proxies of Late Cretaceous palaeotemperatures, and with global circulation models which predict higher low-latitude sea-surface temperatures than the present ones. Received: 12 February 1998 / Accepted: 24 May 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号