首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. Although Georgia receives approximately 50 inches of precipitation annually, concern over water quantity is increasing in this State. Historically, ground-water problems were associated with major urban-industrial withdrawals but recent irrigation development in the southwestern portion of the State has attracted attention. Irrigation withdrawals were exempted from the permit requirements of the 1972 Ground Water Use Act. This has led to an inability to manage the resource and questions regarding legal rights to the use of water. Current activities in the State indicate that measures may be taken during the 1980 session of the Georgia General Assembly to enable better management of the State's water resources.  相似文献   

2.
In agriculture, water is a fundamental but increasingly scarce resource that requires careful use. The goal of fostering water-savings could be achieved with a regulation that imposes more efficient irrigation systems. This might represent the only policy option when water withdrawals cannot be controlled and when the operational context does not allow filling the information asymmetry between policy makers and farmers with metering systems, quotas, or market rights. The regulation could involve higher costs for farmers. However, it could represent an opportunity to increase farm revenues if consumers are willing to pay a higher price for goods produced according to an ecological standard. Knowledge of the costs and possible benefits is relevant because it would enable us to understand the potential cost allocation among stakeholders according to how the policy is designed. The results of this study indicate that the management cost of a sustainable irrigation system could be at most 48% greater than that of a wasteful, traditional system. However, the higher costs of the regulation could be compensated for because consumers are willing to pay 6.8% more for less intensive water-use agricultural products. Therefore, a regulation associated with the promotion of hypothetical water-saving label can be the best strategy to irrigation efficiency in agriculture.  相似文献   

3.
The effects of anthropogenic water use play a significant role in determining the hydrological cycle of north India. This paper explores anthropogenic impacts within the region's hydrological regime by explicitly including observed human water use behaviour, irrigation infrastructure and the natural environment in the CHANSE (Coupled Human And Natural Systems Environment) socio-hydrological modelling framework. The model is constrained by observed qualitative and quantitative information collected in the study area, along with climate and socio-economic variables from additional sources. Four separate scenarios, including business as usual (BAU, representing observed irrigation practices), groundwater irrigation only (where the influence of the canal network is removed), canal irrigation only (where all irrigation water is supplied by diverted surface water) and rainfed only (where all human interventions are removed) are used. Under BAU conditions the modelling framework closely matched observed groundwater levels. Following the removal of the canal network, which forces farmers to rely completely on groundwater for irrigation, water levels decrease, while under a canal-only scenario flooding occurs. Under the rainfed-only scenario, groundwater levels similar to current business-as-usual conditions are observed, despite much larger volumes of recharge and discharge entering and leaving the system under BAU practices. While groundwater abstraction alone may lead to aquifer depletion, the conjunctive use of surface and groundwater resources, which includes unintended contributions of canal leakage, create conditions similar to those where no human interventions are present. Here, the importance of suitable water management practices, in maintaining sustainable water resources, is shown. This may include augmenting groundwater resources through managed aquifer recharge and reducing the impacts on aquifer resources through occasional canal water use where possible. The importance of optimal water management practices that highlight trade-offs between environmental impact and human wellbeing are shown, providing useful information for policy makers, water managers and users. © 2019 John Wiley & Sons, Ltd.  相似文献   

4.
Groundwater pumping from aquifers in hydraulic connection with nearby streams has the potential to cause adverse impacts by decreasing flows to levels below those necessary to maintain aquatic ecosystems. The recent passage of the Great Lakes‐St. Lawrence River Basin Water Resources Compact has brought attention to this issue in the Great Lakes region. In particular, the legislation requires the Great Lakes states to enact measures for limiting water withdrawals that can cause adverse ecosystem impacts. This study explores how both hydrogeologic and environmental flow limitations may constrain groundwater availability in the Great Lakes Basin. A methodology for calculating maximum allowable pumping rates is presented. Groundwater availability across the basin may be constrained by a combination of hydrogeologic yield and environmental flow limitations varying over both local and regional scales. The results are sensitive to factors such as pumping time, regional and local hydrogeology, streambed conductance, and streamflow depletion limits. Understanding how these restrictions constrain groundwater usage and which hydrogeologic characteristics and spatial variables have the most influence on potential streamflow depletions has important water resources policy and management implications.  相似文献   

5.
Humans have strongly impacted the global water cycle, not only water flows but also water storage. We have performed a first global-scale analysis of the impact of water withdrawals on water storage variations, using the global water resources and use model WaterGAP. This required estimation of fractions of total water withdrawals from groundwater, considering five water use sectors. According to our assessment, the source of 35% of the water withdrawn worldwide (4300 km3/year during 1998–2002) is groundwater. Groundwater contributes 42%, 36% and 27% of water used for irrigation, households and manufacturing, respectively, while we assume that only surface water is used for livestock and for cooling of thermal power plants. Consumptive water use was 1400 km3/year during 1998–2002. It is the sum of the net abstraction of 250 km3/year of groundwater (taking into account evapotranspiration and return flows of withdrawn surface water and groundwater) and the net abstraction of 1150 km3/year of surface water. Computed net abstractions indicate, for the first time at the global scale, where and when human water withdrawals decrease or increase groundwater or surface water storage. In regions with extensive surface water irrigation, such as Southern China, net abstractions from groundwater are negative, i.e. groundwater is recharged by irrigation. The opposite is true for areas dominated by groundwater irrigation, such as in the High Plains aquifer of the central USA, where net abstraction of surface water is negative because return flow of withdrawn groundwater recharges the surface water compartments. In intensively irrigated areas, the amplitude of seasonal total water storage variations is generally increased due to human water use; however, in some areas, it is decreased. For the High Plains aquifer and the whole Mississippi basin, modeled groundwater and total water storage variations were compared with estimates of groundwater storage variations based on groundwater table observations, and with estimates of total water storage variations from the GRACE satellites mission. Due to the difficulty in estimating area-averaged seasonal groundwater storage variations from point observations of groundwater levels, it is uncertain whether WaterGAP underestimates actual variations or not. We conclude that WaterGAP possibly overestimates water withdrawals in the High Plains aquifer where impact of human water use on water storage is readily discernible based on WaterGAP calculations and groundwater observations. No final conclusion can be drawn regarding the possibility of monitoring water withdrawals in the High Plains aquifer using GRACE. For the less intensively irrigated Mississippi basin, observed and modeled seasonal groundwater storage reveals a discernible impact of water withdrawals in the basin, but this is not the case for total water storage such that water withdrawals at the scale of the whole Mississippi basin cannot be monitored by GRACE.  相似文献   

6.
Over the past century, groundwater levels in California's San Joaquin Valley have dropped by more than 30 m in some areas mostly due to excessive groundwater extraction used to irrigate agricultural lands and sustain a growing population. Between 2012 and 2015, California experienced the worst drought in its recorded history, depleting surface water supplies and further exacerbating groundwater depletion in the region. Due to a lack of groundwater regulation, exact quantities of extracted groundwater in California are unknown and hard to quantify. Recent adoption of the Sustainable Groundwater Management Act has intensified efforts to identify sustainable groundwater use. However, understanding sustainable use in a highly productive agricultural system with an extremely complex surface water allocation system, variable groundwater use, and spatially extensive and diverse irrigation practices is no easy task. Using an integrated hydrologic model coupled with a land surface model, we evaluated how water management activities, specifically a suite of irrigation and groundwater pumping scenarios, impact surface water–groundwater fluxes and storage components and how those activities and the relationships between them change during drought. Results showed that groundwater pumping volume had the most significant impact on long-term water storage changes. A comparison with total water storage anomaly (TWSA) estimates from NASA's Gravity Recover and Climate Experiment (GRACE) provided some insight regarding which combinations of pumping and irrigation matched the GRACE TWSA estimates, lending credibility to these scenarios. In addition, the majority of long-term water storage changes during the recent drought occurred in groundwater storage in the deeper subsurface.  相似文献   

7.
With the passage of the Beaches Environmental Assessment and Coastal Health (BEACH) Act in 2000, coastal states were mandated to assess and sample coastal recreational waters for bacterial ambient water quality parameters. The assessment of beach sites required the application of federal guidelines and a tiered approach to delineating the beaches. Eighty-seven beach sites in Oregon were evaluated and ranked by use, available information, pollution threats, sanitary survey and monitoring data results, exposure considerations, and economic/development factors. This ranking resulted in 19 high priority beaches (tier 1), five medium priority beaches (tier 2), 23 low priority beaches, and 40 beaches with a rank of none in Oregon.  相似文献   

8.
Abstract

This paper gives a preliminary assessment of Nigeria's surface and underground water resources and discusses the relevant meteorological, hydrological and hydrogeological factors which determine the magnitude and spatial pattern of the distribution of these resources. It is pointed out that the present uncoordinated and piecemeal development of Nigeria's water resources stems from lack of a national water policy and an adequate institutional framework for managing these resources. Two solutions are suggested. One is that the Federal Government should as a matter of urgency establish a National Water Resources Board charged with rational planning, management and development of the country's water resources. The other is that a training programme should be established to produce the necessary skilled manpower in the field of water resources.  相似文献   

9.
The Sustainable Groundwater Management Act (SGMA) aims to control, for the first time in California's history, the state's significant use and depletion of groundwater. SGMA gives local agencies a high degree of discretion in relation to a new permitting power, but the discretion is a double‐edged sword: agencies gain maximum flexibility to tailor their regime to local conditions, yet the statute provides no direction on appropriate components of a groundwater permitting regime. We introduce SGMA and the broader legislative context to its permitting power, and we explain the continuing common law context in which the legislation operates. This information is used as the foundation for a comparative legal analysis of fundamental elements of permitting regimes. We compare a selection of six other south‐western permitting regimes established in legislation for areas recognized as requiring intensive management through permitting: “special permitting areas” (SPAs). We find that permitting regimes in south‐western SPAs share a structure containing several almost universal elements, although the policy settings that apply to those elements vary widely. The established permitting regimes in the other south‐western states' SPAs may inform Californian agencies seeking to use their new permitting power for the first time, as well as water agencies further afield, as to important components of a permitting regime, and the different policy settings that could apply to those components. Californian local agencies, and its Department of Water Resources, which is charged with providing local agencies technical advice, should have regard to these permitting possibilities.  相似文献   

10.
11.
Groundwater is a vital water supply worldwide for people and nature. However, species and ecosystems that depend on groundwater for some or all of their water needs, known as groundwater dependent ecosystems (GDEs), are increasingly becoming threatened worldwide due to growing human water demands. Over the past two decades, the protection and management of GDEs have been incorporated into several water management policy initiatives worldwide including jurisdictions within Australia, the European Union, South Africa, and the United States. Among these, Australia has implemented the most comprehensive framework to manage and protect GDEs through its water policy initiatives. Using a science‐based approach, Australia has made good progress at reducing uncertainty when selecting management thresholds for GDEs in their water management plans. This has been achieved by incorporating appropriate metrics for GDEs into water monitoring programs so that information gathered over time can inform management decisions. This adaptive management approach is also accompanied by the application of the “Precautionary Principle” in cases where insufficient information on GDEs exist. Additionally, the integration of risk assessment into Australia's approach has enabled water managers to prioritize the most valuable and vulnerable ecologic assets necessary to manage GDEs under Australia's national sustainable water management legislation. The purpose of this paper is to: (1) compare existing global policy initiatives for the protection and management of GDEs; (2) synthesize Australia's adaptive management approach of GDEs in their state water plans; and (3) highlight opportunities and challenges of applying Australia's approach for managing GDEs under other water management policies worldwide.  相似文献   

12.
Abstract

New global models provide the opportunity to generate quantitative information about the world water situation. Here the WaterGAP 2 model is used to compute globally comprehensive estimates about water availability, water withdrawals, and other indicators on the river-basin scale. In applying the model to the current global water situation, it was found that about 24% of world river basin area has a withdrawal to availability ratio greater than 0.4, which some experts consider to be a rough indication of “severe water stress”; the impacts of this stress are expected to be stronger in developing countries than in industrialized ones. Under a “business-as-usual” scenario of continuing demographic, economic and technological trends up to 2025, water withdrawals are expected to stabilize or decrease in 41% of world river basin areas because of the saturation of water needs and improvement in water-use efficiency. Withdrawals grow elsewhere because population and economic growth will lead to rising demand for water, and this outweighs the assumed improvements in water-use efficiency. An uncertainty analysis showed that the uncertainty of these estimates is likely to have a strong geographic variability.  相似文献   

13.
Water level changes in wells provide a direct measure of the impact of groundwater development at a scale of relevance for management activities. Important information about aquifer dynamics and an aquifer's future is thus often embedded in hydrographs from continuously monitored wells. Interpretation of those hydrographs using methods developed for pumping‐test analyses can provide insights that are difficult to obtain via other means. These insights are demonstrated at two sites in the High Plains aquifer in western Kansas. One site has thin unconfined and confined intervals separated by a thick aquitard. Pumping‐induced responses in the unconfined interval indicate a closed (surrounded by units of relatively low permeability) system that is vulnerable to rapid depletion with continued development. Responses in the confined interval indicate that withdrawals are largely supported by leakage. Given the potential for rapid depletion of the unconfined interval, the probable source of that leakage, it is likely that large‐scale irrigation withdrawals will not be sustainable in the confined interval beyond a decade. A second site has a relatively thick unconfined aquifer with responses that again indicate a closed system. However, unlike the first site, previously unrecognized vertical inflow can be discerned in data from the recovery periods. In years of relatively low withdrawals, this inflow can produce year‐on‐year increases in water levels, an unexpected occurrence in western Kansas. The prevalence of bounded‐aquifer responses at both sites has important ramifications for modeling studies; transmissivity values from pumping tests, for example, must be used cautiously in regional models of such systems.  相似文献   

14.
Understanding the key drivers behind intensive use of groundwater resources and subsequent depletion in northern India is important for future food security of India. Although spatio-temporal changes of groundwater storage (GWS) and its depletion in northern India are mapped using the NASA's GRACE (Gravity Recovery and Climate Experiment) records, the sub-regional diverse socio-political and environmental factors contributing to the variability in groundwater withdrawals and renewals are not well documented. Here, we provide new evidence on changes in GWS at different spatial scales using both observations and satellite-based measurements applying both parametric and non-parametric statistical analyses. The substantial loss of GWS has occurred since the beginning of the 21st century, and the decline in GWS is associated with some record-breaking dry and hot climate events. We present how certain state-based policy decisions, such as supplying free electricity for irrigation, prompted farmers to extract groundwater unsustainably and thus led to widespread GWS deletion, which has been also accelerated by frequent dryness and rising temperatures. In the hotspot of Punjab, Haryana and Delhi of northern India, the extracted groundwater during 1985–2013 is equivalent to a metre-high layer if spread uniformly across its geographical domain. We find that the groundwater storage loss in northern India has increased rapidly from 17 km3 to 189 km3 between the pre-2002 and 2002–2013 periods. This loss in northern India is, therefore, an excellent example of rapid surface greening and sub-surface drying—a result of an interplay of socio-political and environmental factors. As groundwater continues to be treated as a common natural resource and no clear definition exists to guide policymaking, this study also illustrates how the administrative district level approach can solve the widespread problem of depletion.  相似文献   

15.
受地表河湖系统水情变化干扰,高度动态和异质性的洪泛区地下水文对河湖水资源、水污染以及生态环境功能等方面具有重要影响和贡献。鄱阳湖洪泛区湿地在长江中下游具有重要区位优势和研究特色,但变化环境下其水动力特征和水量交换情况等仍存在许多不确定性。本文以鄱阳湖典型洪泛区为研究区,采用地下水流二维数值模型,开展了洪泛区地表地下水转化作用与水量变化的模拟研究。结果表明,鄱阳湖季节性水位变化很大程度上决定了主湖区与周边地下水之间的动态补排模式,即洪泛区地下水补给湖泊主要发生在枯水和退水时期,而湖泊补给地下水主要发生在涨水和高洪水位时期。一般情况下,整个洪泛区地下水位与湖水位的年内变化态势基本一致,主湖区附近的地下水位年内变幅较大,而大部分洪泛区的地下水位变幅相对较小。北部地下水流速明显大于南部,主湖区附近地下水流速明显大于洪泛区,地下水流速基本小于1~2 m/d。水均衡分析发现,洪泛区地下水系统以接受降雨输入(52%)和主湖区补给(39%)为主,以地下水蒸发输出(72%)和向湖排泄(24%)为主,但补给主要发生在春、夏季,而排泄则发生在秋、冬季。地形地貌对洪泛区地下水位分布以及流速场演化具有主控作用,...  相似文献   

16.
Atyoida serrata is a small amphidromous shrimp distributed in the south-west Indian Ocean. This species is threatened by human activities such as fisheries and river discharge withdrawals. Knowledge of its reproductive biology is essential to develop management plans and reduce the impacts of these threats. This study presents the results of a one-year survey in three stations along the Langevin River, Reunion Island. Densities of shrimps dominated by juveniles decreased with an increasing altitude. However, the largest individuals were more numerous upstream. Despite variable size structures among stations, all the largest individuals were females. Females larger than 32 mm Total Length had a probability of 50% or more of being ovigerous. Fecundities were ranged from 271 eggs for a 28 mm TL female to 4,365 eggs for a 47 mm TL female. Reproductive activity was observed throughout the year with a considerable increase from September to April. This increase was positively correlated to day-lengths and to a lesser extent to elevated water temperatures and river discharges. This study suggests a fishing restriction in the upstream areas and during the reproductive season. Attention should be paid to management of water withdrawal during low water levels to reduce impacts on the larva drift.  相似文献   

17.
《Water Policy》2001,3(4):321-340
Australia's annual water use of 22,000 Gl is dissected using input–output techniques, showing that 30% of Australia's water requirement was devoted to domestic food production and a further 30% to exports, compared with 7% required for direct consumption by households. There is a net annual trade deficit in embodied water of approximately 4000 Gl. A strong relationship exists between water requirement and expenditure. If by 2050 Australia's population grows to 25 million people and per-capita expenditure doubles, the annual water requirement may more than double to 50,000 Gl, equivalent to half the nation's water flows. While this increase may be improbable it gives the challenge that the water required to deliver a unit of output across the whole economy may have to reduce by a factor of two, if population growth and economic growth are to meet policy expectations.  相似文献   

18.
《Water Policy》2001,3(5):363-386
Sudan's irrigated agriculture faces water shortages with the current method of water use. How can Sudan allocate its water quota stipulated in the 1959 Nile Waters Agreement? This paper examines water policy with a dynamic optimal control model to determine steady-state optimal inter-crop and inter-temporal allocation. Control of land, water, and price to ensure that cotton is grown has a negative impact on overall farm income, and water conservation. Incomes drop significantly if free market prices are adopted without the freedom to allocate land. Water shortages could develop if other schemes claim more water, irrigated area increases, and/or high water requiring crops are planted.  相似文献   

19.
In west-central Lower Peninsula of Michigan, population growth and expanded agricultural activities over recent decades have resulted in significant increases in distributed groundwater withdrawals. The growth of the extensive well network and anecdotes of water shortages (dry wells) have raised concerns over the region's groundwater sustainability. We developed an unsteady, three-dimensional (3D) groundwater flow model to describe system dynamics over the last 50 years and evaluate long-term impacts of groundwater use. Simulating this large aquifer system was challenging; the site is characterized by strong, spatially distributed, and statistically nonstationary heterogeneity, making it difficult to avoid over-parameterization using traditional approaches for conceptualizing and calibrating a flow model. Moreover, traditional pumping and water level data were lacking and prohibitively expensive to collect given the large-scale and long-term nature of this study. An integrated, stochastic-deterministic approach was developed to characterize the system and calibrate the flow model through innovative use of high-density water well datasets. This approached allowed (1) implementation of a “zone-based,” nonstationary stochastic approach to conceptualize complex spatial variability using a small set of geologic material types; (2) modeling the spatiotemporal evolution of many water well withdrawals across several decades using sector-based parameterization; and (3) critical analysis of long-term water level changes at different locations in the aquifer system for characterizing the system dynamics and calibrating the model. Results show the approach is reasonably successful in calibrating a complex model for a highly complex site in a way that honors complex distributed heterogeneity and stress configurations.  相似文献   

20.
西安台地电阻率自1975年8月开始观测以来,出现了长趋势的下降异常及在趋势下降的背景上又迭加了两个负异常。趋势下降与西安地区地裂缝活动、西安地区构造性下陷以及承压水位的下降明显相关,两个负异常则与地裂缝的两次加速活动以及构造性运动由下陷转变为抬升有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号