首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
We quantified temporal and spatial variability in diets of 950 juvenile (age-0) striped bass in the Hudson River estuary. We used canonical correspondence analysis to assess the roles of temporal and spatial habitat variability in juvenile diet variation. We found that juvenile striped bass diets in the Hudson River were only modestly comparable to diets in other east coast estuaries. Among-year differences (51.4%) and spatial differences (41.9%) were substantially associated with juvenile striped bass diet. We found ontogeny (2.8%) and within-season variation (9.5%) to only weakly associate with diet variation. Our results indicate that an understanding of the temporal and spatial variation within the Hudson River estuary is vital in understanding variation in feeding by resident juvenile fish.  相似文献   

2.
Large, recreationally or commercially important populations of Atlantic sturgeon (Acipenser oxyrinchus), American shad (Alosa sapidissima), and striped bass (Morone saxatilis) occur in the Hudson River. Members of the Hudson River populations of these fishes also occur over a broad range along the Atlantic coast where they mix with conspecifics from other anadromous populations. For management purposes, it is imperative to be able to discriminate among individual stocks so that weak stocks may be protected and harvest may be allocated equitably. Because of their sensitivity and resistance to environmentally-induced temporal variation, molecular approaches have been increasingly employed in stock identification studies. However, post-Pleistocene recolonization of the Hudson River must have occurred less than 10,000 years ago—a relatively brief period for genetic divergence among populations. We tested whether various measures of DNA variation between Hudson River populations and adjacent populations of Atlantic sturgeon, American shad, and striped bass were sufficient to discriminate among their conspecific populations. American shad populations surveyed for mtDNA variation were highly diverse genotypically, but genotypic frequencies among the populations of the Connecticut, Hudson, and Delaware rivers were statistically homogenous (p>0.05). In contrast, Atlantic sturgeon (surveyed for mtDNA variation) and striped bass (surveyed for mtDNA and nuclear DNA variation) populations of the Hudson River were not genotypically diverse, but they were differentiated from northern and southern populations. Our results suggest higher gene flow (and lesser homing fidelity) among American shad populations in comparison with the two other species.  相似文献   

3.
Estuarine fish populations are exposed to a variety of environmental conditions that cause both short-term variability and long-term trends in abundance. We analyzed an extensive data set for striped bass (Morone saxatilis) in the San Francisco Estuary to refine our understanding of how environmental variability influences recruitment. We examined the effects of environmental variability during early life stages on subsequent recruitment (age 3 yr), and the degree to which conditions in early life may have contributed to a long-term decline in abundance of adult striped bass in the San Francisco Estuary. Survival from egg to young-of-the-year varied strongly with freshwater flow; this effect apparently occurred within the first week or two of life, a time period that encompasses transport of eggs and larvae from the rivers to rearing areas and the onset of feeding. The rate of freshwater flow to pumping facilities that export freshwater from the system had small or sporadic effects on survival during the first month or two of life. Although many young striped bass between ages 2 and 8 mo were entrained in export pumping facilities, the resulting high mortality was unrelated to total mortality rates determined from field data on young striped bass. This lack of effect was apparently due to strong density-dependent mortality occurring between ages 1 mo and 3 yr (Kimmerer et al. 2000). The available data do not support previously suggested relationships between recruitment and freshwater flow during early life, or between gross estimates of pesticide input and survival of early life stages. We used a simple life-cycle model to show that various combined factors could have led to a decline in adult abundance, particularly a large and increasing adult mortality, but that events early in life probably did not contribute substantially to the decline. These results demonstrate that several decades of monitoring data from numerous life stages are needed to distinguish among alternative hypotheses about environmental influences on populations of estuarine fish.  相似文献   

4.
Juvenile striped bass,Morone saxatilis, collected in Albemarle Sound, North Carolina, during 1988–1992 were examined for food habits and growth. Ages estimated from otoliths collected in 1990–1992 were used to determine individual spawning dates and growth in total length and weight. The majority of striped bass examined had been spawned in mid-May 1990, mid-May to early June 1991, and June to early July 1992. Mysid shrimp was the dominant prey taxon and was consumed in all size classes examined. Mysid shrimp were consumed at twice the rate of copepods and 10 times more frequently than cladocerans. Fishes were a minor prey taxon. The number of mysid shrimp consumed increased with increasing length of striped bass. A higher percentage of mysid shrimp were consumed in the more saline waters of the central sound than in the less saline western sound. The opposite trend was found for consumed fishes. Increases in total length were linear from July to October, but increases in weight were not. Weight increased less rapidly in younger striped bass and more rapidly in older striped bass than either length or age. Quadratic and logarithmic equations accurately predicted weight from measures of total length but weight could not be predicted from age nor could age be predicted from total length. Estimating growth from total length at time of capture may be comparing fish of different ages. Age estimation from otoliths allowed us to determine that growth rates were similar among years and that differences in observed total length over time were due to different spawning times and not growth rates.  相似文献   

5.
Patterns of habitat utilization and migration of Hudson River striped bass,Morone saxatilis, were estimated using otolith microchemical analysis to chart age- and sex-dependent movements. Otoliths from 25 males and 25 females were analyzed for seasonal and age-specific patterns in strontium: calcium level. These levels were converted into salinity estimates based upon a relationship derived from experimental studies. Seasonal patterns in salinity habitation indicated annual up-estuary migrations in mature age-classes of males and females, and may represent spawning migrations. Early emigration of young striped bass (<3 yr old) into polyhaline and euhaline waters was observed for both sexes, but females tended to reside at higher salinities throughout their life span. Otolith microchemical analysis indicated that 68% of the sampled females and 28% of the sampled males spent significant portions of their lives in euhaline coastal waters. A positive relationship between down-estuary movements and age was observed for both sexes, supporting the hypothesis of size-related dispersion and anadromy in striped bass populations. Individuals collected during the same season or from the same segment of the river had similar lifetime salinities. This result suggests that group cohesion (schooling) could persist for substantial periods of an individual’s life span. The most cohesive group was fall-collected males, which may reside permanently in fresh water and estuarine waters. Cohesive migratory groups would have important implications for investigations on effects of contaminants and fishing pressure on Hudson River striped bass.  相似文献   

6.
We developed categorical time-series regression models to evaluate the roles of lagged stock abundance history, hydrographic variability, and anthropogenic factors in controlling the variation in abundance of striped bass and American shad in the Potomac, Delaware, and Hudson rivers. These models can be used to evaluate directly the role of interactions of variates to produce greater than average recruitment to commercial fish stocks. Whereas hydrographic factors dominate striped bass dynamics in all three estuaries for the period 1929–1976 compared to the pollution variables tested (i.e., sewage loading, dissolved oxygen, and biological oxygen demand), American shad shows strong dependence on the anthropogenic factors compared to hydrographic variates in all three estuaries.  相似文献   

7.
Variable recruitments of striped bass were hypothesized to be caused by factors influencing growth and survival of larvae. Eggs and larvae were collected in the Potomac River from 1987 to 1989 and in the Upper Chesapeake Bay in 1988 and 1989 to estimate abundances, larval growth and survival rates, and environmental variability. Larval batch dates, ages, and growth and mortality rates were estimated from analysis of otolith daily increments. A retrospective analysis of Potomae River ichthyoplankton data from 1974–1977 and 1980–1982 provided additional estimates of larval abundances and vital rates for comparative purposes. Significant correlations betweens vital rates (growth and mortality) and abundances of striped bass larvae, and the Maryland juvenile recruitment index indicated that recruitment level may be fixed during the larval stage. The ratio of mean daily growth and mortality rates (G:Z) of larvae in the Potomac River for 1987–1989 was highest in 1987 when the juvenile index was relatively high, and was lower in 1988 and 1989 when juvenile indices were low. In the Upper Bay, mean larval growth rate, survival rate, and the G:Z ratio were highest in 1989 when the juvenile index also was high. In both tributaries, abundances of late-stage larvae (8 mm SL) were correlated with juvenile-stage recruitment indices. The retrospective analysis provided additional evidence that Potomac River larval abundances and G:Z ratios were positively correlated with juvenile recruitment indices in the 1974–1977 and 1980–1982 periods. Conditions favoring striped bass larval abundance and potential recruitment differed between the Potomac River and the Upper Bay. In the Potomac, late-stage larval abundances coincided with late-season water temperatures that were relatively warm, low river discharges and high, late-season densities of zooplankton prey, which favored larval growth. In the Upper Bay, the high abundance of late-stage larvae in 1989 relative to 1988 was attributed to a higher egg production that was coincident with high zooplankton abundances.  相似文献   

8.
The detection of long-term shifts in species composition and spatial structuring of aquatic communities may be obscured by high levels of interannual variation. Estuarine fish communities are likely to exhibit high levels of variation owing to the influence of riverine forcing and the importance of anadromous and transient species, whose abundances may not be locally controlled. We describe patterns of interannual variation and long-term shifts in the nearshore fish community of the mesohaline Hudson River estuary based on 21 yr of beach seine sampling conducted annually between late August and mid November. Of the 60 species encountered, the most abundant were Atlantic silversides (Menidia menidia), striped bass (Morone saxatilis), white perch (Morone americana), American shad (Alosa sapidissima), and blueback herring (Alosa aestivalis). Relationships between annual community composition and seasonal flow and temperature regimes were examined with canonical correspondence analysis. Annual variation was most closely correlated with river flows in the 3-mo period preceding fish sampling, indicating a persistent effect of environmental conditions on community structure. Despite significant interannual variation in composition, longer-term trends in community structure were observed. These included declines in catch rates of freshwater and estuarine species and a dramatic increase in the catch of Atlantic silversides, an annual marine species. Associated with these changes were declines in community diversity and increased compositional variation. These results indicate that analyses of temporal changes in community structure need to account for the multiple time scales under which forcing factors and community composition vary.  相似文献   

9.
Altered river flow has been suggested as a cause for the low recruitment of striped bass,Morone saxatilis, in the Roanoke River (North Carolina) because of its effect on the proximity of zooplankton and larval striped bass. This results in unsuccessful feeding and subsequent starvation, which was considered to be a major mortality factor. Other mortality factors, such as parasitism and copepod predation on age-0 fish, may also be regulated to some extent by changes in river flow. The relationship of cestode plerocercoids, trematode metacercaria, mussel glochidia, and cyclopoid copepod predators with age-0 fish was evaluated in the lower Roanoke River and western Albemarle Sound from plankton net collections made in 1984 to 1986 and 1988. Plerocercoid prevalence was higher under low river flow conditions than under high flow conditions in darters (Percidae; 16.7% vs. 9.2%), minnows (Cyprinidae; 28.8% vs. 4.7%), andMorone (1.9% vs. 0%). Gut analysis of the age-0 fish revealed that copepods (source of the plerocercoids) were a major diet component ofMorone and darters but not of minnows or herring (Clupeidae). Decreases in river flow were associated with increases in copepod density (Pearson r=?0.62; p=0.0001) and plerocercoid prevalence inMorone (Pearson r=?0.29; p=0.03). The low correlation value forMorone may be quite strong considering the complexity of the variables associated with prevalence. Metacercaria were found only inMorone and minnows, and prevalence and mean intensity were less than that found for plerocercoids. Mussel glochidia prevalence was less than 0.5% for all affected taxa, an order of magnitude less that that found in other studies. The low value may indicate that the mussel population in the Roanoke River is declining. Prevalence of attacks by the predatory copepodMesocyclops edax on age-0 fish was similar to that in Chesapeake Bay, and striped bass was the primary prey. Spatial and temporal proximity of copepods and fish prey may be the key factors in regulating copepod attacks. The low prevalence of parasites and copepod predators seen in this tudy would suggest that mortality from these sources may not be a major factor in age-0 recruitment in this system. Confirmation of these conclusions would require a more controlled experimental approach.  相似文献   

10.
Oxygen consumption rates were measured individually for mixed groups of male, female, and immature striped bass,Morone saxatilis, in filtered Patuxent River, Maryland, water and in filtered water containing suspensions of either fuller’s earth or Patuxent River sediment. Oxygen consumption was determined at fixed swimming speeds at two temperatures, 15 and 22.5°C. Oxygen consumption of striped bass in filtered 15°C water increased as swimming speed increased. At 22.5°C, the same range of swimming speeds had no effect on rates of oxygen consumption. Similar data were obtained with fish swimming at the same speeds in water containing 0.79 g per liter fuller’s earth particles (15°C), and among those swimming at 31.7 and 49.0 cm per s in water containing 1.32 g per 1 Patuxent River sediment (22.5°C). Male and female striped bass respiration rates were similar under all test conditions. At 15°C, striped bass oxygen consumption rates during exposure to fuller’s earth while swimming at 8.6 and 31.7 cm per s did not differ from rates of fish swimming at the same speeds in filtered water. At 49.0 cm per s, rates were significantly depressed. Respiration rates of fish exposed to Patuxent River sediment at 22.5°C while swimming at 31.7 and 49.0 cm per s were significantly lower than those of fish in filtered water. Respiratory response of striped bass to suspended particle stress was manifested by depressed oxygen consumption. This is considered a short-term response to an acute stress. This response and the potential for hematological response to chronic suspended particle stress are discussed.  相似文献   

11.
An analytical method has been developed for evaluating the dependence of historical fish stock levels on estuarine pollutant loadings. Categorical time series regressions were used to derive preliminary relationships among previous levels of stock size, climatic variables, and pollution indicators. The analysis technique is used here to evaluate hypotheses on the effects of human population changes and dredging activity on stock histories of the Potomac estuary’s striped bass and American shad, for the period 1929 through 1976. Whereas climatic factors dominate striped bass dynamics compared to the two pollution variates tested, the American shad stock shows strong dependence on human population levels (but not on dredging activity) compared to climatic factors. Analyses of this type will be extended for examining the effects of specific pollutants on other important exploited stocks in five northeastern eatuaries.  相似文献   

12.
Gillnet surveys from 1990 to 1992 and from 1996 to 1999 indicated a two-fold decrease in native striped bass (Morone saxatilis) populations and a concomitant two-fold increase in hybrid striped bass (Morone saxatilis × M. americana) in the Cape Fear River estuary, North Carolina. Gut content analysis indicated high diet overlap, and tagrecapture data suggested that hybrid striped bass participate in spawning migrations. These data provide circumstantial evidence that hybrid striped bass compete with striped bass for food and that they may compete for mates or habitat on the spawning grounds. Increasing abundance of adult hybrid striped bass in this system elevates the likelihood of hybrid introgression. We recommend that stocking of hybrid striped bass be terminated to preserve native striped bass populations.  相似文献   

13.
A Poisson catch rate model for striped bass (Morone saxatilis) anglers in Chesapeake Bay was developed that incorporates the effect of bottom temperature and dissolved oxygen (DO). Angler catch rates are shown to be negatively affected by low DO. Predicted angler catch rates were then used in a random utility model of striped bass fishing location choice. Where anglers choose to fish is significantly related to expected catch rate and the travel cost and time from the anglers residence to the fishing location. Results from the random utility model were then used to simulate the economic welfare changes that result from changing DO levels in the Patuxent River. Since there are many substitute sites for fishing in the Patuxent River, the welfare effects are small. Increases in DO from current levels have a small effect on angler welfare, but if levels are allowed to deteriorate so they never exceed 5 mg l−1, the welfare effects are much larger. Under this latter scenario, the net present value of angler losses exceeds 100,000, and are almost100,000, and are almost 300,000 if the fishing grounds are anoxic. Losses are considerably higher as the area impacted by low oxygen conditions increases.  相似文献   

14.
Shortnose sturgeon,Acipenser brevirostrum, is a small, endangered species which occurs in 19 estuary systems along the east coast of North America. These populations are considered as separate entities by the U. S. National Marine Fisheries Service although evidence of morphologic or genetic differentiation among populations has not been documented. The purpose of this study was to compare morphological and genetic atributes among shortnose sturgeon collected from the Kennebec and Androscoggin Rivers, Maine, and the Hudson River, New York. Six morphometric and five meristic characteristics were quantified. Multivariate and univariate analyses of covariance and variance were used to assess differences among populations. Our analyses provided evidence for distinct populations in the Androscoggin and Kennebec Rivers, but character differentiation was greater between fish from these two locations and the Hudson River. Analysis of morphometric characters indicated significant differences in fish shape among the three rivers, with Hudson River sturgeon differing from the Maine rivers for the characters of head length, snout length, and mouth width. Significant differences were observed for meristic characters, but pairwise comparisons did not reflect a clear pattern of variability. Sequencing of a portion of the mitochondrial DNA control region revealed 15 haplotypes among 73 total specimens from the three rivers. Shortnose sturgeon from the Kennebec and Androscoggin Rivers were different from each other (p=0.0260); both differed significantly (p<0.0001) from the Hudson River collection. Gene flow was estimated at approximately 7 female migrants per generation between the two Maine populations and about 1 per generation between each of the Maine populations and the Hudson River population. Such strong stock structuring among presumably recently established post-Pleistocene (<10,000 yr) populations suggests that this species occurs in highly discrete units. Morphological and genetic variation observed in this study combined with current knowledge of life history attributes of shortnose sturgeon indicate that conservative management decisions are necessary until the patterns and extent of differentiation among populations species-wide can be investigated further.  相似文献   

15.
Fish aggregations at fronts may be caused by either increased food availability or better thermal conditions at the front, but a quantitative evaluation of the effects of fronts on fish has yet to be done. Bioenergetics models were used to evaluate the growth rate potential of a cool-water fish, the chinook salmon (Oncorhynchus tshawytscha), and a warm-water fish, the striped bass (Morone saxatilis), across thermal fronts of different temperatures and prey concentrations. The distributions of growth rate potentials across these fronts depended on fish physiology, the temperatures encompassed by the front, and prey distributions across the front. When food was distributed uniformly across the front, the growth rates of both species were highest at their optimal temperatures, if sufficient prey was available. Lower temperatures were better for growth if prey availability was low. Increased food availability at the front enhanced fish growth rate potential at the front. Actual growth rates depended on whether the fish behaviorally selected habitats by temperature, food, or growth rate potential. Results illustrate that prey patchiness and the nonlinearities inherent in the relationsip of fish growth to temperature and prey availability must be considered in order to evaluate how a population of fish might respond to a front and how the front might affect fish growth and production.  相似文献   

16.
The influences of temperature and environmental hypoxia on the growth rates of two California anadromous fishes, white sturgeon (Acipenser transmontanus) and striped bass (Morone saxatilis) were examined. Fish (0.5–0.6 g initial weight) were fedad libitum rations ofArtemia in flow-through aquaria regulated for temperature (15, 20, and 25°C) and oxygen tension (130 and 90 torr Po 2). Growth of sturgeon was significantly greater at 20 °C compared with 15 °C, but there was no difference between 20 and 25 °C. Striped bass growth increased with each 5° increment of temeprature elevation to 3.2% body weight per d at 25 °C, the fastest growth rate measured. The temperature of maximum growth reflected the temperature of the native estuarine rearing area. Environmental hypoxia (90 torr Po 2) reduced growth of sturgeon within each temperature level, whereas striped bass growth was reduced by hypoxia only at the upper two temperatures. Sturgeon were much more active in the growth chambers than striped bass. Sturgeon activity increased with each 5 °C temperature increase under normoxia and hypoxia, except at 25 °C (hypoxia) where activity was insignificantly different from that at 20 °C (hypoxia).  相似文献   

17.
The estuarine turbidity maximum (ETM) is an important nursery area for anadromous fish where early-life stages can be retained in high prey concentrations and favorable salinities. Episodic freshwater flow and wind events could influence the transport of striped bass (Morone saxatilis) eggs to the ETM. This hypothesis was evaluated with regression analysis of observational data and with a coupled biological-physical model of a semi-idealized upper Chesapeake Bay driven by observed wind and freshwater flow. A particle-tracking model was constructed within a numerical circulation model (Princeton Ocean Model) to simulate the transport of fish eggs in a 3-dimensional flow field. Particles with the sinking speed of striped bass eggs were released up-estuary of the salt front in both 2-d event-scale and 60-d seasonal-scale scenarios. In event scenarios, egg-like particles with observed specific gravities (densities) of striped bass eggs were transported to the optimum ETM nursery area after 2 d, the striped bass egg-stage duration. Wind events and pulses in river discharge decreased the number of egg-like particles transported to the ETM area by 20.9% and 13.2%, respectively, compared to nonevent conditions. In seasonal scenarios, particle delivery to the ETM depended upon the timing of the release of egg-like particles. The number of particles transported to the ETM area decreased when particles were released before and during wind and river pulse events. Particle delivery to the ETM area was enhanced when the salt front was moving up-estuary after river pulse events and as base river flow receded over the spawning season. Model results suggest that the timing of striped bass spawning in relation to pulsed events may have a negative (before or during events) or positive (after river flow events) effect on egg transport. Spawning after river flow events may promote early-stage survival by taking advantage of improved transport, enhanced turbidity refuge, and elevated prey production that may occur after river pulse events. In multiple regression analysis of observed data, mean spring freshwater flow rates and the number of pulsed freshwater flow events during the striped bass spawning season explained 71% of the variability in striped bass juvenile abundance in upper Chesapeake Bay from 1986 to 2002. Positive parameter estimates for these effects support the hypothesis that pulsed freshwater flow events, coupled with spawning after the events, may enhance striped bass early-stage survival. Results suggest that episodic events may have an important role in controlling fish recruitment.  相似文献   

18.
Results of blood and serum analyses on striped bass,Morone saxatilis (Walbaum), adults taken during the 1975 spawning season on the Nanticoke River, Maryland, are reported. The range in values found were 16–70% for hematocrit, 4.0–12.3 g/100 ml for hemoglobin, 2.86–4.49×106/cc for erythrocyte count, 4.5–18.8 mg% for serum calcium, and 6.1–13.0 g/100 ml for plasma protein. These values are compared with others previously reported for adult bass. Serum chloride and serum protein values, ranging from 80 to 186 mEq/l and 3.92 to 8.32 g%, respectively, are reported for the first time for this species. Hemoglobin and hematocrit values for non-spawning, mature striped bass held in ambient sea water for a year fall within the reported ranges. Serum total protein values ranged from 2.36 to 6.14 g% and serum calcium values varied between 8.1 and 14.9 mg% from migratory adult striped bass. The possibility of sexing striped bass using serum calcium levels is discussed. Hematological values reported will help in defining the range encountered in healthy adults of this species.  相似文献   

19.
Predation is often the largest source of mortality for juvenile fish and the risk of predation can influence growth rates by either forcing young fish into suboptimal foraging habitats or reducing the amount of time spent foraging. We used field experiments to test effects of predation risk by gulf flounder (Paralichthys albigutta) on juvenile pinfish (Lagodon rhomboides) growth rates by measuring changes in length and weight in three habitats (sand, low density, and high density shoalgrass,Halodule wrightii) in Perdido Key, Florida. Benthic cores, seagrass samples, and stomach contents were also analyzed to examine differences in pinfish prey densities, grass densities and epiphyte coverage, and diet, respectively, among habitat and predator treatments. Both length and weight growth rates were determined and showed similar results. We found that pinfish inhabiting seagrass habitats, particularly low densityHalodule displayed the fastest growth rates in the beginning of the growing season (June) and those in sand had the fastest growth rates later in the season (October). These differences in growth rates did not appear to be influenced by densities of pinfish prey items since the treatment having the highest density of prey was not that in which growth rates were the greatest. This seasonal shift may be attributed to increasing pinfish size. Larger pinfish in October may have been inhibited by high density grass, reducing foraging efficiency. These results demonstrate how occupying a suboptimal foraging habitat can affect juvenile pinfish growth rates. Predation risk significantly reduced length and weight growth rates of pinfish in June, but not October. This suggests that smaller pinfish early in the season traded time spent foraging for predator avoidance, while larger pinfish were likely to have reached a size refuge from predation. This study demonstrates that nonlethal effects from predation are also important influences on juvenile pinfish.  相似文献   

20.
Persistent inorganic constitutents preserved in sediments of aquatic ecosystems record temporal variability of biogeochemical functioning and anthropogenic impacts.210Pb and137Cs dating techniques were used to study the past variations of heavy metals (Pb, Cu, and Zn) and accumulation rates of sediments for Tivoli South Bay, in the Hudson River National Estuarine Research Reserve ecosystem. South Bay, a tidal freshwater embayment of the Hudson, may play an important role in the sediment dynamics of this important river. The measured sedimentation rate range of 0.59 to 2.92 cm yr−1 suggests that rapid accumulation occurred during the time period represented by the length of the cores (approximately the past 50 yr). Direct measurements of sediment exchange with the Hudson River reveal high variability in the sediment flux from one tidal cycle to the next. Net exchange does not seem to be adequate to explain sediment accumulation rates in the bay as measured by210Pb and137Cs. The difference may be supplied from upland streams or the Hudson River during storm events. Concentrations of the metals Pb, Cu and Zn were found to be well correlated with each other within individual cores at five of six sites tested. This suggests a common proximate source for the three metals at a specific site. The evidence is consistent with mixing in some environmental compartment before delivery to the bay. While metals self-correlate within individual cores, absolute concentrations, depth distribution patterns, and ratios of the metals to each other vary among the cores collected at different locations within the bay. Organic matter, Fe content, and particle size distribution of sediments do not account for the intercore variations in metal concentration. It is likely that cores collected from different sites may have derived metals from different sources, such as watershed streams and tidal exchange with the Hudson River.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号